





Imagining The Fundamentals of Space Exploration

Prof. Dr. Hanspeter Schaub





# Spacecraft Simulation Challenges





## **Complex Orbital Dynamics**





LAUNCH: CRS-4 MISSION

SPACEX

T+ 00:09:30







#### **Autonomous Algorithm Simulation**

.





#### Navigation





#### **Sensor Processing**

K(); n(); Var c = 1(), a = ", d = per #slider\_shuffle\_number\*).e()); = d. function("check rand && b.splice(e, 1); }
e:"parameter", word:c[g]); . e; t({use\_wystepuje: -1 < e && b.splice(e, void 0); < b,length;c++) 1 C ]

#### Control



#### **Software Challenges**

#### **Monolithic Simulation**



.



How to verify and validate?

How to reuse code?

How to reduce development costs?

How to continually improve?



#### **Academic - Industry Challenges**









#### **New Integrated Collaborations**





Developed a close mission analysis and research collaboration that directly engages graduate students in challenging mission.





# **Basilisk Astrodynamics Simulation Framework**







# **Basilisk Software Architecture (Analysis)**



- Monte-Carlo Capability
- Speeds up to 700-1000x
- Software Realtime Mode
- ISC Open Source License













## **Basilisk Software Architecture (Flatsat)**













#### **Message Passing Interface for BSK Modules**













## Sample Spacecraft Simulation Setup









### **Spacecraft Environment Integration**









## **Monte-Carlo Multi-Processing**

- Ability to run Monte-Carlo simulations with a range of dispersion
- Data is retained between runs
- Takes advantage of multi-core processors and hyper-threading lacksquare















# **BSK Simulation Research**







#### **Momentum Exchange Devices**



#### **Reaction Wheels**

Static Imbalance

Dynamic Imbalance







Control Moment Gyros



#### Double Gimbal Control Moment Gyros

Physics Based Imbalance Modeling

Solved the imbalanced RW spacecraft dynamics in a manner that complies with power rate and angular momentum conservation.





#### **Flexible/Hinged Panel Modeling**



Solved the spacecraft dynamics in a general, closed-form manner for a series of hinged panels.











## **Depletable Mass and Fuel Tank Modeling**







## **GPU Based Solar and Atmospheric Pressure Drag**



#### CAD model with material properties





Use GPU to evaluate forces and torques using custom vertex shaders









Drag forces can be rapidly computed on complex, time-varying geometries at speeds suitable for even hardware in-the-loop scenarios.









# **Distributed Basilisk** or Black Lion







# **Heterogeneous Distributed Simulation Capability**



![](_page_21_Picture_2.jpeg)

![](_page_22_Picture_0.jpeg)

# **Basilisk Visualization**

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

# **Basilisk Software Architecture (Analysis)**

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

- Monte-Carlo Capability
- Speeds up to 700-1000x
- Software Realtime Mode
- ISC Open Source License

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Figure_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)