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SPACECRAFT RELATIVE MOTION WITH RESPECT TO A
SPINNING CHIEF BODY FRAME

Afrah Ghedira* and Hanspeter Schaub†

Relative motion between orbiting spacecraft is often modeled in the Hill frame
due to its analytical first-order solutions and the intuitive geometry of the result-
ing orbits. However, this frame is not ideal for mission scenarios involving con-
straints fixed in the body frame, such as collision avoidance when approaching
and docking onto spinning objects. This paper studies analytical solutions for rel-
ative motion in the body frame for a circular chief orbit and derives geometrically
meaningful invariants that provide intuitive insight into the resulting relative tra-
jectory shapes. Both bounded and drifting motions are considered. Further, the
body frames are initially aligned with the Hill frame and undergoing constant ro-
tation about each Hill frame principal axis (radial, along-track, and cross-track).
The analysis includes both resonant (spin rate equal to the orbital rate) and non-
resonant cases.

INTRODUCTION

Orbital rendezvous and docking technologies date back to the early days of the space race. These
pioneering rendezvous approaches initially relied heavily on human guidance.1 Historically, most
on-orbit servicing and assembly, such as operations on the International Space Station (ISS) or the
Hubble Space Telescope, have also required direct human control.2

More recently, the focus has shifted toward fully autonomous robotic rendezvous and docking,
driven by the increasing demand for these capabilities and the risks associated with operations. This
shift is fueled by growing interest in applications such as active debris removal, on-orbit servicing
and assembly, and satellite life extension through upgrades and refueling.3, 4 Several space mis-
sions have been developed as technology demonstrations of autonomous rendezvous and docking
technologies. For example, the Orbital Express (OE) project,5 supported by the Defense Advanced
Research Projects Agency (DARPA), demonstrated autonomous rendezvous that involved battery
and CPU module exchange, as well as propellant transfer. This was carried out between two con-
trolled spacecraft: the ASTRO servicing satellite and a prototype modular client*. Commercial
interest is also growing for autonomous rendezvous technologies. For instance, Astroscale’s Life
Extension In-orbit (LEXI) Servicer, scheduled to launch to GEO by 2026, aims to provide life-
extension services for commercial satellites.† Additionally, Astroscale demonstrated autonomous
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rendezvous with an uncontrolled object during the ELSA-d mission, using a servicer-client pair
designed to simulate debris removal scenarios.6

GEO remains a prime target for servicing missions, as it hosts some of the largest and most valu-
able satellite assets, making it a region of both commercial and national strategic interest.4 With
this evolving focus, technological challenges are becoming more complex. These include the need
to rendezvous with uncooperative targets, objects that may be spinning or tumbling due to malfunc-
tions or by design. In some missions, spinning is deliberately introduced, such as in dual-spinner
configurations, or to maintain instrument pointing.7 Some satellites stabilize the attitude using spin
stabilization about a major principal axes. Other satellites have mission requirements that lead it to
rotate continuously using a modern three-axis attitude control system.8, 9 These dynamic conditions
significantly complicate final approach and docking maneuvers, particularly in the presence of col-
lision avoidance (“keep-out”) or docking (“keep-in”) zones. As a result, rendezvous with spinning
or tumbling targets has emerged as an active area of research. Numerous studies are focused on de-
veloping guidance, motion planning algorithms, and control techniques to ensure safe and reliable
approach and docking.10–15

Figure 1. Concept figure of a servicing mission to a spinning chief.

In Rendezvous and Proximity Operations (RPO) missions, the relative motion of the chaser, or
“deputy”, is commonly modeled using the Hill frame, a rotating coordinate system centered on the
target spacecraft, or “chief”.16 This representation offers a variety of analytical solutions that effi-
ciently describe relative trajectories without requiring computationally intensive numerical integra-
tion. As such, it is well-suited for both onboard Guidance, Navigation, and Control (GNC) systems
and offline mission planning.17 A widely used example is the Clohessy–Wiltshire (CW) equations,18

which describe the deputy’s translational motion in Cartesian coordinates. These closed-form so-
lutions define relative motion using six Relative Orbital Elements (ROEs), or invariants of motion,
derived from the initial conditions.19 The ROEs describe the size, shape, and orientation of the rel-
ative orbit, yielding intuitive trajectory representations. Alternatively, some methods represent the
deputy’s state using combinations of the absolute orbital elements of both the chief and deputy.20, 21

However, when dealing with spinning or tumbling targets, the Hill frame becomes less practical
during the final approach. In such scenarios, mission-critical constraints like sensor keep-in zones
for docking or structural keep-out zones are often best represented in the target’s body-fixed frame.
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While previous studies, such as 10, have proposed motion planning techniques for rendezvous with
rotating targets, they typically do not model the full relative dynamics within the target’s rotat-
ing frame. As a result, the target’s rotation is often incorporated through time-varying constraints,
adding complexity to the planning problem. This motivates the objective of the present work: to
directly model and analyze the relative motion of a deputy spacecraft from the perspective of a
spinning chief, using the chief’s own rotating body-fixed frame as the reference.

Reference 22 derives first-order analytical solutions for relative motion in a chief-centered inertial
frame using Inertial-frame Relative Orbit Elements (IROE), which are based on parameters of an
epitrochoid curve. This formulation is particularly advantageous for mission design scenarios with
constraints fixed in the inertial frame, such as servicing operations involving inertially-fixed keep-in
or keep-out zones impacting lighting or local space plasma conditions.22 Notably, in the case of
a controlled, non-rotating satellite, without loss of generality the inertial frame can be assumed to
align with the body-fixed frame, making the insights directly applicable in that context. This paper
extends the work in Reference 22 by analyzing the case of a spinning target spacecraft, where the
target’s body-fixed frame and the inertial frame are no longer aligned. The objective, therefore, is
to examine the deputy’s relative motion as observed from the chief’s rotating body frame and to
introduce a new formulation featuring geometrically meaningful invariants of motion. The deriva-
tions assume an initial alignment between the target’s body-fixed frame and the Hill frame, while
accounting for constant angular rotation about each of the principal axes. Both resonant (where
the spin rate equals the orbital rate) and non-resonant scenarios are considered. The resulting anal-
ysis captures both bounded and drifting relative motion, offering deeper insight into the deputy’s
trajectory as observed from the spinning body frame under these specific spin conditions.

The paper begins with a problem statement that outlines the scope of the study, provides the
background, and defines the reference frames used throughout the analysis. The following section
introduces the general linearized solution, detailing the methodology for expressing the motion
in the body frame and presenting representative trajectory examples. This is followed by three
dedicated sections, one for each spin configuration (orbit-normal, nadir-pointing, and along-track),
which explore each case in detail, analyze specific scenarios, and discuss the resulting body-frame
trajectories. The paper concludes with a summary of the key findings and a discussion of their
implications.

PROBLEM STATEMENT

Given the inertial position and velocity vectors of the chief (rc, ṙc) and deputy (rd, ṙd) satellites,
the relative position ρ and relative velocity ρ̇ in the inertial frame are defined as:

ρ = rd − rc

ρ̇ = ṙd − ṙc
(1)

To describe the deputy’s motion relative to the chief, the chief-centered Hill frame H = {ôr, ôθ, ôh}
is commonly used.16 In this frame, ôr is aligned with the chief’s orbit radial direction, ôh is normal
to the orbit plane, and ôθ completes the right-handed triad in the along-track direction. These basis
vectors are defined as:

ôr =
rc
rc

ôθ = ôh × ôr ôh =
rc × ṙc
|rc × ṙc|

(2)
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Assuming the chief is in a circular orbit and that the deputy remains close (relative separation is
small), the deputy’s motion in the Hill frame Hρ = [x, y, z]T is governed by the CW equations.18

The left superscript indicates the reference frame in which the vector is expressed:

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

(3)

where n is the mean orbit motion of the chief. The analytical closed-form solution to the CW
equations is given by:19

x(t) = A0 cos(nt+ α) + xoff

y(t) = −2A0 sin(nt+ α)− 3

2
ntxoff + yoff

z(t) = B0 cos(nt+ β)

(4)

This solution is characterized by six geometrically intuitive invariants of motion A0, B0, xoff,
yoff, α and β, known as the Linearized Relative Orbit Elements (LROEs). These elements describe
the shape, size, and orientation of the relative orbit. The in-plane motion traces a 2:1 ellipse, with
the along-track amplitude twice the radial amplitude, governed by A0. Offsets xoff and yoff shift the
ellipse in the radial and along-track directions, respectively. An offset in the x-direction corresponds
to a difference in the spacecraft orbital altitudes and therefore velocities, which causes a drift in the
along-track direction. Thus, xoff must be zero for bounded motion. The out-of-plane motion is
decoupled and corresponds to a simple harmonic oscillator, characterized by amplitude B0. Phase
angles α and β define the initial orientation of the in-plane and out-of-plane motion, respectively.

The LROEs provide an intuitive description of the relative motion in the Hill frame, which is fixed
with respect to the chief’s orbit. However, this frame does not account for the attitude or rotation
of the spacecraft itself. Therefore, this paper investigates the relative orbit from a body-fixed frame
B = {b̂1, b̂2, b̂3}, which is centered on the chief and aligned with its structural orientation. Figure 2
illustrates both the Hill and body frames for a spacecraft spinning, with a constant rate ω, about its
radial axis, where both frames are initially aligned.

Figure 2. Illustration of the Hill frame and Body frame: Spacecraft spinning about its radial axis
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Similarly to the IROEs introduced in 22, the relative motion observed in the defined body frame
is analyzed and characterized using new sets of motion invariants tailored to each specific scenario.
This formulation provides insight into relative dynamics for missions involving non-inertially fixed
targets, such as body-referenced inspection, servicing, or docking operations.

GENERAL LINEARIZED SOLUTION

Starting from the analytical solution in Equation (3) for relative motion in the Hill frame, the
corresponding motion in the body frame, denoted with the left superscript B, is obtained through a
transformation using the Direction Cosine Matrix (DCM) between the two frames:

Bρ = [BH] Hρ = [BN ][HN ]T Hρ (5)

where [BH] denotes the DCM that transforms vectors from the Hill frame to the body frame. This
matrix can be expressed as the product of [BN ], which maps from the inertial frame to the body
frame, and [NH] = [HN ]T , which maps from the Hill frame to the inertial frame.

To compute the DCM, information about the spacecraft’s attitude or spin dynamics is required.
These dynamics can vary widely across mission scenarios and may include tumbling, time-varying
spin rates or directions, or even completely unknown behavior, as is often the case with debris or
non-cooperative targets. As a result, no single formulation can capture all possible cases. Therefore,
in this study, we focus on primary spin cases, where the body frame is initially aligned with the Hill
frame, and the chief spacecraft is spinning at a constant rate ω about one of its principal axes. An
illustration of representative motion patterns arising from different spin and orbit configurations is
provided in the figure below:

(a) Bounded motion, non-resonant spin (b) Bounded motion, resonant spin (c) Unbounded motion, resonant spin

Figure 3. In-plane trajectory shapes for an orbit-normal spin configuration.

The resulting relative trajectories resemble trochoidal curves. In particular, the motion in Figure
3(a) exhibits a hypotrochoid-like shape (generated by a point on a circle rolling inside another),
while Figure 3(b) resembles an epitrochoid (generated by a point on a circle rolling outside another).
Similar to the elliptical motion observed in the Hill frame, these trochoidal trajectories can also be
characterized by a set of geometrically meaningful invariants. Such invariants provide a compact
and intuitive way to characterize relative motion in the rotating body frame.

Note that the first two subfigures correspond to the same orbit in the Hill frame but differ in their
spin configurations, non-resonant on 3(a), and resonant on 3(b). In the non-resonant case (Figure
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3(a)), the trajectory shows a time-varying structure, with alternating large and small loops, indicative
of time variation in their parameters. In contrast, the resonant case (Figure 3(b)) yields a simpler,
closed curve. This shape is characteristic of an epitrochoid where the fixed and rolling circles have
the same radius, also referred to as a Limaçon. Figure 3(c) also originates from the same nominal
Hill frame trajectory, but with a change in xoff, meaning a difference in the semi-major axis. This
induces a drift in the Hill frame motion, which manifests in the body frame as a drifting trochoidal
pattern.

The following sections analyze these behaviors in more analytical detail across various spin con-
figurations, with and without resonances, and introduce a new set of orbital elements that help
characterize the motion under different orbit and spin dynamics.

ORBIT NORMAL SPIN

The first case considered in this study is a constant-rate spin about the orbit normal direction,
denoted by ôh. This configuration can be observed in Earth-observing missions, where the spin
helps maintain a fixed attitude relative to Earth.7 For the scenarios examined here, the body frame
is initially aligned with the Hill frame at t = 0, with the body’s third axis b̂3 aligned with the orbit
normal direction: b̂3 = ôh (refer to Figure 2, which shows an analogous radial spin case). As the
spacecraft spins about its orbit normal axis at a constant rate ω, the axis b̂3 remains aligned with
ôh, while the remaining Hill frame axes ôr and ôθ rotate in the b̂1–b̂2 plane. The time-dependent
rotation of the Hill frame with respect to the body frame can be described by a DCM, which is
equivalent to a rotation about the b̂3 axis:

[M3(t)] =

cos(ωt) sin(ωt) 0
-sin(ωt) cos(ωt) 0

0 0 1

 (6)

Substituting this rotation matrix into Equation (5) yields the position vector expressed in the body
frame as:

Bx(t)y(t)
z(t)

 =

 cos(ωt)[A0 cos(nt+ β) + xoff] + sin(ωt)[−2A0 sin(nt+ α)− 3
2ntxoff + yoff]

− sin(ωt)[A0 cos(nt+ β) + xoff] + cos(ωt)[−2A0 sin(nt+ α)− 3
2ntxoff + yoff]

B0 cos(nt+ β)


(7)

As in the Hill frame, the out-of-plane motion (along the z-axis) remains decoupled from the
in-plane dynamics and follows a simple harmonic oscillator, with amplitude B0 and phase angle
β. However, the in-plane motion is now modulated by the spin rate ω, introducing time-varying
coupling between the radial and along-track components in the body frame. The resulting motion
depends strongly on the relationship between the spin rate and the orbital mean motion. Different
behaviors emerge depending on whether this relationship is resonant or non-resonant, which are
explored in the following subsections.

Resonant spin

In the resonant spin case, the chief spacecraft spins at one revolution per orbit, such that the spin
rate equals the orbital mean motion (ω = n). Under this condition, the transformation of the relative
motion into the body frame simplifies significantly, and the equation of motion becomes:
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Bx(t)y(t)
z(t)

 =

(yoff − 3
2ntxoff) sin(nt) + xoff cos(nt) +

3
2A0 cos(2nt+ α)− 1

2A0 cos(α)

(yoff − 3
2ntxoff) cos(nt)− xoff sin(nt)− 3

2A0 sin(2nt+ α)− 1
2A0 sin(α)

B0 cos(nt+ β)

 (8)

Using the following trigonometric identities:

A sinx+B cosx =
√
A2 +B2 cos

(
x− tan−1

(
A

B

))
A sinx+B cosx =

√
A2 +B2 sin

(
x− tan−1

(
B

−A

)) (9)

the in-plane motion can be rewritten in a more geometrically intuitive form as:

Bx(t)y(t)
z(t)

 =

2r sin(nt− ϕ) + d cos(2nt− γ)− d
3 cosα

2r cos(nt− ϕ)− d sin(2nt− γ)− d
3 sinα

B0 cos(nt+ β)

 (10)

where:

r =
1

2

√(
yoff −

3ntxoff

2

)2

+ x2off γ = −α

d =
3A0

2
ϕ = tan−1

(
−xoff

yoff − 3ntxoff
2

) (11)

The resulting trajectory in the b̂1–b̂2 plane forms an epitrochoid, the path traced by a point on a
circle rolling around the outside of a fixed circle of the same radius as seen in Figure 4.

Figure 4. Epitrochoid parameters visualization

In this context, r is the radius of both the fixed and rolling circles, d is the arm length (distance
from the tracing point to the center of the rolling circle), −d/3 is the offset of the fixed circle from
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the chief, α defines the orientation of the epitrochoid, ϕ is the phase offset of the rolling circle.
These parameters form a new, intuitive set of body-frame orbital elements, analogous to the LROEs
and IROEs, which provide a geometric interpretation of the motion in the rotating frame. In fact,
for this specific case of resonant orbit normal spin, the resulting set of elements closely resembles
those derived in the inertial frame,22 with the radius r being identical in both formulations.

When there is no difference in semi-major axes between the chief and deputy (xoff = 0), the
motion simplifies further. In this case, all epitrochoid parameters become time-invariant. The radius
r depends solely on yoff, while the arm length d is only a function of A0. The shape and size of
the trajectory are fully decoupled from the orientation (α). These relationships are visualized in
Figure 5, which also serves to validate the simplified body-frame equation of motion. The solid red
curve represents the trajectory computed directly from Equation (8), while the dashed yellow curve
shows the equivalent motion derived from the reformulated epitrochoid expression in Equation (10).
The size of the relative orbit varies with r, while its shape depends on the ratio r/d. The orbit’s
offset is governed by d, and its orientation is controlled by the angular parameter α.

Figure 5. Bounded body-frame relative trajectory for a circular chief orbit with con-
stant and resonant orbit-normal spin motion. The solid red line is generated from the
initial equation, while the dashed yellow curve corresponds to the simplified epitro-
choid equation.

Drift motion

When xoff ̸= 0, two key parameters of the epitrochoid, namely the radius r and the phase angle
ϕ, become time-dependent. This time variation introduces a gradual drift in the relative trajectory
within the body frame, as the size of the orbit evolve over time. The result is a shifting epitrochoid
pattern that no longer traces a closed curve. Instead, the trajectory exhibits a spiraling motion,
either expanding away from or converging toward the chief spacecraft, depending on the sign of
xoff. This behavior is illustrated in Figure 6. In the right subplot, the inward drift corresponds to a
deputy spacecraft gradually approaching the chief, while in the left one, a negative offset causes the
relative motion to spiral outward.
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Figure 6. Unbounded body-frame relative trajectory for a circular chief orbit with
constant and resonant orbit-normal spin motion. The solid red line is generated
from the initial equation, while the dashed yellow curve corresponds to the simpli-
fied epitrochoid equation.

Non-resonant spin

When the chief spacecraft’s spin rate is not equal to the orbital mean motion, ω ̸= n, the relative
motion described in Equation (7) becomes less intuitive. However, certain simplifications can still
be made for special cases.

One such case arises when there is no initial offset in the Hill frame in either the radial or along-
track directions, meaning xoff = yoff = 0. Under this condition, the body-frame equation of motion
simplifies to:

Bx(t)y(t)
z(t)

 =

−1
2A0 cos ((n− ω)t+ α) + 3

2A0 cos ((n+ ω)t+ α)

−1
2A0 sin ((n− ω)t+ α)− 3

2A0 sin ((n+ ω)t+ α)

B0 cos(nt+ β)

 (12)

The nature of the in-plane motion depends on the relative magnitudes of n and ω. Two distinct
geometric interpretations emerge:

Case 1: Spin Rate Lower than Orbit Rate (ω < n)

In this case, the motion corresponds to a hypotrochoid, a curve traced by a point on a circle
rolling inside a larger fixed circle (see Figure 7). The trajectory can be described using the following
parametric form:

B[
x(t)
y(t)

]
=

[
d cos

(
R−r
r θ − ϕ

)
− (R− r) cos(θ − ϕ)

−d sin
(
R−r
r θ − ϕ

)
− (R− r) sin(θ − ϕ)

]
(13)

where:
R = A0

n

n+ ω
θ = (n− ω)t

r =
A0

2
· n− ω

n+ ω
ϕ = −α

d =
3

2
A0

(14)
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Here, R is the radius of the fixed (outer) circle centered at the chief, r is the radius of the rolling
(inner) circle, and d is the arm length, the distance from the tracing point to the center of the rolling
circle. The rotation of the curve in the b̂1–b̂2 plane about the b̂3 axis is governed by the angle α.

Figure 7. Hypotrochoid parameters visualization

Figure 8. Bounded body-frame relative trajectory for a circular chief orbit with orbit-
normal spin motion, where orbit rate is greater than spin rate. The solid red line is
generated from the initial equation, while the dashed yellow curve corresponds to the
simplified hyptrochoid equation.

Figure 8 shows the resulting in-plane relative motion in the body frame for this non-resonant spin
case. The solid red line represents the trajectory computed from Equation (7), while the dashed
yellow curve shows the corresponding results from the parametric form. As expected, the motion
traces a closed hypotrochoidal path. The overall size of the trajectory is governed by the arm length
d, which depends on the LROEs amplitude parameter A0. The shape of the curve is determined by
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the ratio R
r = 2n

n−ω , which is set by the spin-to-orbit frequency ratio and is always greater than 2 in
this case. The orientation of the curve is defined by the parameter α.

Case 2: Spin Rate Greater than Orbit Rate (ω > n)

When the spin rate exceeds the orbit rate, the simplified equation of motion becomes:

B[
x(t)
y(t)

]
=

[
−1

2A0 cos ((ω − n)t− α) + 3
2A0 cos ((n+ ω)t+ α)

1
2A0 sin ((ω − n)t− α)− 3

2A0 sin ((n+ ω)t+ α)

]
(15)

The motion corresponds to an epitrochoid and can be expressed in the following parametric form:

B[
x(t)
y(t)

]
=

[
d cos

(
R+r
r θ − ϕ

)
− (R+ r) cos(θ + ϕ)

−d sin
(
R+r
r θ − ϕ

)
+ (R+ r) sin(θ + ϕ)

]
(16)

where:
R = A0

n

n+ ω
θ = (ω − n)t

r =
1

2
A0

ω − n

n+ ω
ϕ = α

d =
3

2
A0

(17)

In this configuration, the two circles have unequal radii: R is the radius of the fixed (inner) circle
centered at the chief, r is the radius of the rolling (outer) circle, and d is the arm length. The shape
of the curve depends on the ratio R

r = 2n
ω−n , which depends on the relative spin and orbit rates.

The overall size of the motion is a function of the arm length d, which is again controlled by the
amplitude parameter A0, as in the previous case. The orientation of the curve is determined by the
angular parameter α. The figure below shows different trajectory shapes for different ratios and
compares the trajectory obtained from the simplified epitrochoid form (dashed yellow line) with the
one computed from the original full dynamics (solid red line) using Equation (7). The agreement
confirms the validity of the simplified model.

Figure 9. Bounded body-frame relative trajectory for a circular chief orbit with orbit-
normal spin motion, where spin rate is greater than orbit rate. The solid red line is
generated from the initial equation, while the dashed yellow curve corresponds to the
simplified epitrochoid equation.

The first plot corresponds to a special case in which the radii of the fixed and rolling circles are
equal, as in the resonant condition (Figure 4). This leads to a simpler closed curve known as a
Limaçon.
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NADIR SPIN

The second case examined in this study involves a constant-rate spin about the radial (nadir-
pointing) direction, denoted by ôr. In all scenarios, the body frame is initially aligned with the Hill
frame such that b̂1 = ôr at time t = 0 (see Figure 2). In this configuration, since the Hill frame itself
is rotating, the system exhibits a dual-spin behavior compared to an inertial frame: the body frame
both follows the rotation of the Hill frame to maintain radial alignment and simultaneously spins at
a constant rate about the radial axis. As a result, b̂1 remains aligned with ôr over time, while the
along-track and cross-track axes, ôθ and ôh, rotate within the plane orthogonal to the spin axis. The
DCM [BH], which maps vectors from the Hill frame to the body frame, is thus a time-dependent
rotation matrix given by:

[BH] = [M1(t)] =

1 0 0
0 cos (ωt) −sin (ωt)
0 sin (ωt) cos (ωt)

 (18)

Applying this DCM to Equation (5) yields the expression for the relative motion in the body
frame:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α) + xoff

B0 cos(nt+ β) sin(ωt) + cos(ωt)[−2A0 sin(nt+ α)− 3
2ntxoff + yoff]

B0 cos(nt+ β) cos(ωt) + sin(ωt)[2A0 sin(nt+ α) + 3
2ntxoff − yoff]

 (19)

Resonant spin with bounded Motion

In the special case of bounded motion (xoff = 0) and resonant spin rate (ω = n), the expression
simplifies considerably:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α)

yoff cos(nt)−A0 sin(2nt+ α)− B0
2 sin(2nt+ β)−A0 sin(α) +

B0
2 sin(β)

yoff sin(nt) +A0 cos(2nt+ α) + B0
2 cos(2nt+ β)−A0 cos(α) +

B0
2 cos(β)


(20)

The motion along the x-axis is simply a harmonic oscillation with the element A0 defining its
amplitude, and the angular element α defining its phase. However, unlike the previous case, the
motion is now coupled across all three axes. Using the trigonometric identities below and those in
Equation (9), the expression for the y and z components can be further simplified:

A cos x+B cos y = (A+B) cos

(
x− y

2

)
cos

(
x+ y

2

)
+ (B −A) sin

(
x− y

2

)
sin

(
x+ y

2

)
A sinx+B sin y = (A+B) cos

(
x− y

2

)
sin

(
x+ y

2

)
+ (A−B) sin

(
x− y

2

)
cos

(
x+ y

2

)
(21)

resulting in the compact form:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α)
2r cos(nt)− d sin(2nt− γ) + y0
−2r sin(nt)− d cos(2nt− γ) + z0

 (22)
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where the parameters are defined as:

r =
1

2
yoff

d =

√
A2

0 +
B2

0

4
−A0B0 cos (α− β)

γ = −α+ β

2
+ tan−1

(
−2A0 +B0

2A0 −B0
tan

(
α− β

2

))
y0 = −A0 sinα− B0

2
sinβ

z0 = A0 cosα+
B0

2
cosβ

(23)

For the special case where B0 = 2A0, the expressions for d and γ simplify to:

d = 2A0 sin

(
α− β

2

)
γ = −α+ β

2

(24)

Figure 10. Bounded body-frame relative trajectory for a circular chief orbit with
constant and resonant nadir spin motion. The solid red line is generated from the ini-
tial equation, while the dashed yellow curve corresponds to the simplified epitrochoid
equation.

The trajectory in the b̂2–b̂3 plane corresponds to an epitrochoid. Unlike the previous case, the
offset here is not constant, but represented by the coupled cartesian components y0 and z0. These
parameters in (23) and (24) provide a new set of body-frame orbital elements tailored to the resonant
nadir spin configuration. To validate the simplified expression in Equation (22), Figure 10 compares
the body-frame trajectory obtained directly from Equation (19) (solid red) against the simplified
form (dashed yellow), confirming their agreement. The size of the relative orbit varies with r,
which is only a function of yoff, as shown in the first line of plots. The shape of the trajectory
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depends on the ratio r/d. The arm length d, along with the offset and orientation of the curve, are
all coupled and influenced by A0, B0, α, and β.

Unbounded motion

Introducing a nonzero drift term (xoff ̸= 0) affects only the radius r, making it time-dependent:

r =
1

2

(
yoff −

3

2
ntxoff

)
(25)

Figure 11. Unbounded body-frame relative trajectory for a circular chief orbit with
constant and resonant nadir spin motion. The solid red line is generated from the ini-
tial equation, while the dashed yellow curve corresponds to the simplified epitrochoid
equation.

As in the Hill frame and previous spin case, this produces unbounded relative motion in the form
of a drifting epitrochoid. Depending on the sign of xoff, the orbit either expands or contracts over
time, approaching or diverging from the chief, as illustrated in Figure 11.

Non resonant case

The non-resonant case is more complex to express in an intuitive geometric form. While the
resulting motion still resembles trochoidal curves, many parameters become time-varying, which
reduces the clarity of the geometric interpretation. However, in the special case where the phase
angles vanish (α = β = 0) and no drift is present (xoff = 0), the trajectory equations simplify to:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α)

yoff cos(ωt)−
(
A0 − B0

2

)
sin ((n+ ω)t)−

(
A0 +

B0
2

)
sin ((n− ω)t)

−yoff sin(ωt)−
(
A0 − B0

2

)
cos ((n+ ω)t) +

(
A0 +

B0
2

)
cos ((n− ω)t)

 (26)

Despite the remaining time-varying components, certain special cases allow a reformulation in
terms of geometric invariants, yielding more insight into the motion characteristics. These cases are
discussed below.
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Case 1: 2A0 = B0

In this case, the second term in the y and z component of Equation (26) cancel, leading to the
following equation:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α)
yoff cos(ωt)− 2A0 sin ((n− ω)t)
−yoff sin(ωt) + 2A0 cos ((n− ω)t)

 (27)

Depending on the relationship between the orbit rate n and spin rate ω, this motion can be inter-
preted as either a hypotrochoid or an epitrochoid.

Case 1.1: Orbit Rate Greater than Spin Rate (n > ω)

The motion in the b̂2-b̂3-plane can be described by a hypotrochoid with the following parametric
form:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt)
(R− r) cos(ωt)− d sin

(
R−r
r ωt

)
−(R− r) sin(ωt) + d cos

(
R−r
r ωt

)
 (28)

with:
r =

ω

n− ω
yoff

R =
n

n− ω
yoff

d = 2A0 = B0

(29)

This matches the qualitative behavior shown in Figure 8, where the shape is governed by the ratio
R/r = n/ω, and the overall size scales with B0, or A0.

Case 1.2: Spin Rate Greater than Orbit Rate (ω > n)

When the spin rate exceeds the orbit rate, Equation (27) transforms into:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α)
yoff cos(ωt) + 2A0 sin ((ω − n)t)
−yoff sin(ωt) + 2A0 cos ((ω − n)t)

 (30)

which can be formulated as a parametric equation of an epitrochoid:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt)
(R+ r) cos(ωt) + d sin

(
R+r
r ωt

)
(R+ r) sin(ωt)− d cos

(
R+r
r ωt

)
 (31)

with:
r =

ω − n

ω
B0 = 2

ω − n

ω
A0

R =
n

ω
B0 = 2

n

ω
A0

d = yoff

(32)
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This behavior corresponds to that shown in Figure 9, where the shape depends on the ratio R/r,
related to the relative difference between n and ω. The overall scale of the orbit is influenced
primarily by yoff, which acts as the arm length.

Case 2: Planar motion in the Hill frame (B0 = 0)

An interesting special case occurs when the spacecraft’s motion in the Hill frame is planar, mean-
ing B0 = 0. The resulting trajectory in the b̂2-b̂3-plane describes a hypotrochoid with a time-
varying arm length:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt)

(R− r) cos(ωt)− d cos
(
R−r
r ωt

)
−(R− r) sin(ωt) + d sin

(
R−r
r ωt

)
 (33)

with:

r = yoff

R = 2yoff

d = 2A0 sin(nt)

(34)

This produces a shape similar to that shown in Figure 3(a), where the arm length varies periodi-
cally over time. An example is shown in Figure 12.

Figure 12. Body-frame relative trajectory for a circular chief orbit with constant,
non-resonant nadir spin. The relative motion in the Hill frame is planar, resulting in
a bounded, time-varying trochoidal pattern in the body frame.

The arm length oscillates sinusoidally with an amplitude of 2A0. Over time, this leads to a
shape resembling the superposition of two hypotrochoids of different scales. Figure 13 presents the
trajectory over one orbital period. In this case the ratio R/r = 2 remains constant, while both R and
r are proportional to yoff. This parameter slightly affects the shape, as illustrated in the differences
between the top and bottom rows of plots in Figure 13. More significant shape changes arise from
the ratio ω/n, which alters the relative proportions of the arm length and base circle radius (compare
across columns in the figure). Changing the parameter A0 scales the trajectory without altering its
shape, as it only modifies the amplitude of the arm length oscillation.
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Figure 13. Body-frame relative trajectory for a circular chief orbit with constant,
non-resonant nadir spin. The relative motion in the Hill frame is planar, leading to
a time-varying trochoidal pattern in the body frame. The solid red line is generated
from the initial equation, while the dashed yellow curve corresponds to the simplified
hypotrochoid equation.

A similar result is obtained when the spacecraft exhibits purely out-of-plane motion in the Hill
frame (A0 = 0 and B0 ̸= 0). In that case, the motion is entirely in the b̂2-b̂3-plane (x(t) = 0), and
the arm length becomes:

d = B0 sin(nt) (35)

ALONG TRACK SPIN

For completeness, the case is examined where the spacecraft spins at a constant rate about the
along-track direction, which aligns with the velocity vector. As with the previous configurations,
since the Hill frame itself is rotating, this setup results in a dual-spin motion relative to the inertial
frame: the body maintains alignment with the along-track direction while simultaneously spinning
about it. The DCM mapping from the Hill frame to the body frame in this case:

[M2(t)] =

cos(ωt) 0 sin(ωt)
0 1 0

-sin(ωt) 0 cos(ωt)

 (36)

Substituting this into Equation (5), the body-frame expression for the relative motion becomes:

Bx(t)y(t)
z(t)

 =

 A0 cos(nt+ α) cos(ωt) +B0 cos(nt+ β) sin(ωt)

−2A0 sin(nt+ α)− 3
2ntxoff + yoff

B0 cos(nt+ β) cos(ωt)− sin(ωt)[A0 cos(nt+ α) + xoff]

 (37)

In this configuration, a drift term appears only along the along-track direction (the b̂2-axis). The
motion in this direction is a coupled harmonic oscillation with amplitude 2A0, phase angle α, and
constant offset yoff. When xoff ̸= 0, a linear drift is introduced. However, this drift affects only the
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along-track component; the motion in the b̂1-b̂3-plane remains bounded and can have the following
shapes:

• When xoff = 0, the trajectory in the b̂1-b̂3-plane forms a circular path, with the radius R
defining its size, and the offset of its center from the chief is given by the two Cartesian
components x0 and z0. ϕ is the phase angle. The parameters are all coupled and defined as
follows:

R =
1

2

√
A2

0 +B2
0 − 2A0B0 sin(α− β) x0 =

A0

2
cosα+

B0

2
sinβ

ϕ = tan−1

(
B0 sinβ +A0 cosα

A0 sinα−B0 cosβ

)
z0 =

A0

2
sinα+

B0

2
cosβ

(38)

• When xoff ̸= 0, the trajectory becomes an epitrochoid, defined by the parameter given in
Equation (39). The obtained trajectory shapes for this case are very similar to those given in
Figure 10: The center of the epitrochoid does not have a constant offset from the chief, but
it is instead defined by the Cartesian components x0 and z0. The offset, the phase angle ϕ,
and the arm length d are all coupled and a function of A0, B0, α, and β. The only decoupled
parameter is the radius r, that determines the size of the trajectory, and is only a function of
xoff. The shape of the relative orbit depend on the ratio of r/d.

r = xoff/2 x0 =
A0

2
cosα+

B0

2
sinβ

ϕ = tan−1

(
B0 sinβ +A0 cosα

A0 sinα−B0 cosβ

)
z0 =

A0

2
sinα+

B0

2
cosβ

d =
1

2

√
A2

0 +B2
0 − 2A0B0 sin(α− β)

(39)

• In the non-resonant case with: α = β = 0 and xoff = 0:

– When the orbital rate exceeds the spin rate (n > ω), the resulting trajectory traces a
hypotrochoid. In this case, R is the radius of the fixed circle centered at the chief, r
is the radius of the rolling circle, and d is the arm length from the center of the rolling
circle to the tracing point. The overall size of the trajectory is governed by the arm
length d, while its shape is determined by the ratio R/r, which is directly related to the
ratio n/ω. The orientation of the curve is influenced by the angles ϕ, and γ. However,
all hypotrochoid parameters, R, r, d, ϕ, and γ, are interdependent and functions of the
LROEs A0 and B0. The resulting shapes resemble those shown in Figure 8.

R =
n

n+ ω

√
A2

0 +B2
0 γ = tan−1

(
B0

A0

)
r =

1

2
· n− ω

n+ ω

√
A2

0 +B2
0 ϕ = tan−1

(
A0

B0

)
d =

1

2

√
A2

0 +B2
0

(40)

The equation of motion in the b̂1-b̂3-plane is given by:

B[
x(t)
z(t)

]
=

[
d sin

(
R−r
r (n− ω)t− γ

)
+ (R− r) cos ((n− ω)t− ϕ)

d cos
(
R−r
r (n− ω)t− γ

)
+ (R− r) sin ((n− ω)t− ϕ)]

]
(41)
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– When the spin rate exceeds the orbital rate (n < ω), the resulting trajectory forms an
epitrochoid, with shapes similar to those illustrated in Figure 9. The parameters defining
this motion are given by:

R =
n

n+ ω

√
A2

0 +B2
0 d =

1

2

√
A2

0 +B2
0

r =
1

2
· ω − n

n+ ω

√
A2

0 +B2
0 ϕ = tan−1

(
−A0

B0

) (42)

Here, d represents the arm length and determines the overall size of the trajectory. The
radius of the fixed circle centered at the chief is denoted by R, while r is the radius
of the rolling circle. The shape of the trajectory is governed by the ratio R/r, which
is directly related to the ratio n/ω. The orientation of the epitrochoid in the plane is
determined by the phase angle ϕ. The motion in the b̂1–b̂3 plane is described by the
following equation:

B[
x(t)
z(t)

]
=

[
d cos

(
R+r
r (n− ω)t− ϕ

)
+ (R+ r) cos ((ω − n)t− ϕ)

d cos
(
R−r
r (n− ω)t− ϕ

)
+ (R+ r) sin ((ω − n)t− ϕ)]

]
(43)

CONCLUSION

This work investigates relative motion trajectories observed from the body frame of a spinning
chief spacecraft. While prior studies focused on inertially fixed (non-rotating) configurations, this
paper extends the analysis to spinning chiefs, specifically those rotating at a constant rate about a
principal body axis initially aligned with the Hill frame. Three orientations are considered: orbit-
normal, radial, and along-track. The analysis uses closed-form Clohessy-Wiltshire (CW) equations,
limiting applicability to circular chief orbits. These scenarios are more likely to occur in controlled
or operational spacecraft, rather than in non-cooperative targets. Among them, the orbit-normal spin
configuration is particularly relevant for missions involving a chief that requires continuous Earth-
or nadir-pointing.

Both resonant (spin rate equals orbital rate) and non-resonant cases are explored, including the
effect of semi-major axis offsets, which typically cause body-frame drift of otherwise bounded mo-
tion, mirroring Hill frame behavior. Analytical derivations and geometric interpretations reveal that
under certain conditions, such as resonance or specific Hill frame motions, relative trajectories in the
body frame form closed, regular patterns (e.g., circles, epitrochoids, hypotrochoids). These cases
allow the use of time-invariant geometric parameters, analogous to LROEs and IROEs, to com-
pactly describe the dynamics. In more general configurations, however, these parameters become
time-varying and lose their geometric clarity. The main contribution of this work lies in identifying
and formalizing the special cases where body-frame motion can be described with geometrically in-
sightful, time-invariant parameters. New parameter sets are introduced to characterize the deputy’s
trajectory shape and location for each case. These descriptions offer more intuitive information
about the deputy’s proximity to key body axes, its direction of motion, and its potential to remain
in, drift toward, or avoid certain regions around the chief. Such insight is particularly useful for
planning inspection, servicing, or docking maneuvers.
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