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A novel and flexible platform for prototyping flight software and testing with hardware-in-the-loop is proposed based on the
Basilisk software and the Raspberry Pi hardware. The modular and scalable nature of Basilisk and the performance and affordability
of the Raspberry Pi are described as a powerful combination for cost-effective mission development that is ideal for, although not
restricted to, CubeSats or small satellite form-factors. A numerical simulation of an autonomous guidance maneuver where GN&C
flight algorithms run on the flight processor in a closed-loop dynamics simulation, with realistic TCP/IP communication between
hardware and software, is used as a proof of concept to demonstrate the validity of the architecture. Given that on-board autonomous
capabilities demand high-performance processor capability and would highly benefit from agile flight software development, the
present technology demonstration ultimately represents an effective strategy towards the embracement of full autonomy for next-
generation spacecraft missions.
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Nomenclature

cFE : Core Flight Executive
CFS : Core Flight System
CM : Compute Module

COTS : commercial off-the-shelf
CPU : central processing unit
DKE : dynamics, kinematics and environment
DSN : deep space networks
FSW : flight software

GN&C : guidance, navigation and controls
HW : hardware
IO : input-output
IP : internet protocol

MPI : message passing interface
MRP : modified Rodrigues parameter
OBC : on-board computer
PCB : printed circuit board

RTOS : real time operation system
SW : software
TCP : transmission control protocol
V&V : verification and validation

1. Introduction

Space missions rely highly on the efficiency and reliability of
the on-board flight software in order to perform autonomous at-
titude control or orbit corrections. These critical software func-
tions undergo a stringent review and validation process prior
to flight, which can be both costly and time consuming. The
complete engineering process to develop an aerospace Flight
Software or FSW system encompasses an involved path starting
from a preliminary desktop design and analysis all the way to
testing on the flight hardware. The present work focuses, in par-
ticular, on the step of testing and analyzing the flight algorithms

on the on-board flight processor. While multiple challenges ex-
ist in terms of both hardware and software requirements, an at-
tractive, cost-effective approach is explored and demonstrated
in the present work that combines commercial hardware with
agile FSW development.

The paper is outlined as follows: In section 2., the importance
of autonomy in deep-space missions in particular is highlighted,
including a brief description and reasoning about the limited
status quo. A critical path towards embracing full autonomy is
then proposed that takes advantage of the flexibility offered by
low-cost space exploration through small satellite form-factors.
Section 3. provides an overview of the commercial-of-the-shelf
(COTS) products in terms of hardware and software that are
commonly adopted in the context of small spacecraft mission
design. Special attention is paid to the problems entailed by
traditional space hardware and conventional software develop-
ment approaches. In Section 4. a novel proposal for low-cost
FSW prototyping and flight targeting is made. This proposal
addresses effectively all the problems and challenges that were
identified in the previous section, and involves combining the
Basilisk Software Framework and the Raspberry Pi hardware.
The underlying reasons for this particular choice of hardware
and software are provided, and a comparison to a similar project
by NASA is included. In Section 5. a numerical simulation is
presented that serves as a technology demonstration for testing
Basilisk-developed flight algorithms in a flight processor, the
Raspberry Pi, with high-fidelity simulated closed-loop dynam-
ics, all in a user-friendly and flexible environment.

2. Autonomy in Deep Space Missions

Autonomous capabilities are essential for the next genera-
tion of deep space missions where the light time delay makes
ground interaction infeasible. Examples of applications that
demand autonomy include missions involving small-body fly-



bys,1) target tracking and relative navigation,2) surface feature
detection,3) autonomous landing4) , or touch-and-go maneu-
vers.5) Although the applications and benefits of autonomy
are varied and numerous, the number of missions flown to date
with on-board autonomic capability remains small. Instead, it is
common to include ground-in-the-loop and transfer responsibil-
ities to ground whenever possible. This practical but expensive
approach frames the way in which missions are designed, and
strongly limits the amount and quality of science that can be
returned for the following reasons:

• Limited quantity of science: Reducing the time spent re-
laying data to Earth and waiting for commands could en-
able more time spent doing science if the spacecraft was
able to process data on-board.

• Limited quality of science: Limiting the spacecraft data
collection to executing pre-defined sequences forces the
science return to be limited by a priori knowledge rather
than the evolving state.

With these considerations in mind, future exploration of icy
moons like Europa or interstellar targets will require, nonethe-
less, unprecedented autonomy. In this context, developing full
hardware and software capabilities for spacecraft to operate in-
creasingly autonomously is a milestone to maximizing the sci-
ence return of current missions and expanding the horizons of
space exploration.

2.1. Underlying Reasons of Limited Autonomy
There are two main underlying reasons limiting the imple-

mentation of autonomy in the development of space systems:
the need of sophisticated software (SW) and the need of pow-
erful hardware (HW).

Firstly, the successful performance of autonomous maneu-
vers without ground in the loop requires sophisticated flight
software capabilities: the spacecraft would no longer just be fol-
lowing uplinked commands and sequences, but intensive com-
putations involving data processing and decision-making would
happen now on-board. Often, the flight software for new mis-
sions is developed from the ground up. In these cases, imple-
menting complex FSW algorithms, either from scratch or by
heavily refactoring inherited code, might be regarded as not
enough worth the one-effort development (i.e. mission-specific
designs that are meant to satisfy specific requirements and do
not contemplate future software reusability). It is important
to highlight, though, that while historically aerospace software
has been developed to be mission-specific, modular designs and
shared standards adopted in the recent decades have shown to
improve efficiency.6) The development of inflexible, mission-
specific flight algorithms is, indeed, a recurrent problematic pat-
tern in the aerospace industry that needs to be addressed.7) To
this end, a novel platform for agile FSW development called
Basilisk is later presented that would leverage the handling of
software complexity demanded by autonomous applications.

Secondly, and most prominently, aerospace technology lags
state-of-the-art consumer technology due to flight heritage and
radiation-hardening requirements. While commercial devices,
specifications and capabilities are driven by the consumer mar-
ket, radiation hardened electronics are domestically driven by
US Government needs and requirements, lagging commercial

development by about 10 years.8) Specifically, the flight pro-
cessors are the most critical to properly shield to ensure un-
interrupted operation. Some of the most common radiation-
hardened processors used in space are RAD750, Coldfire or
Leon3, all of them being very expensive and presenting simi-
lar limited performance. Still, there are numerous motivations
for using high performance processors capable of performing
calculation-intensive tasks. Currently, the objectives and strate-
gies of NASA’s Exploration Systems Mission Directorate are
constrained by the computing capability and power efficiency
of the processors used in space.8) Missions involving sophisti-
cated autonomous vehicle operations, autonomous rendezvous
and docking, vision systems, and precision landing systems, are
all predicted to require processor capabilities that far exceed the
current RAD750’s performance specifications.
2.2. Full Autonomy through Low-cost Exploration

If the novel mission concepts on the drawing board are to be-
come the reality, it is clear that a dramatic change in terms of
both hardware use and software design is needed. A very at-
tractive path forward is to combine COTS hardware with ag-
ile FSW development. Adopting commercial hardware is the
first step towards a new level of autonomy, since it would allow
the capability of onboard flight software to increase dramati-
cally. Increased software abilities translate, in turn, into higher
complexity and the need of being able to handle it efficiently in
order to provide the desired reliability and reusability.9)

Recently, additional interest has arisen in performing deep-
space missions with low-cost spacecraft in CubeSat or small
satellite form-factors. CubeSat frameworks allow for lower cost
threshold for design, construction and launch, therefore open-
ing the door completely to the actual integration of both COTS
hardware and software in spacecraft systems.

Regarding hardware, the use of low-cost spacecraft for
deep-space exploration dovetails perfectly with the adoption
of state-of-the-art technology to overcome current limitations
of traditional, expensive, radiation-hardened processors. Con-
sumer technology is not only cheaper and more powerful, but its
integration also enables the possibility to exploit the advantages
of distributed systems. Furthermore, low-cost mission designs
often escape flight heritage requirements, which would other-
wise imply that only HW that has previously been flown and
tested in space can be used.

In terms of flight software development, most low-cost mis-
sions do not have at their disposal inherited, previously flown,
flight algorithms. Furthermore, in the low-cost framework, the
resources to built a new flight software set from scratch are
limited. In this context, the availability of software prototyp-
ing platforms that are flexible and reliable is highly valuable.
While the advantages of flexible software architectures apply
to all kind of missions, they are further compounded by propos-
als involving small spacecraft, whose intrinsic mass, power, and
volume constraints require creative GN&C solutions. An exam-
ple of this can be found in the Deep Impact mission,10) which
used a science instrument for navigation during approach phase
and as a backup sensor during operations. This new paradigm
of cost-limited space exploration demands agile flight software
development.11)



3. Commercial Products in Space

Next the status quo of COTS hardware processors in low-cost
space missions is considered. Then, the common three-step pro-
cess of developing a FSW space system (aka model-based de-
velopment)12) is revised. Although model-based development
is an approach commonly adopted by both standard missions
and low-cost missions, it is in the low-cost framework where
available COTS software packages are mostly used and there-
fore where the most relevant aspects for the present work lie.

3.1. COTS Hardware
Space is a harsh environment where it is difficult to ensure

that a computer will operate reliably for an extended period
of time. Cosmic radiation interferes with transistors and can
bit-flip computer memory (single event upset crash). Gener-
ally, two approaches may be employed (independently or in
combination) to protect the spacecraft’s electronic systems in
the radiation environment: 1) commercial parts (COTS) in re-
dundant and duplicative configurations and 2) Electronics hard-
ened for radiation and environmental exposure. Current NASA
investigations are assessing the pros and cons of these meth-
ods.8) While solving this problem through radiation-hardening
by electronics is traditionally highly expensive, using COTS
technologies (i.e. radiation-hardening by software architecture
and redundancy) has been proven as an effective method in re-
ducing these costs.

Among the commercial tech products that could be suitable
for low-cost space exploration, NASA has considered the use
of Arduino platforms and Raspberry Pi’s.13) NASA’s Arduino-
based CubeSATs were launched in 2013 and the Lunar Sail pro-
gram, which is based on the Raspberry Pi, is still under devel-
opment. In a slightly different context (technology developed
for ground testing and simulation rather than flight), the Pi-Sat
project is another initiative from NASA Goddard that proposes
the Pi as a flight-simulation testbed.14) The Pi-Sat concept is
of special relevance to the present work and it is detailed and
contrasted in later sections of this paper.

Next a brief comparison between the very popular hobbyist
hardware devices Arduino and Raspberry Pi is provided. While
the Arduino platform is designed around a relatively low power
micro-controller that gives the user complete control of its hard-
ware, devices like the Raspberry Pi (or similarly BeagleBoard)
are designed to function on a much higher level: with already
integrated hardware that takes care of things like ethernet, large
quantities of RAM and an almost unlimited amount of storage
space, they are really mini-computers. Hence, it is possible to
run complete operating systems, like Linux and Android, and
develop programs within those operating systems that can con-
trol the systems functions and the input-output (IO) ports.

The general-purpose-computer features of the Raspberry Pi
are highly meaningful to the present work. Before discussing
this particular hardware in more detail, though, let us revise
the standard approaches for flight software development and
hardware-in-the-loop testing.
3.2. COTS Software Model-Based Development

The complete engineering process to develop an aerospace
FSW suite and test it on the flight processor is standardly
achieved by taking the following 3 steps:

1. Develop and test flight algorithms in the desktop en-
virontment: The first step consists of developing a set
of flight software algorithms suitable for the mission be-
ing considered. Dynamics, Kinematic and Environment
(DKE) models are also built with the purpose of testing
the FSW algorithm set in a simulated closed-loop until
the desired capability is achieved and mission-specific re-
quirements are met. Architecture design and modeling
of both software functions and hardware subsystems is
often performed using block-diagram programming soft-
ware tools. Platforms commonly used for building quick
models of control systems are Mathworks’s Simulink and
National Instruments LabVIEW. Reference 15) provides
a comprehensive review of the strengths and weaknesses
of aerospace COTS software packages that are currently
available.

2. Auto-generate code in the required programming lan-
guage: The next step is typically to select an automated
source-code generation software tool that is compatible
with the block-diagram modeling tools selected above and
that auto-generates source code in the required program-
ming language (aka auto-coding). Both Simulink and Lab-
VIEW software can produce C code directly from their
drag and drop environment with the use of add-on pack-
ages.

3. Define the flight target: Finally, the flight target needs
to be defined: autogenerated code can be targeted to a spe-
cific processor, Real Time Operating System (RTOS), or
a publish/subscribe middleware layer. The advantage of
targeting a middleware is that this process ensures porta-
bility among different processors and RTOS. Nevertheless,
it also has the most overhead and therefore it is not usually
used in small missions. The Core Flight System (CFS)
is an open-source pub/sub middleware provided by NASA
Goddard Spaceflight Center. The CFS is a common tool
used in any mission that chooses to incorporate a middle-
ware layer and it has inherited contributions from multiple
NASA centers and previous flight missions.

Along the path that has just been presented, there are several
concerning points that deserve a closer look:

• DKE modelling: State-of-the-art COTS softwares each
have unique strengths, but present limited capability to
provide a complete physically realistic dynamical repre-
sentation of a spacecraft for the purpose of ADCS de-
sign analysis, while allowing user-friendly, platform in-
dependent interaction. Additionally, many of these soft-
ware solutions are prohibitively expensive for low-budget
missions or student development. Open-source soft-
wares/freeware may be poorly maintained and/or not user
friendly, requiring more time to setup and learn than it is
available for a particular mission.

• Auto-coding: Automatically generated code is usually
less efficient, in either size or execution, than optimized
hand-written code, and proves to be very challenging to
reverify and debug due to the lack of readability. Although
some code generators incorporate their own optimization
features, the challenges remain.

• Mission-specific flight target: Target processor boards



are selected based upon allocated performance, mem-
ory and IO requirements. It is then necessary to inte-
grate (or create) an Integrated Development Environment
that supports the specific target processor with compiler,
linker/loader, onboard debugger, profiler, board-support
package and real-time operating system. This effort is
linked exclusively to the specific processor and operating
system chosen, and although it is less cumbersome than
targeting a middleware layer, it is totally inflexible.

• CFS: The abstraction from a specific RTOS and proces-
sor can be handled through middleware. With such ca-
pability, the CFS successfully saves missions the cost of
dealing with middleware tasks themselves. Nevertheless,
the CFS also presents some caveats: Firstly, it requires the
mission-specific FSW applications to be written in C (C++

is not natively supported). Secondly, it demands consid-
erable efforts to integrate a new mission FSW application
due to some inflexibilities on the architectural design of the
CFS’s executive layer, the core Flight Executive (cFE). For
more details on the CFS and cFE, the reader should refer
to Ref. 16) and Ref. 17).

4. Basilisk-Pi Based Development

The goal of the present work is to propose an effective ap-
proach to substantially reduce costs of space exploration by
combining COTS technology to increase computational power
with agile FSW development to simplify algorithm implemen-
tation and reduce expenses on the validation and verification,
while ensuring robustness and reliability of the complete flight
application. To this end, it is proposed to use the Raspberry
Pi as the flight target (aka on-board computer or OBC) and the
Basilisk Software Framework as the tool to develop and test the
flight algorithms. The combination of these two tools dovetails
into a powerful solution to address the current limitations of tra-
ditional aerospace processors (relevant to the pursuit of auton-
omy) as well as all the concerning points of FSW development
and flight targeting that have been highlighted in the previous
section.

4.1. The Raspberry Pi On-Board Computer
Being small, powerful, and low-cost, with large community

support, Raspberry Pi’s are a very attractive candidate for low-
cost space exploration, provided that they can operate reliably
in space. Therefore, the Raspberry Pi hardware is the choice
of the present proposal to be used as the on-board computer,
knowing that two main challenges still need to be adressed in
future work: Firstly, there is the fact that the processor of the Pi
is not proven to be radiation tolerant and secondly there is the
fact that the Operating System running on the Pi is based on the
Linux distribution, which is not real-time. Since the focus of the
present work are deep-space missions that are not intended for
human-spaceflight, the need of going hard real-time does not
seem as relevant as ensuring robustness to recover from time-
lapses. As mentioned earlier, one way of assessing both prob-
lems and making sure that the Raspberry Pi can operate reliably
in space is through software redundancy: if multiple modules
are used, then if one of them fails, another can take over (sim-

ilar to the redundancy approach used for processors in human
spaceflight).

Figure 1 displays the flagship Raspberry Pi model B that will
be used in the technology demonstration of the present work.
The question that still remains is whether a CubeSat mission

Fig. 1. The flagship Raspberry Pi model B.

would actually fly the full board that appears in Fig. 1 or not.
And the answer is, of course, not. We must recall that an
aerospace flight system is an embedded system, which means
that the onboard computer is just a part of a larger, more com-
plex system that includes other hardware and mechanical parts.

The good news are that, with the Raspberry Pi platform be-
ing now grown and matured and its software full-featured and
stable, the Pi foundation has recently made a step forward to-
wards industrial application by releasing the so-called Compute
Module (CM). The CM is essentially a Raspberry Pi in a more
flexible form factor, suitable to be embedded into larger sys-
tems and commercial products - like aerospace flight systems!
In more technical detail, the CM contains the guts of a Rasp-
berry Pi (in terms of the processor and Mbyte of RAM) with
onboard memory (Flash memory device connected), all inte-
grated onto a small 67.6 × 30mm board whose connectors you
can customize for your own needs.

The CM is primarily designed for those who are going to
create their own Printed Circuit Board (PCB), which is what
spacecraft missions would do. Nevertheless, the purpose of the
present work is to provide a technology demonstration of the
Basilisk-developed flight algorithms running on the on-board
computer (i.e. the flight processor). Given that the flagship
Raspberry Pi model B and the Compute Module share the same
processor, the validity of the results is not dependant on using
either one or the other. The advantages of using the full model B
in the present experiment, and also during the software verifica-
tion part of any mission, is that the outputs of the flight software
algorithms can be easily pulled out and analyzed. This strategy
will be shown in the numerical simulation of section 5..
4.2. The Basilisk Software Framework

Next an overview of the Basilisk Software Framework is pro-
vided and, following, the main advantages of the tool in a prac-
tical level are summarized.
4.2.1. General Overview

The Autonomous Vehicle System (AVS) Laboratory at the
University of Colorado and the Laboratory for Atmospheric and
Space Physics (LASP) are collaborating on a software develop-
ment testbed named Basilisk. Basilisk seeks to capitalize on
the potential of using Python as a testbed for FSW development
provided that the simulation and flight algorithm code are writ-
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Fig. 2. Architecture of the Basilisk astrodynamics platform.

ten exclusively in C/C++, and then automatically wrapped into
Python for simulation setup, analysis, and testing.

The architecture of the Basilisk software framework, as de-
picted in Fig. 2, is decomposed into two main blocks: a high-
fidelity simulation of the physical spacecraft (DKE models) and
a flight software set (on-board GN&C algorithms suite). Both
the simulation and flight software processes are developed in a
modular architecture using C/C++ modules that communicate
with each other through a Message Passing Interface. The mod-
ularity of the system implies that each process is decomposed
into a series of simpler steps and exchangeable components, and
the cascading of modules is set at the Python level, allowing
different levels of simulation fidelity and flight software sophis-
tication. The proposed modular scheme is a convenient strategy
for missions with changing and evolving requirements and pro-
vides a systematic framework to scale mission complexity in a
controlled manner that developers can manage.
4.2.2. Advantages of Basilisk for FSW Mission Develop-

ment
In overall, the Basilisk platform is an excellent option for

flight software prototyping and development that is specially
suitable for, although not restricted to, low-cost missions for
several reasons:

• A generic set of FSW algorithms is already available:
The mix-and-match strategy of the Basilisk FSW architec-
ture allows to suit a wide range of mission profiles with
the already existing modules. Furthermore, the flight soft-
ware set is easily scalable and dovetails very well with the
creation of mission specific modules and layers to satisfy
particular requirements.

• Reconfigurability and user-friendly analysis environ-
ment: The construction and testing of the several FSW
rate groups and of different modes of the flight application
is handled through the high-level Python language, which
is recognized as an excellent scripting environment and de-
velopment testbed. Furthermore, Python-standard analysis
products like numpy and matplotlib are readily available
to facilitate rapid and complex analysis of data obtained in
a simulation run without having to stop and export to an
external tool.

• High-fidelity DKE models are available: The Basilisk
simulation engine provides a complete, physically realistic
dynamic representation of the spacecraft. Just to provide a
few examples, it is possible to run simulations that include
higher order gravitational effects, flexing dynamics18) or
solar radiation pressure effects.19)

• Speed: The fact that the underlying simulation executes
entirely in C/C++ allows for maximum execution speed
in faster than realtime simulation with built-in repeatable
Monte Carlo capability.

As a matter of fact, the Basilisk software framework is currently
being applied for: advanced astrodynamics student research;
a CubeSat feasibility analysis project between the University
of Colorado Boulder and an industrial partner; and a current
mission that the Laboratory for Atmospheric and Space Physics
is participating in.
4.3. Targeting Basilisk to the Raspberry Pi

The Raspberry Pi has a built-in ARM processor and comes
with the Linux Operating System out-of-the-box. A main ad-
vantage of developing the flight algorithms with the Basilisk
framework and then targeting them on the Raspberry Pi is
that no auto-coding step is necessary, since Basilisk is cross-
platform in nature and runs very well on the Pi. Therefore, the
ability to run on the flight target the same exact hand-written,
optimized, algorithms developed in the desktop environment
becomes da facto. This approach is more reliable and efficient
than the traditional GN&C model-based development, avoiding
all the cumbersome tasks of targeting a traditional processor
and RTOS.

Previous work has demonstrated how Basilisk-developed al-
gorithms can also be integrated to the CFS middleware and
embedded onto a flight target running a standard RTOS with
closed-looped dynamics.20) Transitioning from the Basilisk en-
vironment to the CFS is the strategy currently being targeted by
LASP for a subsystem of a mission in development. In the con-
text of low-cost missions, though, the present proposal involv-
ing the Raspberry Pi is more suitable, being straight-forward to
implement and saving considerable efforts. Therefore, it is the
focus of the present work.
4.3.1. Technology Demonstration

A novel low-cost platform for FSW development and flight
targeting has been proposed. Now it will be explained, more
technically, how the flight algorithms targeted to the OBC
(Raspberry Pi) can be realistically tested and analyzed in a
closed-loop dynamic simulation. In summary, this technology
demonstration features:

• Onboard Computer: out-of-the box Raspberry Pi.
• Onboard FSW: Basilisk FSW class (flight software archi-

tecture that is easy reconfigurable and scalable), running
on the Pi.

• DKE Simulation Models: Basilisk Dynamics engine
(simulation architecture that is natively modular and con-
tains high-fidelity models), running on a separate host
computer.

• Communication: in addition to the publish/subscribe
messaging bus that is used by all C/C++ modules, a
TCP/IP interface is included to enable asynchronous com-
munication between the FSW process (running on the Pi’s
processor) and the dynamics simulation process (running
on a separate host computer). The communication between
the on-board computer and the simulated hardware takes
place via a message router that allows synchronization to
realtime via software-based clock tracking modules.

The fully-realized system just described is depicted in Fig. 3



and its validity is demonstrated through a numerical simulation
in section 5..

At this point it seems important to mention that both the
Basilisk dynamics engine and the FSW process can perfectly
run on the Raspberry Pi. Of course, the maximum speed feasi-
ble on the Pi is significantly less than the speed achievable on
a fully-sized desktop computer. Ideally, the GN&C algorithms
are first developed and tested in closed-loop dynamics simu-
lation at full speed, by running both FSW and dynamics pro-
cesses on the desktop computer synchronously (with no TCP
client nor server). Once the required functionality of the flight
algorithms is achieved, tested and verified, then it makes sense
to separate the process by setting up a TCP communication with
a dynamics server and a FSW client that asynchronously con-
nects to it, and to use a processor for the flight algorithms that
resembles one you would actually fly. Only at this stage it is
sensible to include as well a CPU-based clock tracking module
that ensures real time, deterministic behavior (emulating realis-
tic asynchronous software-hardware interfacing).
4.3.2. A Comparison: targeting the CFS to the Pi

Previously, the Pi-Sat project has been briefly mentioned.
The concept behind this initiative is very similar to the one
proposed in the Basilisk-Pi platform, although there are major
pragmatical differences in terms of their actual implementation.
Now that all the characteristics of the Basilisk-Pi technology
demonstration have been revealed and that all the critical con-
cepts regarding COTS software and hardware have been pre-
sented, it makes sense to provide a technical comparison be-
tween the Pi-Sat project (where the CFS is targeted to the Rasp-
berry Pi) and the Basilisk-Pi project.

Let us first recall about the Pi-Sat platform: the Pi-Sat is an
initiative recently taken by the Flight Software System branch
at NASA Goddard Space Flight Center that encompasses the
incorporation of Raspberry Pi hardware into a version of their
CubeSats. The new Pi-Sat is a low cost platform that combines
a credit card-sized ARM processor (the Raspberry Pi’s), a suite
of low-cost sensors, a 3D-printed enclosure and battery as well
as the Core Flight System as the on-board FSW set. Three dif-
ferent designs of the Pi-Sat have been created for different pur-
poses:

• Pi-Sat Cube: 1U CubeSat prototype with the CPU of the
Raspberry Pi model B.

• Pi-Sat Wirless Node: Wireless mesh network with peer-
to-peer communication between the Raspberry Pi and a
ground-system prototype.

• Pumpkin Pi Card: Processor card of a 1U CubeSat pro-
totype: the CPU is the Compute Module. Due to the use of
the CM, the Pumpkin Pi Card is more realistic than the Pi-
Sat Cube, and gets closer to integrating into a real CubeSat
stack.

The Pi-Sat project has a couple of characteristics that make it
intrinsically distinct from the proposed Basilisk-Pi platform:
On the FSW side, all the Pi-Sat designs use the CFS frame-
work, which includes the cFE executive layer and inherited
mission-specific applications. While the Basilisk FSW archi-
tecture has been designed in a modular fashion that allows com-
bining already existing modules with own-developed ones, the
CFS mission-specific applications that are available are few and

monolithic (mainly inherited stand-alone FSW sets from previ-
ous missions). In terms of the spacecraft’s dynamics represen-
tation, there are no DKE simulations models on the Pi-Sat plat-
form, and a suite of sensors is integrated instead. The sensors
approach, though, poses challenges in the testing of the flight
algorithms because expensive testbeds would be needed in or-
der to replicate the space environment in a comprehensive and
realistic manner (e.g. recreation of dynamic forces and torques
either from spacecraft actuators or from environmental dynam-
ics). In the context of Cube-Sat missions where resources are
scarce, the requirement of testbeds is potentially problematic,
even if the sensors themselves are low-cost. Therefore, the
simulated hardware approach, together with the clock-tracking
modules and a realistic TCP/IP interface, seems more suitable
for the purposes of low-cost FSW prototyping and flight target-
ing.

5. Numerical Simulation

A simple numerical simulation is presented next that serves
to demonstrate the validity of the platform architecture de-
scribed in the previous section. Figure 3 shows the different pro-
cesses (FSW process, Spacecraft Simulation process and Clock
Synchronization process) and the particular modules included
in this setup. The messaging connections between the mod-
ules are also represented in Fig. 3 through arrows. The Mes-
sage Passing Interface or MPI is used for communication be-
tween modules running in the same process, whereas the TCP
server/client connection is used to interface the Raspberry Pi
and the host computer asynchronously in real-time.

A key validation step of the platform depicted in Fig. 3 is
to show that the results from the numerical simulation in the
asynchronous dual-process system, i.e. Raspberry Pi (FSW al-
gorithms) - host computer (spacecraft simulation), coincide ex-
actly with the results obtained in a single-process system where
FSW and simulation run synchronized in the desktop host com-
puter.
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Fig. 3. Numerical simulation setup.



5.1. Scenario
The spacecraft is simulated to be orbiting Earth with the or-

bital parameters in Table 1, and the spacecraft’s Attitude, Dy-
namics and Control (ADC) parameters in Table 2. Note that the
Modified Rodrigues Parameter (MRP) sets, designed as σ, are
used to represent attitude states throughout the simulation.

Table 1. Initial Orbital Elements
Parameter Value Units
Semi-major Axis 10, 000 km
Eccentricity 0.2
Inclination 0.0 deg
Longitude of Ascendant Node 0.0 deg
Argument of Perigee 0.0 deg
True Anomaly 280.0 deg

Table 2. ADC Parameters
Parameter Value Units
Attitude Error Gain K 3.5 kg·m2

s

Rate Error Gain P 30.0 kg·m2

s
I1 900 kg·m2

I2 800 kg·m2

I3 600.0 kg·m2

Inertial Reference Attitude σR/N [0.1, 0.2,−0.3]
Inertial Reference Rate ωR/N [0.0, 0.0, 0.0] rad/s

The spacecraft’s inertia is a diagonal matrix with principal
components I1, I2, I3 as defined in Table 2. The initial condi-
tions of the spacecraft are given by

σB/N(t = 0) = [0.1, 0.2,−0.3] (1a)
ωB/N(t = 0) = [0.001,−0.01, 0.03] rad/s (1b)

where B refers the spacecraft’s principal body frame andN in-
dicates a generic inertial frame. The simulation time is tsim = 6
min and the goal of the simulation is to perform a detumbling
maneuver and align the spacecraft with a fixed inertial refer-
ence attitude described by σR/N . Note that here the subscript R
indicates the reference.
5.2. Dynamics

The rigid body equations of motion in Eq. (2) are numerically
integrated within the Basilisk dynamics engine.21)

σ̇ =
1
4

(
(1 − σ2)[I3×3 − 2[σ̃] + 2σσT

)
ω (2a)

[I]ω̇ = −ω × [I]ω + L − Lr (2b)

where σ ≡ σB/N is the attitude of the spacecraft’s principal
body frame B with respect to the inertialN frame, ω ≡ ωB/N is
the spacecraft’s inertial angular rate, [I] is the spacecraft inertia
tensor, L is an external torque and Lr is the applied closed-loop
control torque.

The dynamic states are integrated using a 4th order Runge-
Kutta scheme running at 10 Hz. The closed-loop control torque
is directly applied to the spacecraft (i.e. not mapped to the set of
spacecraft’s effectors) for the sake of simulation simplicity. The
Earth is the only celestial body affecting the spacecraft’s orbit
and spherical harmonics are disabled in the present numerical
simulation.

5.3. Flight Algorithms
For the purpose of testing the FSW modules, the following

MRP feedback law is implemented that is globally asymptoti-
cally stabilizing:21)

Lr = KσB/R + [P]ωB/R − ωR/N × [I]ωB/N+

+ [I](ωB/N × ωR/N − ω̇R/N) + L (3)

Here Lr is the control torque being computed, σB/R is the space-
craft attitude tracking error, ωB/R is the spacecraft rate error,
ωR/N is the reference inertial angular rate, ω̇R/N is the reference
inertial angular acceleration, K is the attitude error gain and [P]
is the rate error gain matrix.

The simulated navigation data σB/N and ωB/N is without any
sensor corruptions to better illustrate that the control law does
achieve asymptotic tracking of the reference motion.
5.4. Plots from the Asynchronous Dual-Process System

In this section plots of the dynamic simulation and of the
GN&C performance are presented when the dual-process sys-
tem is used, i.e the host computer (where the dynamic simula-
tion runs) and the Raspberry Pi (where the GN&C algorithms
run) communicate asynchronously. The TCP interface is used
and communication is controlled to be in real time.

The results of the physical dynamic simulation of the space-
craft are pulled from the C++ level to the Python interface in the
host computer and automatically plotted. The simulation anal-
ysis plots showing the spacecraft’s orbit and the spacecraft’s
rotational states appear in Fig. 4, Fig. 5 and Fig. 6.
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Fig. 4. Spacecraft’s orbit. Results plotted on the host computer from the
asynchronous dual-process run.
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Fig. 5. Spacecraft’s inertial MRP attitude set, σB/N . Results plotted on
the host computer from the asynchronous dual-process run.

Similarly, the output of the flight software algorithms running
on the Raspberry Pi are retrieved from the C level to the Rasp-
berry’s built-in Python interface and plotted for analysis. The
flight software plots showing the performance of the GN&C al-
gorithms appear in Fig. 7, Fig. 8 and Fig. 9.
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Fig. 6. Spacecraft’s inertial angular rate, BωB/N . Results plotted on the
host computer from the asynchronous dual-process run.
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Fig. 7. Attitude tracking error MRP set, σB/R. Results plotted on the Pi
from the asynchronous dual-process run.
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Fig. 8. Angular rate error, BωB/R. Results plotted on the Pi from the asyn-
chronous dual-process run.
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Fig. 9. Control torque, Lr . Results plotted on the Pi from the asyn-
chronous dual process run.

5.5. Plots from the Synchronous Single-Process System
In this section plots of the GN&C performance are presented

when the single-process system is used, i.e both the dynamic
simulation and the GN&C FSW tasks run synchronously at full
speed in the desktop environment (host computer) and no TCP
interface is used.
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Fig. 10. Attitude tracking error MRP set, σB/R. Results plotted on the
host computer from the single-process run.
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Fig. 11. Angular rate error, BωB/R. Results plotted on the host computer
from the single-process run.
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Fig. 12. Control torque, Lr . Results plotted on the the host computer from
the single-process run.

5.6. Results Discussion
The FSW analysis plots in Fig. 7, Fig. 8 and Fig. 9 show-

case how the autonomous guidance maneuver is successfully
achieved by bringing the spacecraft from its initial tumbling
state to the desired inertial fixed-pointing attitude. In particular,
this numerical scenario in the asynchronous dual-process mode
shows how the flight software algorithms running on the Pi are
able to infer/read the spacecraft’s states (attitude and rate) from
the dynamics engine running on the host computer, using the
Message Passing Interface (MPI) and TCP interface. Accord-
ing to the current spacecraft’s states and the desired reference
states, a tracking error is computed on the Pi flight algorithms
and a control torque is derived. In turn, the computed control
torque on the Pi is then commanded, through the MPI and TCP
communication, to the simulated spacecraft on the host com-
puter. In this way it is demonstrated how the flight algorithms
on the OBC are readily tested in a highly realistic closed-loop
dynamics simulation.

Finally, a key strength of the proposed Basilisk-Pi platform
is revealed when comparing the GN&C FSW plots in the asyn-
chronous dual-process system (i.e. Fig. 7, Fig. 8 and Fig. 9)
with the GN&C FSW plots in the synchronous single-process
system (i.e. Fig. 10, Fig. 11 and Fig. 12). By comparison it is
shown that running the two different systems yields the same



exact results. Obtaining identical results proves the validity of
the architecture including the TCP/IP interface and shows that
the performance of the flight algorithms is preserved when they
are targeted to the flight processor; as pointed out earlier, since
the Basilisk-Pi approach does not encompass any auto-coding
step, there is then no lost in efficiency of the flight algorithms.
Further, since the Pi runs human-written algorithms, it is possi-
ble to make changes directly on the FSW suite of the on-board
processor, which allows for faster and more flexible testing.
Last but not least, the parity of the results provides higher cred-
ibility and reliability to the full-speed Monte Carlo simulations
that can be ran on the desktop environment with the purpose of
testing a wide range of scenarios and what-if situations, as long
as the Raspberry Pi is indeed the flight target.

Conclusions

The paper demonstrates how the Basilisk framework can be
effectively used to first test and analyze flight software in a very
user-friendly software environment and, then, easily integrate
it into a flight target, the Raspberry Pi, for the next phase of
software-hardware testing with high fidelity, real-time, closed-
looped dynamics. Future work encompasses hardening the in-
ternals of the Basilisk-Pi system to ensure robustness against
space radiation through software redundancy and to address
real-time metrics reliability on the Pi on-board computer.
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