
11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

Novel Architecture for Numerical Multi-satellite Simulations

João Vaz Carneiro∗ and Hanspeter Schaub†

This work aims to introduce a new architecture that allows for easy integration of multiple satellites in a
single simulation. The architecture is implemented in Basilisk, an open-source, flight-proven physics and
flight software engine, although the fundamental principles can be applied to any software application. The
new design focuses on modularity, expandability and easy scriptability while maintaining the high-fidelity
and speed features of Basilisk. Modularity is important to make highly specialized simulations, which
includes parameters related to the environment (gravitational bodies, ground locations), but also specific
to each spacecraft (mass properties, attitude control system, flight software modes). Expandability and
scriptability are also key, as one of the goals is to ease the effort of creating simulations with a large number
of satellites. Through an overhauled messaging system, the architecture also allows for easy addition of
homogeneous or heterogeneous satellites with reduced overhead. Throughout this paper, code snippets and
multithreading simulation performance are shown to discuss how the architecture achieves its underlying
objectives of simplicity and performance.
keywords: Innovative technologies for distributed systems, Modelling and Parameterization of Relative
Dynamics, Mega constellations

1. Introduction

As the interest for spacecraft constellations has
been developing over the years, the focus has shifted
from science-oriented projects sponsored by govern-
ment agencies to communications-oriented applica-
tions sponsored by commercial partners. The Star-
link‡ project, which focuses on delivering internet
services to remote and under-served locations, is fi-
nanced by SpaceX and has already launched more
than two thousand satellites, with tens of thousands
in development. Amazon’s Project Kuiper§, while in
an earlier development stage, aims to tackle a simi-
lar problem. Undoubtedly, large spacecraft constel-
lations will become a core part of the spacecraft pop-
ulation in Earth’s orbit. Their successful implemen-
tation requires sophisticated software that can accu-
rately simulate each spacecraft in orbit.

Building a simulation with many satellites can be-
come cumbersome if the software architecture is not
built for multi-spacecraft prototyping. Many soft-
ware packages are able to simulate a single space-
craft with high fidelity and speed, such as AGI’s Sys-

∗Graduate Research Assistant, Ann and H.J. Smead
Department of Aerospace Engineering Sciences, Uni-
versity of Colorado, Boulder (CO), United States,
joao.carneiro@colorado.edu
†Professor, Glenn L. Murphy Chair in Engineering, Ann

and H.J. Smead Department of Aerospace Engineering Sci-
ences, University of Colorado, Boulder (CO), United States,
hanspeter.schaub@colorado.edu
‡https://www.starlink.com/
§https://tinyurl.com/amazonkuiper

tems Tool Kit (STK) [1], or NASA’s General Mis-
sion Analysis Tool (GMAT) [2]. Creating a simu-
lation with multiple satellites brings new challenges.
Usually, the user must manually include and specify
every single spacecraft, which for large constellations
gets increasingly time-consuming and yields cluttered
and hard-to-follow scripts. Moreover, if the architec-
ture is not built with multi-spacecraft simulations in
mind, then it likely simulates every spacecraft in se-
ries. This means that the additional time it takes to
run the simulation will roughly increase linearly with
the number of spacecraft, which becomes a problem if
the goal is to simulate tens or hundreds of satellites at
a time. The new architecture tackles the challenges
that come with multi-satellite simulations, with the
goal of making them simple to set up and maintain,
while using an engineering-friendly Python scripting
interface.

While the focus of this paper is to propose a gen-
eral architecture framework that supports simulations
of multiple spacecraft, the specific software imple-
mentation is also addressed. For this work, the Basilisk
[3] astrodynamics software tool is used to implemented
the architecture and create the example scenarios.
Basilisk is a flight-proven modular mission simula-
tion framework and it is used to set up high-fidelity
simulations. Its modular nature [4] allows for the
simple integration of complex simulation tasks, such
as power generation and consumption, fully-coupled
attitude control devices [5], or orbital perturbations.
Modules are created using C/C++ for rapid execu-

IWSCFF–22 Page 1 of 10

https://www.starlink.com/
https://tinyurl.com/amazonkuiper


11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

tion, while the user interacts and connects modules
using Python, for easy scriptability. The software
implementation of this architecture, as well as all ex-
ample scenarios, are available online and are free to
use¶.

The implementation of this redefined architecture
has been made possible by the addition of the new
messaging system [6] in Basilisk. While multi-satellite
simulations had been created using the old messaging
system with Basilisk 1, the overhauled messaging sys-
tem makes the simulation design substantially easier.
With its peer-to-peer message connections, Basilisk 2
allows the modules to be easily connected upon ini-
tialization, without having the user figure out how
to connect and name modules from a single message
pool.

2. Architecture Design

The goal of the proposed redesign is to create an
architecture that effectively stimulates multiple satel-
lites, while avoiding compromising speed and fidelity.
To that end, this novel framework is based on four
principles: modularity, scalability, parallelization and
scriptability.

2.1 Modularity

In this context, modularity is the ability of a soft-
ware framework to be divided in smaller pieces that
can be joined to create the simulation. It means that
each simulation feature or module is detached from
the other, and multiple modules need to be added to
run the simulation as intended. While this takes a
toll on simulation time, as the modules are run sepa-
rately, it saves on development time.

This is particularly important in the context of
complex spacecraft simulation. Different missions may
require different attitude control systems. Some may
use reaction wheels for their precise pointing charac-
teristics, while other may use control moment gyro-
scopes (CMGs) for their larger torque needs. While
different, both these systems have the same objective
of generating a requested torque for attitude con-
trol. By modularizing the software framework, the
developer is able to quickly switch between each atti-
tude control device, implemented as distinct modules,
without having to overhaul the entire attitude control
system. Basilisk has been built from the ground up
as a modular system, and this work takes advantage
of that structure.

¶http://hanspeterschaub.info/basilisk/index.html

However, for the simulation to run, the individ-
ual modules need to communicate and share infor-
mation with each other. For the attitude control sys-
tem example, this means that the requested torque
from the attitude control module must be passed onto
the attitude control device module (reaction wheels
or CMGs). In Basilisk, the information is shared
through a messaging system, which is discussed in-
depth in section 4.

2.2 Scalability/Expandability

Scalability, or expandability, represents the ability
to increase the number of satellites in a single simula-
tion. This is critical for scenarios with a large number
of satellites, and it is what sets this architecture apart
from usual software designs.

For this work, scalability is achieved by standard-
izing the creation of the class that sets up the simu-
lation environment, as well as the classes responsible
for simulating each spacecraft’s dynamics and flight
software (FSW) routines. The addition of new space-
craft, which is done by creating more instances of dy-
namics and FSW classes, is implemented through a
loop that creates and connects every module neces-
sary for every spacecraft. This way, the user can add
and customize as many spacecraft as needed with no
major changes to the framework.

2.3 Parallelization

Parallelization allows the software to exploit the
architecture of modern CPUs. Most processing units
contain multiple cores, with some cores consisting of
multiple threads. This means that different processes
can be run at the same time using different threads.

The importance of parallelization for multi-spacecraft
simulation is clear. Running each spacecraft’s process
in parallel lessens the otherwise linear increase in sim-
ulation time for an increasing number of satellites.
Simulating each spacecraft in parallel decreases the
simulation time associated with more satellites, al-
though it is limited by the number of available threads.

This parallelization allows for multithreading, which
is when multiple threads are used at the same time
for different processes. Multithreading can have its
drawbacks, such as when two threads read and mod-
ify the same data simultaneously, or when two threads
are not coordinated in time properly. Making a pro-
gram multithread-safe is non-trivial. For this work,
the proposed architecture is built to allow for multi-
threading.

It should be noted that it is not possible to paral-
lelize the dynamics of a single spacecraft, as it con-

IWSCFF–22 Page 2 of 10

http://hanspeterschaub.info/basilisk/index.html


11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

tains strongly coupled nonlinear differential equations.
However, it is possible to run the dynamics of each
spacecraft in separate threads. Thus, with the pre-
sented multi-threaded approach, the simulation speed
itself is not increased, but rather the numerical speed
up is achieved by simulating a large number of space-
craft.

2.4 Scriptability

Scriptability relates to the ease of simulation setup
and development. Performing a simulation with mul-
tiple spacecraft usually implies code repetition, in-
efficient routines and overall hard-to-follow scripts.
Since this architecture is focused on easing the effort
of implementing multi-satellite simulations, the effort
of creating multiple satellites (whether homogeneous
or heterogeneous) is greatly simplified. This allows
the user to focus on adding the necessary modules
to create the intended simulation. Another advan-
tage is that a user can create different classes that, if
implemented correctly, can be changed between each
other in a plug-and-play fashion. For example, two
different environment classes, one around Earth and
another around Mars, can be created and swapped as
easily as changing a single line of code. It also means
that debugging is vastly simplified, as the scripts are
organized per spacecraft and are easier to follow.

In addition, no recompiling is necessary to create
and modify the simulation scripts. The user can add,
connect and change all simulation modules in Python
without having to go through the lengthy process of
recompiling the C and C++ Basilisk files.

3. Architecture Framework

Guided by the goals and constraints expressed in
the previous section, the multi-satellite architecture is
now presented. The architecture’s diagram is shown
in Figure 1.

There are four classes: Master, Environment (Env),
Dynamics (Dyn) and Flight Software (FSW). Only
one Master and Environment classes exist, while there
exist as many Dynamics and Flight Software classes
as the number of satellites in the simulation. The
connections between classes are done through mod-
ules taking advantage of the messaging system, which
is used to share information between them.

Analyzing the diagram, the architecture’s paral-
lelization is evident. The Dynamics and Flight Soft-
ware classes of each spacecraft are independent, so
they can be run simultaneously, saving on computa-
tion time. This architecture is also easily expandable

Dyn #1

Env

FSW #1

Dyn #2 FSW #2

Dyn #N FSW #N

... ...

Master

Fig. 1: Multi-satellite architecture diagram. Solid ar-
rows represent information sharing through mes-
sages. The dashed arrow below the Master class
corresponds to the functions that initialize and ac-
cess all classes. The dashed box encompasses all
the simulation classes, which contain the modules
that are run during the simulation.

by simply attaching more Dyn and FSW classes ac-
cording to the total number of satellites.

3.1 Master Class

The Master class contains the methods that cre-
ate and manage the other three classes. This class is
created in the scenario script, where these methods
can be called for initialization and retrieval. To at-
tach the Environment class to the simulation, see the
code snippet in Listing 1.

In Listing 1, BSK EnvEarth is a Python script that
contains the Environment class, with its modules in-
side. Similarly, the Dynamics and Flight Software

Listing 1: Attach an Environment model to the sim-
ulation.

self.set_EnvModel(BSK_EnvEarth)

IWSCFF–22 Page 3 of 10



11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

Listing 2: Attach Dynamic and Flight Software mod-
els to the simulation.

self.set_DynModel([BSK_MultiSatDyn]*numberSpacecraft)

self.set_FswModel([BSK_MultiSatFsw]*numberSpacecraft)

Listing 3: Attach heterogeneous Dynamic and Flight
Software models to the simulation.

self.set_DynModel([BSK_MultiSatDyn1, BSK_MultiSatDyn2,

BSK_MultiSatDyn3])↪→

self.set_FswModel([BSK_MultiSatFsw1, BSK_MultiSatFsw2,

BSK_MultiSatFsw3])↪→

classes are attached through the function call shown
in Listing 2.

Again, BSK MultiSatDyn and BSK MultiSatFsw are
Python scripts that contain the Dynamics and Flight
Software classes, respectively. We see that the argu-
ment of the methods shown is a list of Dyn or FSW
classes. In this case, all spacecraft are the same,
which is why a list of identical classes is added as
an input. If a heterogeneous set of satellites is to be
implemented, the list would contain different classes
in the proper order, as shown in Listing 3. The user
would have to create each class to suit the simulation
requirements.

It is also in the Master class where the methods
that access the the Env, Dyn and FSW classes are
implemented. Within the scenario script, the func-
tions in Listing 4 are called to retrieve and access all
classes and its modules.

3.2 Environment Class

The environment class contains modules that are
not spacecraft-specific, but that instead describe the
simulation environment. The gravity field is modeled
within this class, along with atmospheric perturba-

Listing 4: Retrieve simulation classes.

EnvModel = self.get_EnvModel()

DynModels = self.get_DynModel()

FswModels = self.get_FswModel()

tions such as the effect of drag through the use of an
atmospheric density model. Ground stations for com-
munications or imaging are also added to this class.

Since this class is not spacecraft specific, it is shared
among all spacecraft classes. This also means that
the user can readily change between different envi-
ronments, such as the Martian or Cislunar environ-
ments, without having to make changes to each space-
craft. However, one must be careful about setting
each spacecraft’s initial conditions: a reasonable orbit
around the Moon might not work around Earth. To
solve this, the spacecraft’s initial conditions are set
using orbital elements with a canonical semi-major
axis value, i.e. the semi-major axis is set to be x times
the main body’s radius, with the constraint that the
orbit’s periapsis must be larger than the main body’s
radius.

3.3 Dynamics Class

The dynamics class contains the modules that recre-
ate the spacecraft and its components, which means
one must exist for each spacecraft. While in most
cases all spacecraft are identical, there may be situa-
tions where the simulated spacecraft may have to be
different. This might be the case for a mission where
a single mother ship centralizes the information com-
ing from several smaller spacecraft. The proposed
architecture allows for both situations to be simu-
lated, and it is up to the user to configure different
dynamics classes if a heterogeneous constellation is
required.

It is within the dynamics class that critical sub-
systems are implemented. This includes the power
system, which contains solar panels for charging en-
ergy and batteries for storing it. Components that
require energy, such as attitude control devices, trans-
mitters or cameras are also integrated into the power
system, so that the energy consumption and genera-
tion is properly accounted for. The attitude control
system is also implemented in the dynamics class,
and it includes reaction wheels, control moment gy-
roscopes and thrusters. It should be noted that only
the dynamics of these attitude control devices, and
the corresponding effect on the spacecraft, are sim-
ulated within this class. The control law is part of
the flight software class. Finally, the modules related
to the instrument system, which includes imagers,
transmitters and data buffers, are also included in
the dynamics class.

IWSCFF–22 Page 4 of 10



11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

3.4 Flight Software Class

The FSW class contains the logic that would go
into the on-board computer of the spacecraft. While
the environment and dynamics classes simulate phys-
ical phenomena, the flight software class includes the
modules that make decisions based on the spacecraft’s
position, velocity, attitude, etc. It contains the code
that would be uploaded to the real spacecraft’s com-
puter, contains the instructions and logic to make the
spacecraft meet its mission objectives.

It is within the FSW class that the attitude modes
are set, which dictate where the spacecraft should
point. These may include pointing the solar panels at
the Sun for battery charging (Sun pointing), pointing
the antenna at the Earth for downlinking data (Nadir
pointing), or pointing a sensor at a target on the
planet’s surface for imaging (target pointing). This
class also contains the logic for the attitude control
system. Given a reference attitude and attitude rate,
a required torque is computed and mapped onto the
attitude control devices (reaction wheels, control mo-
ment gyroscopes, thrusters), which drives the space-
craft’s attitude to the reference attitude.

Beyond attitude control, relative orbit control is
also implemented, which calculates the necessary burns
to enable specific formation flying maneuvers. Both
the attitude and relative orbit control laws are de-
rived in Schaub and Junkins [7].

4. Messaging System

Due to its modular nature, a messaging system
is necessary for this architecture. Its purpose is to
transfer information from one module to the other,
so that all modules have the most up-to-date infor-
mation at run time. For the simulation to work prop-
erly, the messaging system needs to be fast while still
retaining accuracy in the information it delivers be-
tween modules. Another important aspect is its user-
friendliness: the more intuitive the system, the faster
the user can connect modules without making mis-
takes.

Basilisk’s messaging system uses messages, which,
at their core, consist of C/C++ structures. This ar-
chitecture would not have been possible without sub-
stantial modifications to the messaging system in the
release of Basilisk 2.0. An explanation of the new
messaging system is given by Carnahan, Piggott and
Schaub [6].

The old messaging system relied on a message pool.
All messages were stored in a container and were
available to all modules. A particular module would

pub subMsg System

msg 1

msg 2

msg 3

msg 4

msg n

Module 1

Module 5

Module 3

Module 4

Module 2

Fig. 2: Old messaging system diagram. Modules read
and write messages in an universal message pool,
which is categorized by message name.

grab the correct message by searching the container
for the message by its name. The name was auto-
generated, which meant that the message connections
were implicit: the user did not have to set a name for
every message, and the modules were developed in
such a way that they would search for the message
with an expected predefined name. For example, the
attitude control device module would expect an input
message with the same name as the output message of
the attitude control law module. A diagram showing
the structure of the old messaging is shown in Fig-
ure 2. The advantages of the old messaging system
included the speed of the connections, simplicity and
readability of message identifiers to users and implicit
message connections, where the user did not need to
worry about connecting the correct messages between
modules [6].

However, the system had fundamental challenges,
which were particularly evident in multi-spacecraft
simulations. First, because multiple instances of the
same module were created, the user had to manually
change the name of each affected message for the con-
nections to be properly set. Take a simulation of 3
spacecraft, each with an attitude feedback controller
and a set of three reaction wheels: the user would
have to manually assign a name for each output mes-
sage of the three attitude feedback controller mod-
ules, so that the required torque is passed onto the
correct set of reaction wheels. It is easy to imagine
how cumbersome this would have become for a sim-
ulation of tens of satellites. Moreover, typos in mes-
sage names would have made modules unable to ac-
cess the proper data, requiring the user to go through
a complicated troubleshooting process. The system
also had no way to verify that the proper message
type was being connected, which could have lead to

IWSCFF–22 Page 5 of 10



11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

Input Msg

Basilisk Module

Output Msg

Fig. 3: New messaging system diagram. Messages
are subscribed to a specific module in a peer-to-
peer system.

the simulation running with incorrect information if
it was not properly configured. The false configura-
tion issues become stronger as the number of satellites
increases. Therefore, an overhaul to this system was
implemented.

Instead of a message storage container, the new
system uses message classes. Messages are now ex-
plicitly connected between modules by the user, which
tackles most of the drawbacks of the old system. There
is no need to name the messages anymore, which
takes care of the naming problem the old system had.
Moreover, connecting messages between modules al-
low for strong type checking, as the message identifier
is now a class instead of a string. When the simula-
tion is initialized, each module verifies that the input
messages correspond to the expected type; if not, an
error flag is thrown and the user can quickly trou-
bleshoot the problem. A diagram for the new mes-
saging system structure is shown in Figure 3.

Most importantly for this architecture, the new ex-
plicit connections allow for much easier expandability.
There is no need anymore to name messages for in-
stances of the same module. Moreover, it is possible
to automatically connect messages between modules
in a loop for every spacecraft instance, which makes
creating simulations of hundreds of satellites as easy
as simulations of a single one.

5. Process and Module Design

To understand the simulation flow, process and
module design is important. The process architec-
ture for Basilisk is explained in depth in [3]. A sim-
plified diagram of this process architecture is shown
in Figure 4.

Processes (or task groups in [3]) correspond to the
top-level structures in Basilisk. They can contain
one or more tasks, which contain individual modules.
Modules within a task run at the same integration

Process

Task

Module i

Module i+1

Fig. 4: Basilisk process architecture.

rate. This allows the user to group modules that re-
quire similar time step fidelity with each other. For
example, attitude control devices should be updated
more frequently due to their dynamics, while orbit
propagation is usually less dynamic. To stop running
the modules within a task, a task can be disabled.

For this work, each class contains its own process.
The environment and dynamics processes (one per
spacecraft) only contain one task, as all modules can
be updated at the same rate and will never be dis-
abled. However, each FSW process contains multiple
tasks associated with each flight mode. This hap-
pens because when a flight mode is active, all others
should be disabled. When running the scenario us-
ing multithreading, each process is assigned to a sin-
gle thread. It is not possible to separate and assign
different tasks within a process to different threads.
Nonetheless, more than one process can run within
each available thread.

For the simulation to run as intended, the order
of initialization and execution are very important.
Wrong initialization of the simulation classes can lead
to modules trying to connect messages to other mod-
ules that do not exist, as they have not been cre-
ated yet. Poor execution order leads to modules hav-
ing mismatched and potentially outdated informa-
tion, which can impact the guidance and control al-
gorithms.

For this architecture, the initialization and execu-
tion orders are identical. This is because the flow of
information dictates both how the modules are cre-
ated, but also how they are updated at each time
step. The modules that do not depend on other to
run are created/updated first, and the ones with the
most dependencies are last in line.

Following that hierarchy, the environment class is
the first to be initialized and updated. It contains
modules that compute the position and velocity of
the gravitational bodies, the density of the atmo-
sphere or even the position of ground stations. All

IWSCFF–22 Page 6 of 10



11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

these modules do not depend on the spacecraft, and
therefore have no external dependencies. The grav-
itational bodies’ information is drawn from a cata-
logue, the density of the atmosphere follows a statis-
tical model, and the position of ground locations can
be calculated from initial conditions and the planet’s
rotation.

The dynamics class is updated next. Some mod-
ules used are self-contained and do not need informa-
tion from the environment class. For example, the
attitude is propagated using the spacecraft’s previ-
ous attitude, as well as its inertia and the dynamics
from attitude control devices such as reaction wheels.
However, the environment modules do influence some
of the dynamics modules. Orbit propagation is done
in the dynamics class, and it depends on where the
gravitational bodies are located and what their prop-
erties are. Therefore, this class directly depends on
the environment class modules.

The final class to be updated is the Flight Soft-
ware. The FSW class contains the modules that are
most dependent on the other classes: ground loca-
tions for tracking and spacecraft attitude for the con-
trol law are examples of this. However, the FSW class
can have some effect on dynamics modules. For ex-
ample, given the current and reference attitudes, one
FSW module uses a control law to request a desired
torque. This torque is mapped onto the attitude con-
trol devices, which impacts their dynamics. However,
these devices are simulated within the dynamics class.
This can potentially create problems, as the dynam-
ics have already been updated once the FSW modules
are run. Ultimately, this is not a problem because the
information passed from FSW to the dynamics class
only needs to affect the simulation at the next time
step, when the Environment-Dynamics-FSW loop is
run once again.

With multiple spacecraft, this execution order be-
comes even more important. All dynamics classes are
initialized and run before any FSW classes, which are
updated afterwards. This is to ensure that all FSW
classes have the most up-to-date information about
the spacecraft’s properties. While most FSW mod-
ules concern their own spacecraft, there are times
where the information regarding other spacecraft is
used. Suppose a constellation of satellites is set to do
science on Earth. Depending on the current science
objective, the satellite formation might take different
shapes, such as a string of pearls or a double ech-
elon. Assuming that there is a chief satellite, the
other spacecraft must receive information about its
position and velocity to maintain or change from one

x [km]

6000
3000

0
3000

6000

y [
km

]

6000

3000

0

3000

6000

z [
km

]

6000

3000

0

3000

6000

Spacecraft Inertial Orbits

Spacecraft 0
Spacecraft 1
Spacecraft 2

Fig. 5: Orbits for a three-spacecraft simulation
around Earth.

Listing 5: Setup for a simulation around Earth.

self.set_EnvModel(BSK_EnvironmentEarth)

self.set_DynModel([BSK_MultiSatDynamics]*numberSpacecraft)

self.set_FswModel([BSK_MultiSatFsw]*numberSpacecraft)

formation shape to the other. Therefore, it is critical
that the FSW classes of each deputy satellite have
the updated information regarding the dynamics of
the chief, and potentially other in the constellation.

6. Numerical Simulations

6.1 Example Scenario

As an illustrative example of the proposed archi-
tecture’s capabilities, a three-spacecraft simulation
around low-Earth orbit is created in Basilisk. The
inertial orbits of all spacecraft are shown in Figure 5.

Here, an environment class with Earth as the main
gravity body is added to the simulation. All space-
craft are homogeneous, which means they have the
same dynamics and FSW classes. The code for the
class setup is shown in Listing 5, where the number
of spacecraft is set to numberSpacecraft = 3.

Let us now change the main gravity body to Mer-
cury. Assuming an environment class with Mercury
as the main body exists and is properly setup, chang-

IWSCFF–22 Page 7 of 10



11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

Listing 6: Setup for a simulation around Mercury.

self.set_EnvModel(BSK_EnvironmentMercury)

self.set_DynModel([BSK_MultiSatDynamics]*numberSpacecraft)

self.set_FswModel([BSK_MultiSatFsw]*numberSpacecraft)

x [km]

6000
3000

0
3000

6000

y [
km

]

6000

3000

0

3000

6000

z [
km

]

6000

3000

0

3000

6000

Spacecraft Inertial Orbits

Spacecraft 0
Spacecraft 1
Spacecraft 2

Fig. 6: Orbits for a three-spacecraft simulation
around Mercury.

ing the environment requires little effort. In fact, the
setup in the scenario script is almost identical to the
one with the Earth environment, as shown in List-
ing 6

The inertial orbits for this scenario are shown in
Figure 6. The scale of this plot is purposely the same
as the one Figure 5 to show the different size of Mer-
cury and, therefore, of the satellite’s orbits. This
happens because the spacecraft’s initial conditions
are set through orbital elements, with the major axis
being proportional to the main body’s equatorial ra-
dius. This allows the user to freely change the gravity
body without worrying about the orbits intersecting
the planet, keeping them in the low orbit regime.

For the final example, the environment class is set
back to Earth as the main body. The number of
spacecraft is increased to six, which is done through
setting numberSpacecraft = 6. With no other change,
a six-satellite simulation is created, together with dy-
namics and FSW modules for each spacecraft instance.

x [km]

6000
3000

0
3000

6000

y [
km

]

6000

3000

0

3000

6000

z [
km

]

6000

3000

0

3000

6000

Spacecraft Inertial Orbits

Spacecraft 0
Spacecraft 1
Spacecraft 2
Spacecraft 3
Spacecraft 4
Spacecraft 5

Fig. 7: Orbits for a six-spacecraft simulation around
Earth.

Listing 7: Initial conditions loop.

for i in range(self.numberSpacecraft):

self.oe.append(orbitalMotion.ClassicElements())

self.oe[i].a = 1.1 * EnvModel.planetRadius +

1E5*(i+1) # meters↪→

self.oe[i].e = 0.01 + 0.001*i

self.oe[i].i = 45.0 * macros.D2R

self.oe[i].Omega = (48.2 + 5.0*i) * macros.D2R

self.oe[i].omega = 347.8 * macros.D2R

self.oe[i].f = 85.3 * macros.D2R

This includes attitude control system, power system,
etc. The orbits for this scenario are shown in Fig-
ures 7. Since the initial conditions are set in a loop
for all spacecraft, the software is able to adapt to any
number of spacecraft that the user intends to simu-
late. This loop is shown in Listing 7.

6.2 Multithreading Performance

To show how the parallelization impacts perfor-
mance, simulations using single and multiple threads
are run with an increasing number of satellites. Per-
formance is measured through the simulation time,
which accounts for all initialization routines, as well
as the simulation itself. The results are shown in Fig-
ure 8.

IWSCFF–22 Page 8 of 10



11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

1 2 4 8 16 32

Number of Spacecraft

0

5

10

15

S
im

ul
at

io
n 

T
im

e 
[s

]

Simulation Time Performance

Nominal
Multithreadding

Fig. 8: multithreading performance in terms of simu-
lation time. The time is averaged over 10 runs on
a CPU with 16 threads.

As expected, the multithreading application con-
sistently delivers faster simulation times when com-
pared to the single-threaded scenario. More impor-
tantly, the slope of the multithreading curve is lower
than for the single thread. This means that the ad-
ditional simulation time incurred from adding more
satellites is smaller, which is critical for simulations
of tens or hundreds of satellites.

It should be noted that for this scenario a constel-
lation of satellites is used, as opposed to a formation
of satellites. The difference lies in the fact that no
communications between spacecraft is present, nor is
the shape of the constellation controlled. This means
that there is no data sharing between different space-
craft. While data-sharing is possible to implement
using multithreading, it is harder to do because all
processes must be up to date across all threads be-
fore updating the modules that need that informa-
tion. Failure to do so means that modules (mostly
within the respective FSW classes) will run with in-
correct information. Therefore, the current imple-
mentation is not multithread safe, although there are
plans to implement that feature.

7. Conclusion

The increasing interest in launching formations of
satellites to space requires software architectures that
are capable of simulating multiple satellites. The in-
trinsic challenges of creating a multi-satellite simu-
lation, such as the increased computation time and

effort, mean that the software’s architecture needs to
be built around the ability to simulate multiple satel-
lites at once.

In this work, the underlying principles of the ar-
chitecture design (modularity, scalability, paralleliza-
tion and scriptability) are presented to justify the
design choices made. The architecture framework is
presented, aiming to solve the drawbacks of a multi-
satellite simulation. While the architecture is imple-
mented around the Basilisk software tool, it is framed
in a general enough way to be applied to any other
software application.

The challenge of information sharing between dif-
ferent modules is tackled using the new messaging
system, which is based on a peer-to-peer message con-
nections. This system, combined with the proposed
process and module design, is used to guarantee that
each module has the most up-to-date data at each
iteration.

The example scenarios show the ease of changing
the simulation parameters after the architecture is
put into place. This ease of scriptability is impor-
tant when different simulation parameters are to be
evaluated, as it speeds the process of changing the
environment or the spacecraft itself. Although still
in early development, the multithreading capabilities
show promising speed increases, with the most no-
table changes when the number of simulated satellites
is greatest.

8. Acknowledgments

Part of this research was supported under the NASA
STTR Phase 1 grant No. 80NSSC21C0117.

References

[1] AGI. Systems tool kit (stk). http://www.agi.

com/products/stk, April 2022.

[2] NASA. General mission analysis tool.
https://opensource.gsfc.nasa.gov/

projects/GMAT/index.php, April 2022.

[3] Patrick W. Kenneally, Scott Piggott, and
Hanspeter Schaub. Basilisk: A flexible, scalable
and modular astrodynamics simulation frame-
work. Journal of Aerospace Information Systems,
17(9):496–507, Sept. 2020.

[4] Cody Allard, Manuel Diaz-Ramos, Patrick W.
Kenneally, Hanspeter Schaub, and Scott Piggott.
Modular software architecture for fully-coupled

IWSCFF–22 Page 9 of 10

http://www.agi.com/products/stk
http://www.agi.com/products/stk
https://opensource.gsfc.nasa.gov/projects/GMAT/index.php
https://opensource.gsfc.nasa.gov/projects/GMAT/index.php


11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

spacecraft simulations. Journal of Aerospace In-
formation Systems, 15(12):670–683, 2018.

[5] John Alcorn, Cody Allard, and Hanspeter
Schaub. Fully coupled reaction wheel static and
dynamic imbalance for spacecraft jitter modeling.
AIAA Journal of Guidance, Control, and Dynam-
ics, 41(6):1380–1388, 2018.

[6] Scott Carnahan, Scott Piggott, and Hanspeter
Schaub. A new messaging system for basilisk. In
AAS Guidance and Control Conference, Brecken-
ridge, CO, Jan. 30 – Feb. 5 2020. AAS 20-134.

[7] Hanspeter Schaub and John L. Junkins. Analyti-
cal Mechanics of Space Systems. AIAA Education
Series, Reston, VA, 4th edition, 2018.

IWSCFF–22 Page 10 of 10


	Introduction
	Architecture Design
	Modularity
	Scalability/Expandability
	Parallelization
	Scriptability

	Architecture Framework
	Master Class
	Environment Class
	Dynamics Class
	Flight Software Class

	Messaging System
	Process and Module Design
	Numerical Simulations
	Example Scenario
	Multithreading Performance

	Conclusion
	Acknowledgments

