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ELECTROSTATIC TRACTOR EFFECTIVENESS IN A
NON-MAXWELLIAN GEO PLASMA ENVIRONMENT

Amy Haft* and Hanspeter Schaub†

The electrostatic tractor has been proposed as a promising contactless method
to dispose of large defunct spacecraft in Geosynchronous Earth Orbit. Here, a
servicer spacecraft equipped with an electron gun directs the electron beam at a
target, charging it negative, while the emission of electrons charges the serciver
positively. An attractive electrostatic force between the two spacecraft allows the
servicer to reorbit the target into a graveyard orbit. While the electrostatic tractor
has been studied in a Maxwellian plasma, suprathermal particle deviations from
the Maxwellian distribution function, which exist in every low-density plasma en-
vironment, influence the controlled spacecraft charging induced by the electro-
static tractor. This paper expands on electrostatic space debris mitigation research
by investigating and comparing active charging in non-Maxwellian GEO environ-
ments using three alternate distribution models: (1) bi-Maxwellian distribution,
(2) kappa function, and (3) cool Maxwellian core with a hot kappa halo. The
forces and torques are then computed from the resulting equilibrium potentials us-
ing the multi-sphere method to demonstrate the full impact the environments have
on the effectiveness of the electrostatic tractor.

INTRODUCTION

For satellites in Geostationary Earth Orbit (GEO), debris mitigation guidelines set by the Inter-
Agency Space Debris Coordination Committee (IADC) suggest a minimum graveyard orbit of a
few hundred kilometers beyond the operational orbit, including 235km to account for the GEO-
protected zone and gravitational perturbations added to the effect of solar radiation pressure on the
spacecraft.1 However, data collected between 1997 and 2013 shows that only about 50% of GEO
satellites worldwide complied with IADC guidelines, while about 30% failed to meet guidelines
and another 20% were abandoned.2 In the United States, the Federal Communications Commis-
sion (FCC) established that all satellites launched after March 18, 2002 must commit to a minimum
altitude boost of 300km at the end of their operational lives,3 but repercussions for non-compliant
satellites were not enacted until 2023.4 The significant insurance value of GEO satellites2 high-
lights the importance of those assets, and the increasing risk of collisions in the GEO regime5, 6 due
to congestion from non-compliant satellites could have detrimental impacts on communications,
broadcasting, commerce, and Earth-observing activities.

To avoid potential collisions, Active Debris Removal (ADR) in GEO is necessary. Many proposed
methods of ADR in Low Earth Orbit (LEO) involve physical contact or grappling with the target
debris object.7–12 However, defunct GEO satellites have been observed to tumble with spin rates
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Figure 1: Electrostatic Tractor Concept

reaching many 10s deg/s,13, 14 making it very difficult to physically grapple with or detumble the
debris.15 The electrostatic tractor was proposed in 2012 as a contactless method of ADR in GEO.16

Here, an electron beam is mounted onto a servicer spacecraft. The electron beam is directed at a
target spacecraft, resulting in electron beam emission from the servicer and electron beam impact
on the target. With this flow of electrons, the servicer is charged positively and the target should be
charged negatively to initiate an attractive electrostatic force between the spacecraft, which would
allow the servicer to pull the target into a graveyard orbit. The Debye lengths, a measure of how far
a charge’s electrostatic effect persists, of several hundreds of meters in the GEO space environment
(compared to centimeters in LEO) ensure that potential shielding due to the ambient plasma is not
a concern.17

The GEO space environment is volatile and susceptible to geomagnetic substorms every few
hours,18 which may greatly affect active charging using the electron beam. During a substorm,
the Earth’s magnetotail snaps back from its extended local nighttime position and sends electrons
and ions accelerating back toward Earth. Many of these highly energized particles are injected into
GEO. Because the nominal plasma at GEO is rarified and collisionless, the sudden injection of high-
energy plasma during substorms every few hours18 frequently makes the environment a mixture of
two different plasmas. Earth’s magnetosphere can also be compressed during geomagnetic storms.
In a worst-case scenario known as ”The Great Magnetic Storm” that occured on March 13, 1989,
the magnetopause was compressed from 10RE to inside GEO at 6.6RE

19 such that GEO satellites
were directly exposed to the solar wind. While geomagnetic storms at this level of severity are
rare, occurring only every few decades, the compression of the magnetosphere during any period
of geomagnetic activity can result in non-thermal distributions in the plasma at GEO. Suprathermal
deviations from the Maxwellian velocity distribution function (VDF) are expected to exist in any
low-density plasma,20 meaning that even during quiet periods, the plasma at GEO may be better
represented using a non-Maxwellian VDF. Non-thermal particle distributions in the solar-wind and
near-Earth space plasma have been confirmed by several interplanetary missions.21–25

In this paper, the GEO environment is modeled using several non-Maxwellian VDFs to represent
various environments. First, charging using a bi-Maxwellian VDF, which models the environment
as a mixture of two distinct plasmas, is reviewed. Then, a generalized Lorentzian, or kappa, VDF
models the environment during quiet periods and when exposed fully to the solar wind. The sum
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(a) Electron flux in the mild bi-Maxwellian environment (b) Electron flux in the worst-case environment

Figure 2: Electron flux vs. Energy in two bi-Maxwellian environments

of a Maxwellian core and kappa halo will also be explored as an interesting model where a bi-
Maxwellian VDF is a particular case. The forces and torques from the resulting potentials will be
modeled to show the effectiveness of the electrostatic tractor for each environment.

SPACECRAFT CHARGING IN BI-MAXWELLIAN PLASMA

Particle Flux

A bi-Maxwellian plasma is a combination of two plasmas that are each represented using a
Maxwellian VDF. Therefore, the VDF for a bi-Maxwellian plasma f(E) is simply the sum of two
distinct Maxwellian VDFs, f1(E) and f2(E), such that26

f(E) = f1(E) + f2(E) (1a)

f1(E) = n1

(
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2πmT1

)1/2 E

T1
exp
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where the energy E is related to the particle mass m and velocity v using E = 1
2mv2, and the

subscripts 1 and 2 denote the respective values of number density n and temperature T for electron
population 1 and 2. The temperature T in Equation (1) is in units of electron volts (eV) and the
charge of the particle is denoted by the constant q0. The VDF used here is a measure of the flux
of the plasma in units of paricles/m2/eV. It is noted that T2 > T1 and represents the suprathermal
deviation from the Maxwellian.

The bi-Maxwellian VDF described in Equation (1) is illustrated in Figure 2. The total electron
flux f1(E)+ f2(E) is shown as a solid blue curve, while the Maxwellian fluxes of each population,
f1(E) and f2(E), are shown as red and yellow dashed curves, respectively. The two graphs in the
Figure show the flux result for different environments. Figure 2a shows the flux for a more mild bi-
Maxwellian environment, with parameters shown in Table 1. The particle densities and temperatures
were chosen with respect to typical GEO environment parameters during quiet periods just before a
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Table 1: Mild Bi-Maxwellian Environment

Particle Parameter

Type T1 (keV) T2 (keV) n1 (cm−3) n2 (cm−3)

Electron 0.5105 2.1 0.2 0.6
Ion 0.5105 2.1 0.2 0.6

Table 2: SCATHA Worst-Case Environment27

Particle Parameter

Type T1 (keV) T2 (keV) n1 (cm−3) n2 (cm−3)

Electron 0.4 24 0.2 0.6
Ion 0.3 26 1.6 0.6

geomagnetic substorm (at around local midnight) and during a geomagnetic substorm (during local
dawn hours).28 For simplicity, the ion temperatures were set equal to the electron temperatures.
It can be seen in Figure 2a that the shape of the f1(E) + f2(E) curve is roughly Maxwellian.
In Figure 2b, which uses the parallel SCATHA worst-case measurements from April 24, 1978,27

the f1(E) + f2(E) curve appears almost as two distinct Maxwellian curves due to the significant
temperature disparity between population 1 and population 2.

Charging Threshold

It was previously discovered that, for a single-Maxwellian plasma, a target spacecraft in an eclipse
being actively charged using an electron beam will have 3 equilibrium potentials.29 An equilibrium
potential is the electric potential of a charged object at which the net current acting on the object
is zero. Of the 3 equilibria, the most and least negative potentials are stable while the middle one
is unstable. Because of this, any sufficiently large deviation from a stable point will cause the
spacecraft potential to jump to the other stable equilibrium. This result closely emulates the triple-
root jump phenomenon that occurs naturally in a bi-Maxwellian plasma. The triple-root jump is the
sudden jump from a stable negative equilibrium potential to a stable positive equilibrium potential
through an unstable third root as a result of perturbations in the environment. This concept was first
proposed in 196530 and confirmed experimentally in 1988.31

The onset of charging in any space environment is characterized by a charging threshold. This
threshold in a single-Maxwellian plasma is simply the critical temperature T ∗ for a given material,
which is found by solving the current balance for an initially uncharged spacecraft in an environment
where the ion contribution is neglected. Using the Sanders and Inouye secondary electron formula32

δ(E) = c[exp(−E/a)− exp(−E/b)] (2)

and the Prokopenko and Laframboise backscattered electron formula33

η(E) = A−B exp(−CE) (3)

where a = 4.3Emax, b = 0.367Emax, and c = 1.37δmax and A, B, and C depend on the surface
materials, the threshold condition can be written as34

c
[
(1 + kBT/a)

−2 − (1 + kBT/b)
−2
]
+A−B(1 + CkBT )

−2 = 1. (4)
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The solution T to Equation (4) is either the anticritical temperature TA or the critical temperature T ∗

for the material and T ∗ > TA. In this paper, the material used is silver due to its consistent material
properties across other sources34, 35 and the NASCAP documentation.26 The material properties for
silver are a = 3.44, b = 0.2936, c = 1.37, A = 0.39, B = 0.2890, and C = 0.6320. For simplicity the
threshold condition will be written using the following shorthand notation:36

< δ(E) + η(E) >= 1. (5)

The charging threshold in a bi-Maxwellian plasma is significantly more complex. For an initially
uncharged spacecraft ϕ0 = 0 in an environment neglecting the ion contribution, the current balance
is ∫ ∞

0
(f1(E) + f2(E))EdE =

∫ ∞

0
(f1(E) + f2(E))E[δ(E) + η(E)]dE (6)

After complex algebra and substituting in the required equations, Equation (6) becomes

α(kBT1)
1/2 < δ(E) + η(E) >1 +(kBT2)

1/2 < δ(E) + η(E) >2

α(kBT1)1/2 + (kBT2)1/2
= 1 (7)

where α = n1/n2. Huang et. al show this derivation in greater detail.36 From Equation (7), it is
evident that the threshold condition in a bi-Maxwellian plasma is now dependent on 4 parameters:
n1, n2, T1, and T2. As α → ∞, the plasma behaves like a single-Maxwellian plasma.

In a more realistic space environment that includes the contributions from other current sources
including ions, it is easier to solve for the threshold numerically using a spacecraft charging model.
The charging model used in this paper was developed by J. Hammerl and H. Schaub29 in Ref. 29.
The model assumes a spherical, fully-conducting spacecraft such that all charging occurs on the
surface and there is only one electric potential ϕ across the entire surface. The radii of the servicer
and target spacecraft are set to RS = RT = 1m, and the secondary and backscattered electron yields
due to the incoming electron current are modeled by Equation (2) and Equation (3) for consistency
across previous bi-Maxwellian research.34, 36, 37 The other equations remain the same.

Figure 3 compares the bi-Maxwellian charging threshold curve for silver using the analytical
solution and numerical solution. The blue, U-shaped curve represents the charging threshold. In the
shaded region above the U-shaped curve, the spacecraft potential will converge to a positive value.
Outside of the shaded region, the spacecraft will be charged negatively. The yellow, dotted curve
shows the threshold condition for a single-Maxwellian plasma. For the single-Maxwellian threshold
curve, the y-axis is the value of < δ + η > calculated using Equation (4). The first temperature at
which the curve crosses 1 is the anticritical temperature TA and the second temperature is the critical
temperature T ∗. In Figure 3a, the asymptotes of the bi-Maxwellian threshold curve are at TA and
T ∗. Recall that the analytical solution in Figure 3a assumes that the spacecraft is initially uncharged
ϕ0 = 0 and neglects the ion contribution from the environment. The numerical solution in Figure 3b
also follows a U-shape, but does not have asymptotes at TA and T ∗. In the space environment
used in this figure, the ambient ion temperatures and densities are equal to the ambient electron
temperatures, which are shown in the graph as T1, T2, and α. Increasing the ion temperatures and
densities affects the threshold curve by decreasing the required population 1 electron temperature T1

and electron density ratio α to induce a potential jump, thus shifting the curve to the left and down.
Denser, hotter ion populations make the spacecraft potential more likely to jump from negative to
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(a) Analytical solution with ϕ0 = 0 and no ions (b) Numerical solution using spacecraft charging model

Figure 3: Bi-Maxwellian charging threshold curves

positive due to the intense ion contribution on the spacecraft. For both Figures 3a and 3b, increasing
T2 would shift the curve up, meaning that a higher α is required to induce a jump from negative to
positive. Another key finding is that the charging threshold in a bi-Maxwellian environment using
the charging model does not depend on the initial spacecraft potential ϕ0. In other words, regardless
of ϕ0, the spacecraft will jump from negative to positive (or vice versa) at the same values of α, T1,
and T2. Additionally, for a given environment, the positive and negative equilibrium potentials will
be the same for any ϕ0.

Active Spacecraft Charging

Figure 4 shows the result of active charging on the target in the mild spacecraft environment
shown in Table 1, accounting for the effects of the servicer with an electron beam current Ibeam =
50µA. The target is assumed to be fully eclipsed by the servicer, which is fully exposed to the sun.
Additionally, n2 varies with α as n2 = α/n1. Figure 4a illustrates the target potential over time at
10 linearly spaced initial target potentials ϕ0. For each ϕ0, 50 linearly spaced values of α ranging
from 0.1 to 10 are plotted. Values of α > 1 are shown in orange, and values of α < 1 are shown
in blue. Figure 4b illustrates the effect of α on the negative equilibrium potentials of the target. An
equilibrium potential occurs when the net current acting on the spacecraft is equal to zero, Inet = 0A.
In Figure 4b, the surface plot is colored green when the net current is greater than zero and colored
red when the net current is less than zero. The equilibrium potentials occur at the intersection of
the green and red surfaces. The black points on the curve highlight the equilibrium potentials at
α = 10. The least negative equilibrium potential is generated from the impact of the electron
beam on the target and the resulting secondary and backscattered electrons. It can be observed in
Figure 4a that this equilibrium is at a greater potential than ϕ0 for most ϕ0. This is a result of both
the environmental conditions and the charging of the servicer. In the natural environment, the target
would be charged slightly positive, thus the environment has a positive influence on the charging of
the target. The servicer is also initially charged positively and the electron beam emission causes it
to charge even more positively. As a result, the electrons become more attracted to the servicer over
time until equilibrium is reached. Therefore, the impact of the electron beam on the target decreases
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Figure 4: Active charging in mild bi-Maxwellian environment
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Figure 5: Active charging in SCATHA worst-case environment

over time and creates the reversal of charging seen in Figure 4a. The most negative equilibrium
potential corresponds to the case where the target is initially charged so negatively that the electron
beam cannot reach it. Without the servicer, the equilibrium potential would be equal to negative the
electron beam energy, which in this case is 20keV. However, with the servicer included, the positive
influence of the environment brings this potential to a less negative value. In some cases, the target
begins to charge positively, but sharply reverses and charges negatively to converge to the most
negative equilibrium potential. Since the electron beam cannot initially reach the target, it charges
positively due to the influence of the environment. It quickly reaches a less negative potential that
allows for the impact of the electron beam, and the target potential converges to the most negative
equilibrium potential.

The effect of varying α on the least negative equilibrium potential is apparent in both Figures 4a
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and 4b. When α < 1, perturbations in the environment density can cause the target potential to
jump thousands of volts. As α → 0, the effect of perturbations becomes more significant. However,
as α → ∞, the plasma behaves like a Maxwellian plasma, and the target potential converges to a
particular value. The electrostatic tractor would consequently be most predictable and effective in
an environment where α is large, such that n1 ≫ n2.

Figure 5 shows the result of active charging on the target in the SCATHA worst-case environment
shown in Table 2, accounting for the effects of the servicer. Again, the target is assumed to be fully
eclipsed by the servicer, which is fully exposed to the sun, and n2 varies with α as n2 = α/n1.
Figure 5b shows that each value of α has only 1 equilibrium potential, rather than 3 as was the case
for the mild environment. In Figure 5a, it can be observed that a jump to a positive potential is
possible in this environment for small values of α. This would be detrimental to the performance
of the electrostatic tractor and serves as an example of why operating in low α environments could
be complicated. It should be noted that the element of the environment that generates this result
is the 8:1 ratio of population 1 ion density to population 1 electron density ni1 : n1. The large
contribution from the ion current compared to electron current exerts a substantial positive influence
on the charging of the spacecraft, resulting in the possibility of a jump to a positive potential.

(a) For α = 0.1 (b) For α = 1

(c) For α = 2

Figure 6: Total current vs. potential and T2 for various values of α
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Figure 6 shows the equilibrium surface plots for T1 = Ti1 = 0.5105keV, n1 = 0.2cm−3, ni1 =
1.6cm−3, and α = [0.1, 1, 2]. T2 and Ti2 vary between T ∗ = 1.2keV for silver and the SCATHA
worst-case values T2max = 24keV and Ti2max

= 26keV. These plots show the affect of varying
T2 on the equilibrium potentials of the spacecraft. In Figure 6a, α = 0.1, and only 1 equilibrium
potential exits for each value of T2. It can also be observed that perturbations in T2 cause the
equilibrium potential to vary across all T2, though to a greater degree when T2 is close to T ∗. As
T2 increases, the equilibrium potential decreases. The effect of perturbations in T2 decrease as α
increases. This can be seen in Figures 6b and 6c, which show the equilibrium surface plots for
α = 1 and α = 2, respectively. For both plots, the equilibrium potential is constant for the majority
of T2. However, when T2 is close to T ∗, some variation can be discerned. The changes in the
equilibrium potential are greater for α = 1 than for α = 2. These results support the conclusion
that the electrostatic tractor is more effective when α is large, n1 ≫ n2.

SPACECRAFT CHARGING IN KAPPA PLASMA

Particle Flux

The generalized Lorentzian, or kappa, VDF has been shown to adequately model suprathermal
populations that are ubiquitous in the solar-wind and near-Earth space plasma.20, 24, 38–41 The kappa
VDF that describes the particle flux is26

f(E) = n
( q0
2πκTm

)1/2 E

κT

(
Γ(κ+ 1)

Γ(κ− 1/2)

)(
1 +

E

κT

)−κ−1

(8)

where Γ(x) is the Gamma function and κ is the spectral index, which must be greater than 1. The
value of κ determines the slope of the energy spectrum of the suprathermal particles forming the
tail of the VDF.20 The function becomes a Maxwellian as κ → ∞. This can be seen in Figure 7,
which shows the electron flux of a plasma using a kappa distribution. The Maxwellian distribution
for the same environment is shown as a black, dashed line. The distributions for κs ranging from
2 to 50 are shown as multicolored solid lines. As the value of κ increases, the curves more closely
resemble the Maxwellian curve.

Figure 7: Electron flux vs. Energy using kappa distribution
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Figure 8: Charging threshold for kappa distribution

Charging Threshold

For the most part, the kappa distribution function behaves like a Maxwellian in terms of the
charging threshold. In other words, the natural potential of the spacecraft will converge to either
positive or negative depending solely on the intensity of ion contribution in the plasma relative to
that of the electron contribution. The critical temperature T ∗ would still apply in an environment
neglecting ions. This is opposed to the bi-Maxwellian function, which may jump between positive
and negative potentials as a result of the electron density ratio in addition to the intensity of the ion
contribution from both constituting populations of plasma. However, the suprathermal tails, which
are the observed by the extension into higher energies in the curves with smaller values of κ, that
are accounted for in the kappa function cause negative charging to begin at lower temperatures than
for the Maxwellian function alone. This is visualized in Figure 8, in which the blue line denotes
the onset of charging. Above the line, the spacecraft is charged to a positive potential. Below the
line, the spacecraft is charged to a negative potential. The spacecraft is also charged to a negative
potential beyond the extent of the line.

This threshold line is for the environment with n = ni = 0.2cm−3 and T = Ti = 0.5105keV,
where the subscript i denotes the ion population. Both the electrons and ions are modeled using a
kappa distribution function with the same κ. Lower values of κ indicate greater suprathermal tails,
meaning that hotter deviations from thermal equilibrium are present. Higher values of κ behave
more similarly to the Maxwellian. Because the electron mass (9.10938 × 10−31kg) is orders of
magnitude less than the ion mass (1.67262× 10−27kg), from Equation 8, the electron flux is much
greater than the ion flux. It follows that lower values of κ induce negative charging at a lower
temperature than at higher values of κ. It is also evident from Figure 8 that variations in κ change
the temperature at which negative charging begins linearly: there is a linear relationship between κ
and the temperature threshold for charging.

Active Spacecraft Charging

Figure 9 shows charging in the kappa plasma with various values of κ compared to charging in
a single-Maxwellian plasma with the same plasma properties, neglecting the effects of the servicer,
with electron beam current Ibeam = 50µA. The plasma properties are T = Ti = 0.5105keV and
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(a) Kappa plasmas (b) Single-Maxwellian plasma

Figure 9: Active charging in kappa and single-Maxwellian plasmas, no servicer
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(a) Kappa plasmas
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(b) Single-Maxwellian plasma

Figure 10: Active charging in kappa and single-Maxwellian plasmas, with servicer

n = ni = 0.2cm−3. Figure 9a illustrates the target potential over time with both electrons and ions
modeled using a kappa distribution. The initial target potential ϕ0 is at 10 linearly spaced values
between -1keV to -25keV. For each ϕ0, 50 linearly spaced κs between 1 and 10 are plotted. From
the source of Equation 8, κ cannot be less than 1.26 Values of κ between 1 and 2 are show in blue in
Figure 9a. Previous research has found that kappa distributions with 2 < κ < 6 fit the satellite data
in the terrestrial magnetosphere,39 the solar wind,24, 40 and other near-Earth space environments.20

Values of κ between 2 and 6 are highlighted in orange in Figure 9a. Values of κ > 6 are shown
in yellow. Figure 9b shows active charging in equivalent the single-Maxwellian environment for
comparison, also with 10 linearly spaced values of ϕ0 ranging from -1keV to -25keV.

It can be clearly observed in Figure 9 that charging in the kappa plasma is almost identical to
charging in a single-Maxwellian plasma. For low values of κ, the least negative equilibrium po-
tential shifts slightly more negative, and it takes slightly longer to converge to the most negative
equilibrium potential. For the expected distributions in the near-Earth environment 2 ≤ κ < 6, the
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result of active charging is near indistinguishable from the single-Maxwellian.

The variations in κ have a more dramatic effect when including the servicer, as shown in Fig-
ure 10. In general, it can be observed that the target potential over time in the kappa plasma follows
the same pattern as the single-Maxwellian plasma, similar to Figure 9 without the servicer. However,
including the servicer as in Figure 10 causes higher values of κ to be required in order to converge
to the least-negative equilibrium potential. For lower values of κ, including much of 2 ≤ κ < 6,
it is even possible to converge to a positive potential. It is important to note that the material used
in these simulations is silver, whose material properties make it more prone to the positive charging
influenced by the ambient environment. Other materials, such as aluminum, would have different
resulting potentials and may not converge to a positive value at all. Interestingly, it is the distribu-
tions with lower values of κ (greater suprathermal tails) that consistently charge negatively, which
is required by the electrostatic tractor concept. Even for less negative values of ϕ0, smaller κs con-
verge to the most negative equilibrium. The caveat is that there is some variation in where that
most negative equilibrium lies when κ is small, similar to what was observed when α was small in
the double-Maxwellian environment. This indicates that variations in the suprathermal tails could
result in jumps in the equilibrium potential, making charging using the electrostatic tractor difficult
to predict.

SPACECRAFT CHARGING IN PLASMA WITH MAXWELLIAN CORE AND KAPPA
HALO

Particle Flux

The phrasing ”Maxwellian core and kappa halo” is intended to imply that the cooler population 1
particles are modeled using a Maxwellian distribution and the hot population 2 particles are modeled
using a kappa distribution function. As a result, the Maxwellian core and kappa halo has a particular
case that is a bi-Maxwellian distribution as κ → ∞. The VDF of the Maxwellian core and kappa
halo is then

f(E) = f1(E) + f2(E) (9a)

(a) Total flux (b) Deconstructed flux

Figure 11: Electron flux of plasma with Maxwellian core and kappa halo
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f1(E) = n1

(
q0

2πmT1

)1/2 E

T1
exp

(
−E

T1

)
(9b)

f2(E) = n2

(
q0

2πκT2m

)1/2 E

κT2

(
Γ(κ+ 1)

Γ(κ− 1/2)

)(
1 +

E

κT2

)−κ−1

(9c)

where f(E) is the total flux, f1(E) uses a Maxwellian flux distribution, and f2(E) uses a kappa
flux distribution.

Figure 11 illustrates the electron flux distribution of the Maxwellian core and kappa halo distri-
bution compared to a bi-Maxwellian distribution. The environment used here is the same as the
mild environment shown in Table 1, with κ varying incrementally between 2 and 50 for popula-
tion 2. Figure 11a shows the total flux, while Figure 11b shows the population 1 flux f1(E) and
the population 2 flux f2(E) individually. In Figure 11a, it can easily be observed that as κ be-
comes increasingly large, the flux of the Maxwellian core and kappa halo plasma converges to the
bi-Maxwellian distribution, which is shown as a black, dashed line. In Figure 11b, the suprathermal
tails in the population 2 flux are seen and the flux converges to the Maxwellian black, dashed line
as κ → ∞. The Maxwellian population 1 flux is shown as a black, solid line.

Active Spacecraft Charging

It follows from the findings in the previous section that active charging in the Maxwellian core
and kappa halo environment would closely resemble active charging in a bi-Maxwellian environ-
ment, with variation relating to increased suprathermal tails in population 2. Figure 12a makes this
comparison by showing target potential over time for the Maxwellian core and kappa halo environ-
ment plotted together with the results for the same bi-Maxwellian environment. In this figure, the
mild spacecraft environment shown in Table 1 is used. Note that the electron density ratio α is 1

3 for
the mild environment. The effects of the servicer are initially omitted for clearer discussion. For the
case 1 ≤ κ < 2, the lines are drawn in blue. The expected near-Earth or solar wind suprathermal
tails 2 ≤ κ < 6 are highlighted in orange. The case where κ ≥ 6 is drawn in yellow, and the bi-
Maxwellian result is shown in black. Figure 12b paints a full picture of active charging by showing

(a) Target potential vs. time (b) Total current vs. potential and κ

Figure 12: Active charging in mild environment with kappa halo, neglecting servicer
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Figure 13: Active charging in mild environment with kappa halo, including servicer

the total current acting on the target as a function of the target potential and κ. It can be observed
that for most values of κ, there are is only 1 equilibrium potential. This means that the environment
and electron beam do not meet the requirements for multiple equilibria as described by Hammerl
and Schaub.29 However, as κ becomes small, the total current surface dips below zero, meaning that
the aforementioned requirements for multiple equilibria are met. This change is notable because it
means that variations in the suprathermal deviations from the Maxwellian may change the number
of possible equilibria for a particular environment, and consequently may result in significant jumps
in potential.

The full charging scenario for the mild environment including the effects from the servicer is
shown in Figure 13. It can be observed that including the servicer causes the criteria for multiple
equilibria to be met in every case. Similarly to when α was small in the bi-Maxwellian discussion,
the equilibrium potential varies more significantly when κ is small, and it converges to a particular
value as κ → ∞. Recall that α = 1

3 for the mild environment. It is known from the bi-Maxwellian
discussion that α < 1 can cause severe jumps in target potential when the environment is perturbed.
When n2 is changed from 0.6cm−3 to 0.1cm−3 such that α = 2, the effects are as expected. As seen
in Figure 14, greater suprathermal tails (smaller κ) have less of an effect on the equilibrium potential
as they did when α was small. Of course, this is a result of a less dense n2, so the population 2 flux,
which is modeled using a kappa distribution, has less of an effect on the charging of the spacecraft.

RESULTING FORCES AND TORQUES

For two spheres in proximity of one another with radii R1 and R2, potentials V1 and V2, charges
q1 and q2, and separated by a distance d, the charges can be related to the potentials using

[
V1

V2

]
= kc

[
1/R1 1/d
1/d 1/R2

] [
q1
q2

]
(10)

where kc is the Coloumb constant equal to 8.988 × 109 (N·m2)/C2. Then the electrostatic force
between them can be calculated easily using Coloumb’s Law.
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(a) Target potential vs. time (b) Total current vs. potential and κ

Figure 14: Active charging with α = 2 and kappa halo, including servicer

F = kc
q1q2
d2

(11)

However, the forces and torques acting on a spacecraft cannot be accurately modeled when repre-
senting the 3D geometry as a sphere. As a result, the forces and torques on the target resulting from
the equilibrium potentials for each of the three GEO environment models is calculated using the
surface multi-sphere method (MSM). The surface MSM can analytically approximate the Coulomb
interaction between charged bodies using a collection of finite spheres placed homogeneously along
the surface of the spacecraft to represent a complex shape.42, 43 For n spheres making up a single
spacecraft, Equation 10 becomes


V1

V2

...
Vn

 = kc


1/R1 1/d1,2 · · · 1/d1,n
1/d2,1 1/R2 · · · 1/d2,n

...
...

. . .
...

1/dn,1 1/dn,2 · · · 1/Rn



q1
q2
...
qn

 (12)

which can be written simply as

V = [S]Q (13)

where [S] is the elastance matrix. Now, for two charged bodies represented by multiple spheres,
Equation 13 has the form

[
V1

V2

]
=

[
S1 SM

ST
M S2

] [
Q1

Q2

]
(14)

where SM is the mutual capacitance block of the elastance matrix, which changes with the relative
position of the two bodies.44 Finally, the force and torque acting on body 1, which is composed of
n spheres, about a point P can be calculated by
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Figure 15: Depiction of the multi-sphere method

F1 = kc

n∑
j=1

Q1j

(
n∑

i=1

Q2i

r3i,j
ri,j

)
(15)

and

L1,P = kc

n∑
j=1

rj × F1 (16)

where rj is the vector from P to the jth sphere.

Figure 15 shows the spacecraft models used in this analysis, representing both the target and
servicer spacecraft using the MSM with 80 spheres. The later calculations use 20 spheres to reduce
the computational complexity, but the visualization uses 80 spheres for clarity. The target spacecraft
on the right is represented using a GOES-R satellite, which was selected for its asymmetric shape
resulting from a single 5m × 10m solar panel and its 10m long magnetometer. The bus of the GOES-
R satellite is a 4m × 4m × 6m cuboid. The servicer spacecraft is represented by a 2.5m × 2.5m ×
3m SSL-1300 satellite bus with two 3m × 14m solar panels. The spacecraft are located 20m apart
in the y direction. Figure 15 also shows that the MSM calculates the charge on each sphere. This is
a particular instance of a right-hand equilibrium potential in the mild bi-Maxwellian environment.
Positive charges are shown in green and negative charges are shown in red. Greater magnitudes
of charge are shown in shades with greater intensity, and vice versa. It can be observed that the
charge magnitudes are greater on the outer spheres making up the spacecraft. The components of
the torque on the target are shown in orange on the figure. The servicer also experiences torques,
but this analysis focuses on the results of the target.
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Bi-Maxwellian Distribution

Figure 16 illustrates the forces and torques in the mild bi-Maxwellian environment using the
MSM from ϕ0 = −1keV, which converge primarily to the right-side equilibria, and ϕ0 = −25keV,
which converge primarily to the left-side equilibria. The phrasing ”right-side” equilibrium refers
to the least negative equilibrium potential and ”left-side” equilibrium refers to the most negative
equilibrium potential for cases where there are multiple equilibria in a particular environment. If
there is only one equilibrium, then that equilibrium potential is the right-side equilibrium. In Fig-
ure 16, the electron density ratio α varies as in Figure 4, and the force and torque components on
the target are calculated and plotted for each environment. Figure 16a and 16b show the results for
ϕ0 = −1keV and Figure 16c and 16d show the results for ϕ0 = −25keV. It is not important to show
results for other initial target potentials because ϕ0 only affects whether the potential will converge
to the right- or left-side equilibrium, if there are multiple equilibria. It is α that dictates the value of
those equilibria.

The immediate observations are as expected: small values of α result in forces and torques very
different from the larger values of α, and as α → ∞ the forces and torques experienced by the target
converge. These findings reflect the results of the equilibrium potentials in Figure 4. Additionally,
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(d) Torques from ϕ0 = −25keV

Figure 16: Forces and torques in the mild bi-Maxwellian environment at each α
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there is significantly more variation in the right-side results than in the left-side results, which again
reflects the potentials that are observed in Figure 4. In Figures 16c and 16d, it can be observed that
there is one point representing α = 0.1 located far from the cluster of other points that represent
larger values of α. This is the case where the environment changes such that there is only one
equilibrium point, so the potential converges to a right-hand equilibrium. An interesting finding
in Figures 16a and 16b is that the y- and z-components of the force acting on the target initially
decrease quickly as α increases before reaching a minimum and increasing slowly. Since the x-
component of the force increases initially as α increases, this corresponds to an increase in the y-
component of torque. Of course, different orientations of each spacecraft will vary the components
of torque that are modified due to the resulting forces.

In the SCATHA worst-case bi-Maxwellian environment, there is only one equilibrum potential
for each α, so it is not necessary to show the force and torque results at more than one ϕ0. Figure 17
shows forces and torques resulting from the potentials computed in Figure 5 for ϕ0 = −1keV. Recall
that for small values of α, the potential converges to a slightly positive equilibrium. Interestingly,
only the smallest value of α in this analysis (α = 0.1) results in a repulsive force. Moreover, the
force is so small (on the order of 10−11N in the y direction), that it can be considered negligible.
Thus, while the electrostatic tractor would be unable to pull the target debris object in such an
environment, it would not end up pushing the object away from it. In Figure 5, there are 4 values
of α that produce positive potentials, but 3 of them still generate attractive forces. This is due to
the large electric field produced by the servicer spacecraft relative to that produced by the target,
which causes induced charging effects that make the charge on the target negative despite having a
positive potential.45 The effects of the electric fields from one spacecraft on another is a function of
separation distance and electric potential.45 In this case, the equilibrium potential of the servicer in
these 3 cases is on the order of 1000s of volts while the target potential is on the order of a few volts
or or less, so induced charging effects occur. In the case where the resulting force is repulsive, the
potentials of both the target and servicer are on the order of several V. It should also be noted that
the forces resulting from the case where both the target and servicer potentials have the same sign
are less than when they have opposite signs.45
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Figure 17: Forces and torques in the worst-case bi-Maxwellian environment at each α
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Kappa Distribution

Figure 18 illustrates the forces and torques in the kappa environment using the MSM from
ϕ0 = −1keV and ϕ0 = −25keV. The value of κ varies as in Figure 10, and the force and torque
components on the target are calculated and plotted for each environment.

It is known from Figure 10 that for ϕ0 = −1keV, while larger value of κ all converge to the
right-side equilibria, some smaller values converge to the left-side equilibria. For ϕ0 = −25keV, all
values of κ converge to the left-side equilibria. This can be easily seen in Figure 18. In Figures 18a
and 18b, as κ increases from its minimum, the force and torque begin to converge to those that result
from the left-side equilibrium. There is then a sudden jump to a force and torque from a right-side
potential, which converges to the force and torque resulting from the single-Maxwellian right-side
equilibrium. In Figure 10, it can be observed that the jump to the right-side equilibria results in a
potential that is initially positive, but eventually becomes negative again as κ continues to increase.
However, the force between the spacecraft is always attractive. This is again a result of the large
electric field generated by the servicer, which has a potential magnitude that is significantly greater
than that of the target when they are both positive. This phenomenon is also the explanation for the
sharp turn experienced by force and torque in Figures 18a and 18b. At the point where the electric
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Figure 18: Forces and torques in the kappa environment at each κ
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Figure 19: Forces and torques in the Maxwellian core kappa halo environment at each κ

potential of the target becomes negative again, the induced charging effects from the servicer’s
electric field are no longer felt and the dynamics of charge accumulation changes. In Figures 18c
and 18d, all values of κ produce forces and torques from the left-side equilibria. As κ increases,
the force and torque converges to those that result from the single-Maxwellian left-side equilibrium.
Small values of κ result in jumps in the force felt on the object. Since the magnitudes are not very
large to begin with, the jumps may not have a significant impact on the control of the electrostatic
tractor.

Maxwellian Core and Kappa Halo Distribution

Figure 19 shows the resulting forces and torques in the Maxwellian core and kappa halo environ-
ment using the properties of the mild bi-Maxwellian environment seen in Table 1, corresponding to
the potentials in Figure 13. The value of κ varies through 50 linearly spaced values from 1 to 10, and
the force and torque components on the target are calculated and plotted for each environment. It is
important to note that for this environment, all of ϕ0 = −1keV converge to the right-side equilibria,
and all of ϕ0 = −25keV converge to the left-side equilibria. Thus, Figures 19a and 19b are the
forces and torques resulting from the right-side equilibria and Figures 19c and 19d are the forces
and torques resulting from the left-side equilibria.
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For both the right- and left-side equilibrium potentials, the resulting forces and torques converge
to a particular value as κ increases. When κ is small, the force and torque experienced by the target
may jump on the order of tenths of mN and hundredths of mN·m. The forces resulting from the
right-side equilibria have the interesting property seen previously in Figure 16. In this case, as κ
increases, the forces in the y and z directions quickly become more negative before turning around
and slowly increasing. The resulting torque corresponds to this variation in the force components.

CONCLUSION

This research investigates active spacecraft charging in various non-Maxwellian GEO environ-
ments and computes the forces and torques generated by the resulting equilibrium potentials. The
environments are modeled by a bi-Maxwellian distribution, a kappa distribution, and a distribution
made up of a cooler Maxwellian core and a hotter kappa halo. It is found that for both the mild and
worst-case bi-Maxwellian environments, the equilibrium potential experiences significant jumps
due to perturbations in the environment when the electron density ratio α is small and converges to
a particular value as α → ∞. For the worst-case environment, it is possible for the target to become
charged to a positive potential even in the presence of an electron beam current of 50µA when α
is small. It was originally predicted that this could impede the function of the electrostatic tractor
since the servicer is also charged positively. However, it is concluded that for most cases, the target
will still have a negative charge distributed along its surface due to induced charging effects from
the servicer’s significant electric field, thus resulting in an attractive force between the target and
servicer. For the kappa environment, it was observed that as κ → ∞, the active charging behaves
like that for a single-Maxwellian plasma. When κ is small, jumps in the equilibrum potential are
more likely to occur. In fact, a diminishing κ can induce a jump from the right-side equilibrium
potential to the left-side equilibrium potential. This is reflected in the resulting forces and torques,
which show that as κ increases, the force begins to converge and then jumps significantly before
converging again. In the environment tested in this analysis, the jump from the left- to right- side
equilibrium results in a positive potential, but the charge distributed along the surface of the target
remains negative due to induced charging effects from the servicer’s electric field. The Maxwellian
core and kappa halo environment has the property that as κ → ∞, the distribution function is bi-
Maxwellian. It is found that variations in κ may cause jumps in the equilibrium potential, including
a possibility of inducing multiple equilibria in an environment that previously had only one. The
forces and torques show that the jumps are more significant when κ is small.
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