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AUTONOMOUS STRIP IMAGING TASK SCHEDULING IN
SUPER-AGILE SATELLITES USING REINFORCEMENT LEARNING

Anaı̈s Cheval* and Hanspeter Schaub†

This paper investigates the use of Deep Reinforcement Learning (DRL) to ad-
dress the scheduling problem for strip imaging tasks in the context of Super-Agile
Earth-Observing Satellites (SAEOS). Unlike point-target imaging, strip imaging
enables continuous data collection along extended ground paths, making it essen-
tial for monitoring large-scale, elongated features such as international borders,
coastlines, and mountain ranges, as well as broad areas decomposed into adjacent
strips. A dedicated attitude guidance and control system tailored for strip imaging
is developed and integrated into the high-fidelity Basilisk simulation framework.
The strip-imaging scheduling problem is modeled as a Partially Observable semi
Markov Decision Process (POsMDP), and a custom training environment is built
using BSK-RL—a Python package based on Basilisk for constructing Gymnasium
environments for spacecraft tasking problems. A DRL based policy is trained and
evaluated to allow autonomous on board decision making.

INTRODUCTION

The increasing demand for high-resolution Earth imaging has led to growing complexity in plan-
ning missions for Earth-Observing Satellites (EOSs). Applications such as environmental moni-
toring, disaster response, urban planning, agricultural assessment, and national security drive the
need for precise, timely, and efficient data collection across diverse regions. These satellites must
balance the execution of imaging tasks with the constraints of system resource limitations. As a
result, effective scheduling of mission objectives and onboard resource management is critical to
overall mission success. Planning for such satellites is often framed as a flight mode-based prob-
lem, where the focus is on selecting which high-level mission objective to pursue or which resource
management action to take during a given time period rather than controlling the satellite’s actuators
directly at a low level.

Traditionally, the ground segment performs the planning and scheduling steps using optimization
algorithms. Next the solution is sequenced into commands and up-linked to the spacecraft for
open-loop execution. The most popular offline optimization-based approach includes Mixed-Integer
Linear Programming (MILP), favored for its optimality guarantees.1, 2 Industry leaders such as Spire
Global3 and Planet4 employ MILP techniques to manage and schedule their EOS constellations.
However, these methods are brittle to initial conditions as they are uploaded to the satellite as an
open-loop sequence of flight tasks, present challenges to incorporate non-linear constraints such as
wheel torque or power saturation, struggle to scale effectively with a growing number of satellites
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or targets, and require complete or partial re-planing when new requests are introduced into the
system.

The use of machine learning has been proposed to overcome these limitations. More specifi-
cally, Deep Reinforcement Learning (DRL) has shown the ability to effectively solve the schedul-
ing problem for point imaging tasks under resource constraints for both individual Earth-observing
satellites5–7 and decentralized constellations.8, 9 DRL agents are first trained on high-fidelity sim-
ulations to map states to actions to maximize a numerical reward function. A common practice
is to train the algorithm using a variety of random initial conditions, targets, and ground station
locations to generalize the policy. After the training step, the policy can be up-linked to the satel-
lite for closed-loop execution, responding to the real states of the environment. This means that
re-planing is inherent to a DRL planning paradigm. The execution of trained policies is typically
very fast. Neural network approximations of the scheduling policy can be executed in milliseconds
on modern computational hardware and would not require dedicated evaluation hardware onboard
the spacecraft. In some solution, resource management is learned by the policy by directly penal-
izing failures so that the policy avoids them. In others, a shield (i.e. an expert-designed policy of
responses to safety critical states) is deployed during or after learning to guarantee the safety of the
satellite during operation.10, 11 Additionally, several studies have conducted in-depth comparisons
of different DRL algorithms for this problem,12 while others have bench-marked DRL against MILP
approaches under varying point target distributions.13

However, these machine-learning studies have focused exclusively on discrete point-target imag-
ing tasks. This research seeks to build on this previous work by using DRL to address the scheduling
problem for continuous strip imaging tasks in the context of Super-Agile Earth Observing Satellites
(SAEOSs). Strip imaging tasks are remote sensing operations in which a satellite equipped with a
fixed scan line camera captures continuous, high-resolution image data along a defined linear path
on the ground as the satellite moves, producing high-resolution images of narrow, extended ground
areas. Such imaging is essential for observing features that naturally extend across long distances,
including international borders, coastlines, mountain chains, and other large geographic areas that
can be decomposed into adjacent strips such as wild-fire areas or flood zones. SAEOSs are espe-
cially well-suited for strip imaging tasks thanks to their advanced maneuverability.14 Leveraging
high-performance attitude control systems, these satellites can perform real-time attitude adjust-
ments during an imaging task. This dynamic capability eliminates the traditional constraint of
aligning the scanning direction with the satellite’s orbital path and decouples the image acquisition
rate from the satellite’s orbital motion. SAEOSs offer significantly greater flexibility in scheduling
strip observations, enabling more efficient and responsive coverage of diverse ground strip targets.

This paper begins by formulating the strip imaging scheduling optimization problem, along with
introducing the attitude guidance and control system designed to support such tasks. The scheduling
problem is then cast as a Partially Observable semi Markov Decision Process (POsMDP), and the
DRL approach employed to solve it is described. Finally, the trained policies are evaluated and the
results are discussed.

PROBLEM STATEMENT

Image Strip Request Model

Imaging requests are modeled as a set R of strip targets, where each request ρ ∈ R is defined by
a tuple (rstart, rend, p, vacq) representing a start point and end point, both defined as fixed locations in
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Figure 1: Attitude guidance for a strip imaging task.

the planet-fixed frame, a priority level p, and a required acquisition speed vacq. All imaging requests
begin in the unfulfilled set U and are moved to the fulfilled set F once successfully imaged. After
fulfillment, requests are considered complete and are not re-imaged, although operators may add
new requests for the same location if necessary. If a strip can be imaged from both directions, an
additional request is generated with the start and end points reversed but sharing the same priority
and acquisition speed. These two requests are treated as linked: fulfilling either one causes both to
be moved from U to F .

In this work, synthetic imaging strip requests are generated by first selecting a random start point
uniformly distributed over the planet’s surface. Each strip is then defined by this start point, an
azimuth angle sampled uniformly to determine the direction, and a strip length drawn uniformly
from the range [Lmin, Lmax]. The corresponding end point is computed using spherical trigonom-
etry. Each imaging request is assigned a priority value randomly drawn from a uniform distri-
bution over the interval [0, 1], along with an acquisition speed sampled uniformly from the range
[vacq,min, vacq,max]. For each scenario, the total number of imaging requests is randomly sampled
from the range [Nmin, Nmax]. Although this specific distribution is used for simulation purposes, the
proposed method is general and can accommodate any distribution of strip requests, including those
derived from real mission data.

Attitude Guidance And Control Model For A Strip Imaging Task Considering A Super-Agile
Satellite

The Earth-observing satellite is modeled as a small spacecraft with mass m and inertia I , op-
erating in a fixed low-altitude circular orbit around Earth with inclination i and altitude a. It is
equipped with a body-fixed scan-line camera for imaging purposes. The scan line sensor consists
of a rectangular surface containing several rows of photodiodes. Attitude control is provided by a
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three-axis reaction wheel assembly, with wheels aligned along the spacecraft’s principal body axes.
The satellite is super-agile, capable of slewing simultaneously about all three axes—roll, pitch, and
yaw—while actively imaging.

Compared to point-imaging tasks, strip-imaging tasks complicate the attitude guidance model by
requiring a specific scanning direction at a desired scanning speed. While snapshot instruments
permit the orientation around the view direction to remain unspecified during target observation,
scan line cameras demand that the scan line sensor aligns perpendicularly with the desired scan path.
As a result, the attitude of a satellite equipped with a snapshot instrument retains one unspecified
degree of freedom, whereas the attitude must be fully defined for a satellite employing a scan line
camera.

To compute the attitude and rate references for strip imaging operations, three primary reference
frames are used: the Earth-Centered Inertial frame N , the Earth-Fixed frame E, and the spacecraft
Body frame B. The upper-left superscript specifies the reference frame in which the vector is
represented, while a lower-right subscript t indicates that the quantity varies with time within that
frame. The unit vectors of the body frame {OB; b̂x, b̂y, b̂z} are defined with origin OB at the center
of the rectangular scan-line sensor, which lies in the plane Psensor. The body frame is visualized in
Figure 1, and its unit vectors are defined as follows:

• b̂z is the boresight axis of the imager. It is defined as the vector normal to Psensor and passing
through OB .

• b̂y is the cross-track axis, defined as the vector lying in Psensor, aligned with the direction of
the rows of photodiodes, and passing through OB . It is oriented to maintain a right-handed
body frame.

• b̂x is the third body axis, introduced to complete the right-handed orthonormal frame. It is
given by

b̂x = b̂y × b̂z,

ensuring that B forms an orthonormal basis.

The primary attitude requirement is to steer the boresight axis b̂z towards a virtual ground target
Ertarget,t, which moves along the strip’s central line — from Erstart to Erend — with a velocity
Evacq,t of constant magnitude vacq. At time t, the positions of the virtual target and the spacecraft
in the inertial frame are Nrtarget,t and NrB,t, respectively.

The line-of-sight (LOS) vector pointing from the spacecraft to the target is given by:

NrLS,t =
Nrtarget,t − NrB,t. (1)

The reference boresight direction in the body frame is the normalized transformed LOS vector:

B r̂LS,t =
CBN (t)NrLS,t
∥CBN (t)NrLS,t∥

, (2)

where CBN (t) is the direction cosine matrix from the inertial frame N to the body frame B, and is
derived from the spacecraft’s Modified Rodrigues Parameters (MRP) attitude σBN,t at time t.
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The principal rotation angle between the boresight axis b̂z and B r̂LS,t is:

ϕ1,t = arccos
(
b̂z · B r̂LS,t

)
. (3)

The rotation error axis B ê1,t is defined as:

B ê1,t =


b̂y, |ϕ1,t| < ϵ or |ϕ1,t − π| < ϵ,

b̂z × B r̂LS,t

∥b̂z × B r̂LS,t∥
, otherwise,

(4)

where ϵ > 0 is a small threshold introduced to avoid numerical instabilities.

The attitude error between the current body frame B and the desired reference frame R1 =
{OB; q̂x, q̂y, q̂z} is expressed in MRPs as:

σBR1,t = − tan

(
ϕ1,t

4

)
B ê1,t, (5)

The corresponding reference attitude, which represents the orientation of frame R1 relative to the
inertial frame N , is obtained through MRP composition:

σR1N,t = σBN,t ⊕ (−σBR1,t), (6)

where ⊕ denotes the MRP addition operation including the shadow set switch to keep the result
within the principal MRP domain.

Once the first attitude reference requirement is met, the second requirement ensures that the refer-
ence cross track axis aligns perpendicularly with the desired scan path. This is achieved by applying
a corrective rotation about the reference boresight axis, resulting in a final attitude reference frame
R2.

To compute the ground track direction at time t, the virtual target velocity vector Nvacq,t, in the
inertial frame, is expressed into the R1 frame and normalized:

R1 v̂acq,t =
CR1N (t)Nvacq,t∥∥CR1N (t)Nvacq,t

∥∥ , (7)

where CR1N (t) is the direction cosine matrix from the inertial frame N to the reference frame R1

and is derived from σR1N,t.

To ensure valid scan geometry, the scan path must lie in the sensor plane—orthogonal to the
boresight axis—since the perpendicularity between the reference cross-track axis and the scan path
is only meaningful when both vectors lie within the same plane. To remove any component of
R1 v̂acq,t aligned with the reference boresight axis R1 r̂LS,t, this vector is projected onto the plane
normal to R1 r̂LS,t:

R1 v̂acq⊥,t =
R1 v̂acq,t −

(
R1 v̂acq,t · R1 r̂LS,t

)
R1 r̂LS,t. (8)

The reference cross-track axis is given by the normalized vector:

R1 r̂⊥,t =


R1 v̂t =

R1 r̂target,t × R1 v̂acq,t∥∥R1 r̂target,t × R1 v̂acq,t
∥∥ , if

∥∥R1 v̂acq⊥,t

∥∥ < ϵ

R1 r̂LS,t × R1 v̂acq⊥,t∥∥R1 r̂LS,t × R1 v̂acq⊥,t

∥∥ , otherwise

(9)
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where R1 r̂target,t =
CR1N

(t)Nrtarget,t

∥CR1N
(t)Nrtarget,t∥ , while R1 v̂t is a unit vector lying in the plane tangent to

the Earth’s surface at the virtual target location R1 r̂target,t and perpendicular to the velocity vector
R1 v̂acq,t.

The rotation angle ϕt,2 required to align the current cross-track axis q̂y with R1 r̂⊥,t is computed
as:

ϕt,2 = sign
[
−
(
q̂y × R1 r̂⊥,t

)
z

]
arccos

(
q̂y · R1 r̂⊥,t

)
. (10)

This corrective rotation about the boresight axis R1 r̂LS,t can be represented as a Modified Ro-
drigues Parameter (MRP) vector:

σR2R1,t = − tan

(
ϕt,2

4

)
R1 r̂LS,t. (11)

Finally, the overall reference attitude σR2N,t, expressed relative to the inertial frame N , is ob-
tained by composing the first reference attitude σR1N,t with this corrective rotation:

σR2N,t = σR1N,t ⊕ σR2R1,t. (12)

The spacecraft’s attitude error relative to this final reference is then:

σBR2,t = σBN,t ⊖ σR2N,t, (13)

where ⊖ denotes MRP subtraction including the shadow set switch to keep the result within the
principal MRP.

The tracking error rate σ̇BR2,t is computed via numerical differentiation of the attitude error
σBR2,t over time. When no prior data point is available, numerical differencing is not feasible. In
such cases, the error rate is initialized to zero.

Closed-loop attitude control during a strip imaging task is performed using an exponentially
stable MRP-based steering controller,15 in combination with rate servos driving the three reaction
wheels. The reaction wheels are subject to actuation constraints, with commanded torques limited
to a maximum umax. The control system operates at a frequency f and receives, at each control step,
the attitude error σBR2,t and the attitude error rate σ̇BR2,t.

Imaging Requirements

Imaging requests are subject to operational hard constraints, primarily related to geometric vis-
ibility and sensor limitations such as minimum illumination requirements and sensor saturation
thresholds. This work focuses on the view angle constraint, which ensures that the virtual target
Nrtarget,t is at any time within the sensor’s field of regard, but the method is general enough to ac-
count for other constraints. Specifically, during a strip imaging task, the spacecraft must maintain:∣∣∠ (

NrLS,t,
N n̂t

)∣∣ < π

2
− θmin (14)

where NrLS,t is the LOS vector, N n̂t =
Nrtarget,t

∥Nrtarget,t∥ the local surface normal unit vector at the target
and θmin the minimum required elevation angle above the local horizon.
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Due to the spacecraft’s motion and orbital geometry, only specific time intervals are suitable for
initiating the imaging of a strip while satisfying this constraint during the entire task. Starting time
opportunity windows are defined as the intervals during which the imaging of a given strip can begin
such that the entire strip can subsequently be imaged without violating the view angle constraint.
Each of these windows is represented as a time interval [tstart,1, tstart,2] = w ∈ Wi, where Wi

denotes the set of all feasible starting time opportunity windows for imaging request i.

In addition to operational hard constraints, dynamic performance requirements must also be met
to ensure high-quality imaging. Specifically, during a strip imaging task, the spacecraft’s attitude
must closely track the guidance profile. This is enforced by bounding during the strip imaging task
the attitude error σBR2,t and its rate σ̇BR2,t:

∥σBR2,t∥ < σmax, ∥σ̇BR2,t∥ < σ̇max (15)

where σmax, σ̇max represent the maximum tolerable attitude error and error rate.

Despite the super-agility of modern satellites, these dynamic performance conditions cannot be
guaranteed instantaneously at the start of the imaging interval, as the controller requires a finite
transition time to align the spacecraft with the desired attitude and angular velocity. To ensure that
the attitude tracking constraints are satisfied from the beginning of the strip, a pre-imaging phase
of duration Tpre is introduced before each strip imaging task ρ. To incorporate this pre-imaging
interval into the simulation process, the central line of the imaging strip is interpolated along the
Earth’s surface prior to the nominal start location rstart, over a distance equivalent to vacq ·Tpre. This
interpolation yields a virtual pre-imaging trajectory that precedes the actual imaging path.

Resource Constraints

Earth imaging satellites operate under several resource limitations, including power, onboard
memory, and reaction wheel momentum limits. This study focuses solely on the power constraint
to isolate and address the core challenge of scheduling strip imaging tasks. The satellite’s battery
energy, with a maximum capacity bmax, must remain positive throughout the entire planning horizon.
This is enforced by the constraint:

bt ≥ 0 (16)

where bt is the battery energy at time t.

Battery consumption arises from three main sources. First, a constant baseline power consump-
tion, denoted pbase, accounts for essential subsystems and is active at all times. Second, the imaging
instrument has a power draw of pinst during imaging tasks, provided that imaging requirements are
satisfied. Third, the reaction wheels consume electrical power during attitude maneuvers, mod-
eled as prw/ηrw, where prw is the required mechanical power and ηrw ∈ (0, 1] is the electrical-to-
mechanical efficiency.

The satellite is equipped with two solar panels, each with area A, conversion efficiency Cpanel,
and unit normal vector n̂panel. The total electrical power output from these panels is modeled as:

pout = pbase · Ceclipse · Cpanel · (n̂panel · ŝ) ·Apanel (17)

where pbase is the incident solar power per unit area at the spacecraft’s location, Ceclipse ∈ {0, 1}
is the eclipse factor (0 when the spacecraft is in Earth’s shadow, 1 when in direct sunlight), ŝ is
the unit vector pointing from the spacecraft to the sun, and Apanel = 2A is the total panel area.
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Passive charging occurs during regular operations when the panels are illuminated by the sun and
not in eclipse; in this case, the alignment between the panels and the sun may be suboptimal. Active
charging requires reorienting the spacecraft to maximize solar power intake by aligning the panels
directly with the sun for a specified duration Tcharge. The attitude guidance system adopts a similar
approach to the one presented to steer the camera’s boresight axis toward a virtual target in the strip
imaging task. In the active charging scenario, however, the reference attitude is computed to point
the body-fixed vector n̂panel toward the sun’s position. To achieve and maintain this orientation, the
same MRP-based steering feedback controller used for strip imaging is applied.

Strip Imaging Scheduling Problem

The strip imaging scheduling problem considered in this paper seeks to determine a sequence of
actions.

a = (a1, a2, . . . , aK) (18)

where each action ak is either

• a charging action acharge , or

• a strip imaging action astrip = (ρ, Tpre), where ρ = (rstart, rend, p, vacq) ∈ R is an imaging
request and Tpre ∈ Tpre is a selected pre-imaging time from a set of admissible pre-imaging
durations,

such that the cumulative priority of imaging requests that are successfully fulfilled for the first time
F(a) is maximized over the mission duration T .

Formally the problem can be stated as follows :

max
a=(a1,...,aK)

∑
astrip∈F(a)

p (19)

subject to:

• Temporal sequencing: Actions in a are executed sequentially with start times t0,k satisfying

t0,1 = 0, t0,k+1 = t0,k + d(ak), ∀ k = 1, . . . ,K − 1,

and the entire sequence fits within the mission duration:

t0,K + d(aK) ≤ T,

where the duration function is defined as

d(ak) =

{
Tcharge, if ak = acharge,

Tpre + Tacq, if ak = astrip

• Spacecraft dynamics: ∀t ∈ [0, T ], ẋsc,t = f (xsc,t, uatt,t)

• Imaging requirements: ∀ astrip ∈ F(a), ∀ t ∈ [t0 + Tpre, t0 + Tpre + Tacq]:∣∣∠ (
NrLS,t,

N n̂t

)∣∣ < π

2
− θmin, ∥σBR2,t∥ < σmax, ∥σ̇BR2,t∥ < σ̇max
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• Uniqueness of fulfilled requests: ∀ astrip ∈ a, |{k : ak = astrip and ak ∈ F(a)}| ≤ 1

• Resource constraints: ∀t ∈ [0, T ], bt ≥ 0

where: xsc,t denotes the spacecraft state at time t (comprising its translational, attitude and battery
states), uatt,t the attitude control input at time t, f(·) the dynamics model provided by a high-fidelity
simulator, Tacq the time required to image request ρ at an acquisition speed of vacq excluding the
pre-imaging phase.

REINFORCEMENT LEARNING

Partially Observable Semi-Markov Decision Processes

The strip imaging scheduling problem is formalized as a Partially Observable semi-Markov
Decision Process (POsMDP) to be solved with reinforcement learning. A POsMDP provides a
framework for sequential decision-making in environments with partial observability and variable-
duration actions. At each decision step, the environment is in a hidden state s ∈ S, the agent selects
an action a ∈ A, and the environment transitions to a new state s′ ∈ S according to the transition
probability function T (s′ | s, a). The duration of this transition is governed by the step-duration
function F (s, a, s′). The agent receives a scalar reward r = R(s, a, s′) that quantifies the immediate
benefit or cost of taking action a in state s and arriving at state s′. Because the true state s is not
directly observable, the agent instead receives an observation o ∈ O drawn from the observation
function Z(o | s′, a).

The goal of the RL agent is to learn a policy π(a | s) that defines the probability of taking action
a in state s, aiming to maximize the expected cumulative discounted reward:

V (s0) =
∞∑
t=0

γ
∑t

i=0 ∆tirt (20)

where γ ∈ [0, 1) is the discount factor, ∆ti is the duration of step i, rt is the reward received at
decision step t and s0 denotes the initial state of the system.

POsMDP Formulation For The Strip Imaging Scheduling Problem

The elements of the POsMDP (S,A, T, F,R,O, Z) for the strip imaging scheduling problem are
defined as follows :

1. State space S is the complete space of simulator states required to maintain the Markov
assumption. It includes satellite dynamic states, flight software states, and environment states.
A terminal state is reached at step k if there exists a time t during step k such that bt = 0,
indicating the satellite can no longer operate.

2. Action space A is composed of 2 modes :

• Imaging: To avoid an excessively large action space, not all imaging requests are in-
cluded in the decision process at each step. Instead, only the next N unfulfilled requests
illustrated on Figure 2 are considered. These are ordered based on the remaining time
until the closing of their respective starting time opportunity windows. At each decision
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Figure 2: Action space for imaging tasks composed of the next N unfulfilled strips.

step, the agent selects a tuple (r, Tpre) ∈ [1, N ]× Tpre, where r denotes a request index
among the selected N unfulfilled strips, and Tpre is a pre-imaging time chosen from a
discrete set Tpre of allowable values.

• Charging: The satellite points its solar panels toward the Sun, turns off all instruments
and recharges its batteries. The action duration is set to Tcharge.

Formally, the action space is defined as:

A =
(
[1, N ]× Tpre

)
∪
{
acharge

}
.

3. Transition probability function T is deterministic and defined by a generative model G such
that G(s, a) returns the next state s′. Then,

T (s, a, s′) =

{
1 if s′ = G(s, a)

0 otherwise

4. Step-duration function F is deterministic and depends solely on the chosen action a. Specif-
ically, F maps each action to its associated execution time, as defined by:

F (a) =

{
Tpre + Tacq,r if a = (r, Tpre) ∈ [1, N ]× Tpre

Tcharge if a = acharge.

5. Reward function R yields the priority of the request if it is fulfilled for the first time, and
zero otherwise:

R(s, a, s′) =

{
pr if a = (r, Tpre), ρr ∈ U(s), and ρr ∈ F(s′)

0 otherwise.
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Table 1: Observation Space

Parameter Normalization Dimension Description
b bmax 1 Battery energy normalized by maximum battery

capacity bmax
Φs π rad 1 Angle between solar panels and sun vector
toEcl T 1 Time until the next eclipse starts, normalized by

the orbital period T
tcEcl T 1 Time until the next eclipse ends, normalized by

the orbital period T
pn∈N - N Priority of next N unfulfilled requests
ln∈N Lmax N Length of next N unfulfilled requests
vacq,n∈N vacq,max N Required acquisition speed for the next N unful-

filled requests
θBR2, n∈N π rad N Attitude error angle between B and R2 if the

spacecraft starts imaging without pre-imaging
for the next N unfulfilled requests

θ̇BR2, n∈N 0.04 rad/s N Attitude rate error between B and R2 if the
spacecraft starts imaging without pre-imaging
for the next N unfulfilled requests

wrelative,n∈N 300 s 2N Next starting time opportunity window for the
next N unfulfilled requests expressed relative to
the current simulation time

6. Observation space O detailed in Table 1 is constructed by selecting and transforming rele-
vant dimensions from the full state space, guided by expert knowledge and ablation studies.
It includes key information about the spacecraft and the next N upcoming unfulfilled re-
quests. These observations are limited to data that the satellite can reasonably obtain onboard
with minimal uncertainty, supporting reliable closed-loop decision-making. All observation
elements are normalized to approximately lie within the range [−1, 1] to enhance the perfor-
mance of RL algorithms.

7. Observation function Z is deterministic since the satellite is assumed to observe the obser-
vation space perfectly.

The POsMDP and underlying generative model are implemented using BSK-RL*, a modular,
open-source package for creating spacecraft tasking RL environments. BSK-RL uses the stan-
dard Gymnasium API for RL environments, making the package compatible with all major RL
frameworks. Internally, the spacecraft and environment dynamics are modeled using the Basilisk†

spacecraft simulation framework.

Learning On An Infinite Horizon POsMDP with RL

RL is employed to approximate solutions to POsMDPs, using the widely adopted Proximal Pol-
icy Optimization (PPO) algorithm. PPO is a stochastic policy-gradient method that updates the

*https://github.com/AVSLab/bsk_rl
†https://github.com/AVSLab/basilisk
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policy πθ through iterative improvements to the network parameters θ as the agent interacts with the
environment. To maintain stability, PPO constrains updates to stay within a small region around the
current policy. Given a batch of trajectories collected under parameters θk, the updated parameters
θk+1 are computed by maximizing the clipped surrogate objective:

θk+1 = argmax
θ

Et

[
min

(
lt(θ) Ât, clip (ρt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (21)

where lt(θ) =
πθ(at|st)
πθk

(at|st) is the probability ratio between the new and old policy, Ât is the estimated
advantage function at time t (GAE), and ϵ is a small hyperparameter that bounds the range of policy
updates.

In the strip imaging scheduling problem, actions occur over variable time intervals and an infinite
time horizon is considered, as the mission duration T is assumed to be large. PPO is implemented
using RLlib. The infinite-horizon formulation is handled by truncating episodes and using RLlib’s
default bootstrapping mechanism to estimate the value function beyond the truncation point. How-
ever, RLlib does not natively support variable time intervals in its advantage estimation. To address
this, we adapt the GAE to account for elapsed time between decisions, using the value function
V (st) defined previously for the semi-Markov setting [Eq. 20] :

Ât =
∞∑
i=0

(λγ)i
i∑

j=0

∆t+j

(
rt+i + γ∆t+i+1V (st+i+1)− V (st+i)

)
, (22)

where λ ∈ [0, 1] is the GAE’s decay parameter, γ ∈ [0, 1] is the discount factor, ∆t+j is the time
duration between steps t + j and t + j + 1, rt+i is the reward at time t + i, and V (st+i) is the
semi-Markov value function at state st+i.

This formulation ensures that rewards and value estimates are discounted according to the actual
time elapsed rather than the number of steps, making PPO applicable to variable-time decision
processes.

Shielding For RL

Shielded RL, originally proposed by Alshiekh et al. in Reference 16, enhances the safety of RL
agents by incorporating a decision-making mechanism called a shield, which enforces formal safety
guarantees during policy execution. Two primary shielding mechanisms exist: one that is integrated
directly into the training process and another applied post-training. In this work, we adopt the latter
post-processing approach, where the shield monitors each action selected by the trained policy
based on the current observation, allowing safe actions to proceed while replacing unsafe ones with
predefined safe alternatives. This choice is motivated by prior findings17 suggesting that separating
the shield from the training process often results in improved interaction between the learned policy
and the shielding system, as the policy is trained freely in an unconstrained environment. In this
work, safety considerations arise due to the limited onboard battery energy. To address this, a
simple, hand-crafted shield is employed, which selects the charging action whenever the battery
level falls below a predefined threshold, denoted zminsafe, defined as follows:

zminsafe =


zfloor − (tcEcl − toEcl)żdraw − toEclżgain if not in eclipse and z > zfloor

zfloor − tcEclżdraw if in eclipse
zfloor else

(23)
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This expression maintains the battery level above zfloor, a lower bound considered sufficient to
perform any imaging task. A higher threshold is enforced as an eclipse approaches to ensure that
the agent can survive the eclipse duration without depleting its energy. The term żgain represents
the passive charging rate of the satellite during sunlight, while żdraw denotes the estimated energy
consumption rate of the satellite.

Table 2: Simulation Parameters

Parameter Value Parameter Value
Spacecraft Properties Steering Controller
(a, i, e) (600 km, 45◦, 0) (K1,K3, ωmax) (3, 10, 5 rad s−1)

Other Orbital Parameters Randomized Imaging Requirements
m 330 kg σmax 0.05
I [121, 98, 82] kgm2 σ̇max 0.1 rad s−1

bmax 1.44× 106Ws θmin 10◦

b0 [0.4, 0.6] bmax Request Properties
pbase 1W [Lmin, Lmax] [500, 1000] km

pinst 20W [vacq,min, vacq,max] [2, 4] km s−1

ηrw 0.5 [Nmin, Nmax] [1000, 2000]

Cpanel 0.2 Shield Properties
Apanel 2m2 zfloor 0.2 bmax

n̂panel [0, 1, 0] żdraw bmax per orbit
Tcharge 5min żgain 0.5 bmax per orbit
umax 1Nm

RESULTS

Training Environment

The training environment is configured using the simulation parameters listed in Table 2 and train-
ing hyperparameters in Table 3 . Unlisted values default to standard settings in BSK-RL and RLlib
v2.6.3. Training was conducted on the University of Colorado’s Research Computing (CURC) in-
frastructure, using 32 cores and up to 20M steps. In total, three different policies were trained,
each using a distinct discrete set of allowable pre-imaging time values, denoted as Tpre. Policy π1
was restricted to a single value, with Tpre = {60} seconds. Policy π2 was allowed to choose be-
tween two options, with Tpre = {10, 60} seconds. Policy π3 was trained with the most flexibility,
selecting from Tpre = {10, 35, 60} seconds. This incremental expansion in the action space was
designed to assess the impact of pre-imaging timing flexibility on agent performance and overall
imaging efficiency. All policies were trained without any shield mechanisms, meaning agents were
required to learn avoiding low battery states without external constraints during training. Following
training, a safety shield was applied only to the best-performing policy to enforce operational safety
guarantees.
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Table 3: Training Hyperparameters

Parameter Value
Neural network 2 layers with 2048 neurons each
Number of workers 32
Learning rate 3.10−5

Discount factor 0.9999
Training batch size 3000
Number of SGD iterations 10
GAE’s decay parameter λ 0.95
Gradient clipping 0.2
PPO clipping parameter 0.5
N 25

In Distribution Performance Evaluation

The in-distribution performance of the trained policies is evaluated, meaning the same parameters
as those applied during training are used. In particular, the evaluation time horizon is fixed to five
orbits, consistent with the duration of the training episodes.

To analyze the impact of request density on policy performance, the total number of imaging
requests, denoted |R|, is varied across five values: 1000, 1250, 1500, 1750, and 2000. During
training, |R| is randomly sampled within the range [1000, 2000] for each episode to ensure that the
learned policy generalizes across different request densities. For each combination of policy π and
request set size |R|, 200 test cases are executed to ensure statistically reliable comparisons. The
average cumulative reward, along with the average values of relevant characteristics of the selected
strips—namely acquisition duration (given by l · vacq, and not including Tpre), target priority, and
attitude angular error with the strip’s starting point before starting the task—are reported in Figure 3.
As a baseline, the average values of these strip characteristics are also shown assuming the policy
selects strips randomly.

For all policies, the average cumulative reward consistently increases as the request density
grows. This behavior aligns with expectations as a higher density provides a broader set of requests
that satisfy the view-angle constraint. With more options available, the policy can become increas-
ingly selective. However, the way this selectivity is expressed varies across policies, depending on
the structure of the available pre-imaging time set Tpre. Specifically:

• Policy π1, restricted to a fixed 60 seconds pre-imaging duration, adapts to increasing request
density by prioritizing strips with higher target value and shorter acquisition times. While
it cannot shorten pre-imaging, it reduces total imaging time by selecting shorter acquisi-
tions—allowing more strips to be imaged. The average angular error remains lower than
that of the random policy, as strips requiring excessive slews are avoided. However, this error
does not decrease with higher request density, indicating the policy prevents maneuvers that
exceed the 60-second limit but gains no advantage from further reducing angular error once
the fixed pre-imaging time allows completion of the necessary slew.

• Policy π2, which allows two pre-imaging durations (10 and 60 seconds), exhibits a different
strategy. Like π1, it prioritizes strips with higher target values. However, it also reduces the
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Figure 3: Impact of request density on π1,π2,π3.

average angular error as request density increases. This indicates an effort to enable the use of
the shorter 10 seconds pre-imaging option when feasible, even at the cost of selecting strips
with slightly longer acquisition durations.

• Policy π3, which offers the most flexibility with three pre-imaging durations (10, 35, and
60 seconds), adopts a more balanced strategy. It simultaneously improves target value and
reduces both acquisition duration and angular error. This enables π3 to reduce total imaging
time through a combination of shorter acquisition tasks and more efficient slews.

All policies tend to favor strips with higher target values and aim to reduce the total duration
of imaging tasks—either by shortening the acquisition phase, the pre-imaging phase, or both. This
reflects the agent’s awareness—enabled by the semi-Markov formulation—that each task has a vari-
able duration, and that reducing this duration allows more strips to be scheduled within the available
time window.

To further investigate policy behavior and how they accommodate imaging and charging con-
straints, 200 evaluation episodes are run per policy, each with a random number of imaging requests
within the range [1000, 2000]. The average episode time share across activities is reported in Fig-
ure 4. Policy π2 exhibits the lowest average pre-imaging duration per strip (25.0 s/strip) for success-
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Figure 5: Survival rate per orbit for π3 and its variants.

ful tasks, indicating frequent use of the shorter 10 seconds option. However, this aggressive strategy
leads to the highest share of failed tasks—5.9% of total episode time, compared to only 2.1% for π3
and 1% for π1 . While policy π2 wastes time due to frequent failed attempts resulting from overly
short pre-imaging durations, policy π1, which uses a fixed 60 seconds pre-imaging window, tends
to over-allocate slewing time. This results in the lowest time share for successful imaging—74.1%
of total episode time, compared to 80.7% for π2 and 81.9% for π3. Policy π3 has a similar suc-
cessful imaging share as policy π2, achieving this by reallocating time lost to failures into longer,
more reliable pre-imaging phases. However, despite the similar imaging time share, policy π3 com-
pletes significantly more strips per episode (105.9 vs. 101.9 for π2) by focusing more on reducing
acquisition duration, thereby using the available imaging time more efficiently. All policies exhibit
comparable charging behavior, accounting for approximately 3.5% of the total episode time with
minimal eclipse-related charging time , while achieving a probability of survival exceeding 99.5%
on 5 orbits.

Overall, policy π3, with its balanced strategy, performs best—attaining the highest average cu-
mulative reward across all request densities, as shown in Figure 3. This outcome underscores the
advantages of greater pre-imaging flexibility in supporting effective scheduling decisions.
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Figure 6: Cumulative reward for π3, π3,No-Charging∩ Shielded and π3,Shielded with corresponding
shield inference.

Out of Distribution Performance Evaluation

The in-distribution performance evaluation highlighted policy π3 as the best-performing strategy
achieving a survival probability exceeding 99.5% over 5 orbits. To assess its safety beyond those 5
orbits, out-of-distribution testing is performed by extending the evaluation time horizon.

Policies were trained on 5-orbit episodes, using RLlib’s bootstrapping mechanism at truncation
points to simulate infinite-horizon learning. The ultimate objective is to obtain a safe policy suitable
for deployment over long-duration missions. To analyze the impact of the time horizon on survival
rate, tests are conducted using 50-orbit-long episodes—ten times longer than those used during
training. A total of 200 such episodes are simulated, and the survival rate per orbit is reported in
Figure 5. Policy π3 is compared against three variants: π3,Shielded, a post-training shielded version
of the same policy using the shield defined in Equation (23); π3,No-Charging, a policy trained under
the same conditions as π3 but assuming infinite battery capacity; and π3,No-Charging∩ Shielded, which
combines π3,No-Charging with the post-processing shield. Since π3,No-Charging does not learn active
charging behaviors and relies solely on passive charging, it serves as a baseline for assessing the
influence of battery constraints on both safety and performance. After 50 orbits, the survival rate
of policy π3 drops to 92.5%, while the shielded versions maintain both a survival rate of 100%. In
contrast, π3,No-Charging results in complete failure, with a 0% survival rate.

To compare the performance of π3, π3,Shielded, and π3,No-Charging∩ Shielded, 200 experiments
are conducted for each of five request values: 1000, 1250, 1500, 1750, and 2000. As shown in
Figure 6, π3,Shielded consistently outperforms both alternatives. Compared to the base policy π3,
π3,Shielded performs better primarily because it stays alive longer during long-horizon episodes.
While slightly more conservative—intervening in approximately 2.26% of actions by replacing
imaging with charging when safety thresholds are at risk—the post-processing shield prevents criti-
cal failures. These interventions allow the policy to remain operational and accumulate more reward
over time. Compared to π3,No-Charging∩ Shielded, π3,Shielded also achieves higher performance, es-
pecially under high imaging request densities. This suggests that when the policy is trained with
safety constraints, it learns to select better times to charge.
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CONCLUSION

This paper presents a guidance and control model for strip imaging tasks and explores the use of
DRL to solve the strip imaging scheduling problem. The results show that policies prioritize strips
with high target values and seek to reduce the total imaging duration per strip by shortening the ac-
quisition and/or pre-imaging phases to enable imaging of more strips. Policies with finer granularity
in pre-imaging time choices achieve the best performance, resulting in higher cumulative rewards.
Regarding safety, unshielded policies offer no guarantee against mission loss. The safety shield
effectively prevents critical issues, enabling sustained operation. This suggests that agents can be
trained without safety constraints and later deployed with shields to ensure survivability. However,
policies trained with safety awareness achieve better performance, particularly in scenarios with
higher target densities. Future work will extend the framework to consider partial imaging of strips
and incorporate uncertainties such as cloud cover.
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