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Electrostatic detumble and electrostatic actuation technologies are currently con-
sidered for challenging space missions including satellite servicing, satellite tug-
ging, and active debris removal. These touchless electrostatic actuation applica-
tions capitalize on the servicing craft’s relative position to improve performance,
estimate charging characteristics, or deliver specific orbit element changes. There-
fore, modeling and control of the relative position is of critical importance. This
paper presents an overview of recent formation flying developments in electro-
static actuation with additional developments in estimation of relative position and
charging properties. The benefits of electrostatic attitude control while doing for-
mation flying are analyzed from guidance, navigation, and control perspectives.
Numerical simulations are presented that demonstrate the advantages of a forma-
tion flying perspective.

INTRODUCTION

The Geostationary orbit (GEO) is one of the most valuable Earth orbiting regions requiring op-
erators to maintain tight orbital slots and adhere to end-of-life practices to protect assets insured
over 13 Billion US dollars.1 Despite these practices, some uncontrolled objects still threaten con-
tinued operation in GEO motivating servicing or debris removal strategies.2 Touchless methods
are of greatest interest for some of the GEO targets because some candidate targets tumble at rates
up to 10 degrees per second far exceeding the capability of mechanical interfaces.3–5 There are a
variety of proposed methods for soft docking or flexible interface on a target object; most notably
harpoons and nets.6–8 Most promising are touchless methods of on-orbit actuation with an active
service vehicle. Eddy-current detumble reduces the rotation of the target through the interaction
between eddy-currents generated in the target object and the Earth’s magnetic field.9–11 The Ion-
Shepherd method utilizes the thrust impingement of the servicer craft on the target to reduce rotation
rates.12–14 The touches application considered in this study is electrostatic actuation of the target
craft.

Electrostatic actuation encompasses a diverse range of on-orbit capability from target re/de-
orbiting, electrostatic structure inflation, active and assisted debris detumbling, and the opportu-
nity for non-Keplerian relative orbits. Electrostatic actuation of spacecraft has been explored as
early as the 1960s developing both the understanding of charging dynamics and on-orbit uses such
as structure inflation.15, 16 Continued work explores the effect of Lorentz force on a single Earth-
orbiting satellite.17, 18 Several authors have gone further to explore the use of electrostatics for
formation flying of multiple craft in non-Kelperian orbits.19–22 Earlier work explores charged for-
mation flying with Coulomb debris tug trajectories23, 24 and use Coulomb and Lorentz forces.25–27
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Figure 1. Electrostatic actuation technology enabling diverse service mission profiles.

In addition, electrostatic actuation with a passive object is being considered for large GEO debris
mitigation.24, 28–30 Electrostatic detumble builds upon these electrostatic actuation developments to
provide an active detumble capability. Specifically, Reference 15 shows that the Geosynchronous
Orbit environment is a prime candidate region where space plasma conditions enable electrostatic
interaction across 10’s to 100’s of meters requiring only Watt-levels of power. Reference 31 first
introduced how electrostatic charging can be controlled to apply torques on a spinning debris object
without requiring physical contact as shown in Figure 1.

Formation flying is a critical component of electrostatic actuation because the servicer craft oper-
ates within tens of meters of the target. At such ranges, formation flying formulations present more
insightful prediction and control. Reference 32 explores how a lead-follower formation removes ad-
ditional angular momentum through systematic change in the relative position. It is shown that the
lead-follower relative orbit completely detumbles the cylinder over the course of 11 days where the
fixed servicer position is in general only capable of partial detumble. Additional developments show
that an optimal servicer relative position can be computed for electrostatic detumble of a cylindrical
target craft.33

The current challenge is to distill the detumble-improving formation flying influences and cap-
italize on relative motion in the guidance, navigation, and control of the servicer spacecraft. The
Linearized Relative Orbit Element (LROE) relative position description is proposed for all forma-
tion flying analysis.34 These elements have been estimated from pose measurements.35 Presented
here are additional estimation formulations that capture electrostatic potential of the target craft in
addition to the relative position. The combination of the LROE kinematic description, estimation
of the relative position and spacecraft charging, and the control of the servicer position are dis-
cussed in the following sections. The insight of formation flying on two representative target craft
is demonstrated through numerical simulations.
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Figure 2. MSM sphere configurations for two target craft geometries.

RELATIVE POSITION IN ELECTROSTATIC MODELING

Modeling the electrostatic interaction faster than real time is required for on-orbit applications of
electrostatic actuation. At present, finite element approaches to modeling this interaction produce
single configuration results on the order of minutes. The Multi-Sphere Method (MSM) represents
the spacecraft electrostatic charging model as a collection of spherical conductors carefully dis-
persed through the body reducing the computation time while retaining accuracy at the operational
ranges considered.36 The two considered models for this work are shown in Figure 2. The vali-
dated MSM approach allows faster than real time computation of electrostatic forces that account
for relative position, charging, and attitude. The time-varying charges are computed from the pre-
scribed electric potentials according to the self and mutual capacitance relationships in Eq. (1),
where k

c

= 8.99 ⇥ 109 N·m2/C2 and q
i

is the charge of each sphere.37, 38
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The term R
i

denotes the radius of the ith conducting sphere and r
i,j

denotes the vector between
the ith and jth conducting spheres. These relations can be collected in matrix form for general
application to all systems.

The force and torque experienced by the orbital target is computed by a summation of the force
contributions between all spheres on the target and those on the servicer.
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Figure 3. Local vertical local horizontal rotating Hill frame for formation flying.39

As seen in Eq. (2a) and Eq. (2b), the position between the consider spheres is included in the r
term. Therefore, the relative position and attitude have strong influences on the force and torque
experienced. Apart from the charge transfer process, the relative motion is a key element of the
servicer control methodology. The final manuscript will present three sections on the formation
flying guidance solutions, the navigation approaches that provide the necessary state information,
and the control algorithms that deliver desired electrostatic interaction behavior.

GUIDANCE OPTIMIZATION USING FORMATION FLYING APPROACHES

The servicer spacecraft is the only controlled craft for this study. As motivated by GEO appli-
cations, a circular reference orbit is utilized for the guidance of the servicer about the target craft.
The relative motion of the considered ROEs are derived in the Hill frame defined in Figure 3. The
Hill frame is defined by H = {ô

r

, ô
✓

, ô
h

} where ô
r

is aligned with the reference craft orbit radius,
ô
h

is aligned with the reference craft orbit angular momentum, and ô
✓

completes the orthonormal
reference frame. The deputy spacecraft motion is described relative to a chief reference craft. Dif-
ferencing the deputy spacecraft and the servider spacecraft positions provides the relative position
vector ⇢ = (x, y, z) between the two craft. The relative position for this work is a represented in
the Cartesian Hill frame in Figure 3. The recently developed Linearized Relative Orbit Elements
(LROEs) provides a methods for optimizing reference trajectories, estimating the relative state, and
controlling the servicer relative position.33–35 The LROE state is extracted from the well known
Clohessy-Wiltshire (CW) equations.40

x(t) = A1 cos(nt) � A2 sin(nt) + xoff (3a)

y(t) = �2A1 sin(nt) � 2A2 cos(nt) � 3

2
ntxoff + yoff (3b)

z(t) = B1 cos(nt) � B2 sin(nt) (3c)

The constants in the CW equations become the otherwise time-invariant LROE state.

oe =
⇥
A1 A2 xoff yoff B1 B2

⇤
T (4)
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The LROEs defined in Eq. (4) are obtained from Cartesian Hill frame states through the inverse
mapping in Eq. (5).

A1 = �(3nx + 2ẏ) cos(nt) + ẋ sin(nt)

n
(5a)

A2 =
(3nx + 2ẏ) sin(nt) � ẋ cos(nt)

n
(5b)

xoff = 4x +
2ẏ

n
(5c)

yoff = �2ẋ

n
+ y + (6nx + 3ẏ)t (5d)

B1 = z cos(nt) � ż sin(nt)

n
(5e)

B2 = �z sin(nt) � ż cos(nt)

n
(5f)

The analytic inverse allows Hill frame measurements to be easily mapped into LROE information
without parameter singularities.34

Variational Equations for Servicer Formation Control and Relative Navigation

Gauss’ variational equation is a classic result that shows how invariants of the unperturbed motion
(i.e. inertial orbit elements) will vary in the presence of a perturbation accelerations.41 This section
derives the analogous variational equations for both the classical and new non-singular LROEs. The
Lagrangian Bracket methodology evolves the invariants of motion present in a dynamical system’s
analytical solution to match the perturbed solution at the prescribed time. Given the inverse map-
pings provided in Eq. (5), the sensitivity matrices are computable. The LROE set oe, otherwise
invariant, evolves according to39

ȯe = [L]�1


@r

@oe

�
T

a
d

(6)

where r is the deputy position vector and a
d

is the disturbance acceleration. The Lagrangian Bracket
matrix [L] is defined by

[L] =
@s

@oe

T

[J ]
@s

@oe
(7)

and [J ] is the symplectic matrix. A full description of the Lagrangian Bracket methodology is
included in Chapter 12 of Reference 39. The equations of motion for the LROEs in Eq. (6) are
simplified by defining the control matrix [B] as

[B] = [L]�1


@r

@oe

�
T

(8)

allowing the LROE equations of motion to assume the following familiar dynamics form expressed
in the local-vertical local-horizontal (LVLH) reference frame.

ȯe = [B]u (9)

This algebraic expression is similar to Gauss’ variational equations for inertial orbit elements which
is heavily used in perturbation and control studies. Applying this derivation approach to the invari-
ants of the linearized relative motion will lead to the desired LROE variational equations. Further-
more, the form developed using Lagrangian Brackets is valid for both the rectilinear and curvilinear
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LROE formulations.34 The advantage of LROEs is evident by the availability of simple feedback
relative orbit control with the specific implementation detailed in Eq. (10).34

u = u
r

� ([B]T [B])�1[B]T [K]�oe (10)

Demonstration of Formation Flying using LROEs

Presented is a numerical analysis assumes Keplerian orbits with a equatorial circular LEO target
with a semi-major axis of a = 7550 km. The simulated inertial state is composed of position
and velocity vectors for both uncontrolled target spacecraft and controlled servicer spacecraft. The
simulations are propagated for a duration of 10 servicer orbits to fully illustrate the near steady state
behavior. The sample LROE reconfigurations considered transfer from a zero offset 2-1 ellipse to a
lead-follower and back to the originating orbit. These cases demonstrate the breadth of the controller
and target specific singularities or coupling effects that render the classical CW parameterization
insufficient. Both transfers utilize full inertial non-linear simulations at an integration time step of
0.5 seconds.

Consider the first reconfiguration from the planar elliptic to leader-follower relative orbit. The
initial and final LROEs for this reconfiguration are:

X0 =
⇥

20 0 0 0 0 0
⇤
T

[m] X
r

=
⇥

0 0 0 0 0 30
⇤
T

[m]

The second case considered is the return back to the initialized planar ellipse where the initial
conditions and reference for the second case are the swapped values for the first case.

The gains in the positive definite matrix [K] for the proposed control are selected via three consid-
erations. First, expanding the ([B]T [B])�1[B]T [K] product, some terms appear as 1/t or 1/t2. The
gain terms preceding these higher order terms are set to zero for simplicity because the influence
depletes as time moves towards infinity. This process eliminates most of the off-diagonal terms. It is
therefore reasonable to assume a diagonal form for [K].34 Second, for a formation to be bounded or
constrained to the desired drift the xoff term must be as exact as possible. Thus, the gain for this term
is set to an order of magnitude larger than the other errors in the LROE feedback. Third, the inverse
LROE mapping in Eq. (5) is sensitive to large accelerations that switch the sign of the velocity too
quickly. Inserting a mean motion multiplicative factor serves to spread the error over an entire orbit.
Inspection of Eq. (5) as well as numerical simulations demonstrate that large shifts and significantly
large gains cause an instantaneous shift in the LROEs obtained by the inverse mapping. Such rapid
shift introduce error measures orders of magnitude larger leading to divergence. The feedback gain
matrix [K] is selected to be

[K] = n · diag([1, 1, 30, 1, 1, 1]) (11)

Remember that the gain on xoff tracking errors is much larger than the other gains to ensure the
bounded relative motion condition (i.e. xoff = 0) is regained quickly.

The transfer between the initial and reference LROEs is dominantly achieved within 3 orbits.
The Hill frame reconfiguration is shown in Figure 4 where the blue signifies the planar ellipse to
lead-follower relative orbit reconfiguration with final point in blue. The return to the planar ellipse
is shown in green with final point in green.

The modified LROEs time history provides additional insight into the reconfiguration. Shown
in Figure 5 are the time histories of the two scaling terms A1 and A2 as well as the along track
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This methodology provides an elegant formulation of the dynamics that accounts for both control
and disturbance perturbations. Furthermore, the use of the LROE state provides clear geometric
insight into the influence and control of the relative position for electrostatic actuation applications.
The final manuscript will demonstrate some of these insights for the considered target spacecraft
geometries.

CRITICAL PARAMETER ESTIMATION USING FORMATION FLYING

Of interest is the availability and quality of the relative state information necessary for comput-
ing relative forces and torques. The estimation of relative position using an LROE state was first
demonstrated with an epoch state filter in the absence of perturbations.35 An extension of this filter
formulation introduces active electrostatic interaction and seeks to compute the charging properties
of the two craft. The filters utilize a pose measurement camera for bearings and range measure-
ments.

Simulating realistic camera noise, a set of two first order Gauss-Markov variables are propagated
and added onto the bearing measurements. In general practice, Gaussian white noise is added to all
measurement types. Therefore the measurements provided to the filter are computed by Eq. (12).

Az = Azexact + �GM

Az + wAz (12a)

El = Elexact + �GM

El + wEl (12b)
⇢ = ⇢exact + w

⇢

(12c)

The inclusion of the Gauss-Markov process more accurately represents the expected performance
of a visual navigation camera and the white noise provides the random noise source. The first-order
Gauss-Markov random walk process is propagated using the form

�̇ = �BGM� + W
k

(13)

where the B matrix provides the time-constant-drive decay of the current variable value. The white
noise process matrix W

k

is a randomly sampled value from a camera specific error covariance W .
The W matrix is the diagonal covariance of the camera white noise with elements wcam. The camera
considered in this study is a 5 mega-pixel, np = 5 ⇥ 106, camera. The noise w

p

is assumed to be
about 0.05 pixels for 3� error. The camera is assumed to have a more narrow field of view with a
half angle of ↵ = 10�. This gives the radian noise magnitude of

wcam =
w
p

np
⇤ 2↵ (14)

Illustration of Unperturbed Rectilinear LROE Relative Motion Estimation

The LROE extended Kalman filter formulation is implemented in a numerical simulation to
demonstrate the feasibility and simplicity of estimating the LROE relative orbit given minimal
sensor information.35 The camera noise is defined in Eq. (14) and has a value of 1.56 ⇥ 10�5

radians and a nominal range error of 2 centimeters at 200 meter range. To improve filter behavior,
a measurement noise under-weighted to 5 times the true noise value as a preliminary filter tuning.
The two satellites are inertially propagated with the full nonlinear two-body dynamics and are cur-
rently without perturbations. However, additional perturbations are easily included given the LROE
dynamics provided by the Lagrangian Brackets.
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Figure 6. Hill frame relative orbit for the drifting relative ellipse example case. Start
at o, finish at o about the chief.

The chief spacecraft is initialized with a semi-major axis of 7500 kilometers and all other orbit
elements as zero. The true relative orbit is initialized with X true and the filter is given the initial
conditions X true + �X . The LROE filter is applied to a drifting target satellite defined by the
Cartesian initial conditions and filter state error as

X true =

2

6666664

A1

A2

xoff
yoff
B1

B2

3

7777775
=

2

6666664

100
0
20

-2.5
200
0

3

7777775
[m] �X =

2

6666664

10
-2
5
-5
-7
2

3

7777775
[m] (15)

The true drifting relative orbit over a simulated full orbit is shown in Cartesian Hill frame coordi-
nates in Figure 6 with the filter cutoff at 0.3 orbits shown in red.

The results of two of the six states are presented here.35 The presented LROE filtering pass only
utilizes 0.3 relative orbits to converge to a reasonable answer. This speed of convergence from large
initial condition errors is advantageous for space-to-space based observations because only fractions
of an orbit are required to achieve the relative orbit estimate.

Estimating Target Spacecraft Potential from Relative Motion

The estimation of the potential on both craft is critical to the control model for electrostatic actu-
ation between spacecraft. The challenge of modeling the electrostatic potential on an instrumented
craft has employed a variety of methods. Most notably, spacecraft potentials have been measured
directly. The present approach demonstrates that the electrostatic perturbations produce sufficient
alterations to the relative orbit to touchlessly obtain the charging behavior of the target craft. Recall
from the LROE variational equations used in determining servicer thrust profiles for relative orbit
reconfiguration may also capture the electrostatic interaction perturbations between the two craft.
The electrostatic interaction is modeled using MSM described in Eq. (2a) and the perturbation ac-
celerations are incorporated into the kinematic equations for the relative motion as described in
Eq. (9).
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Figure 7. LROE estimated state error and covariance envelopes highlighting full
relative motion estimation for LROEs.

An extended Kalman filter (EKF) is selected for the spacecraft electrostatic potential estimation
simulation. The choice of a nonlinear filter enables the nominal LROE set to vary more dramatically
and converge given poor, or absent, a priori. Furthermore, the EKF is a widely used filter and can
be illustrative as a benchmark for the implementation of alternate estimation approaches. The filter
state must include the desired is the spacecraft potential of the target craft. In addition, the relative
motion of the two craft must also be included. Lastly, it is of interest to include the mass of the target
as an uncertain parameter. The proposed filter state is the relative position of both the observer and
target relative to the LVLH origin, the mass of the target, and the electrostatic potential of both craft.

Xdesired =
⇥
oeobs, oetarg, �obs, �targ

⇤
T (16)

The inclusion of both an LROE state for each spacecraft is required because the electrostatic force
will perturb both craft. However, only one of the two craft potentials is observable given relative
separation observations. Examination of the LROE relative position in shows that the relative posi-
tion in the LVLH frame may be described by differencing the Cartesian state which is equivalent to
computing a Cartesian relative position using differential elements.42

�S = oetarg � oeobs (17)

Therefore, the proposed filter estimates the differential relative position state and the target poten-
tial. The servicer/observer spacecraft may obtain estimates of its own potential through probes or
ground-based observations.

Xest =
⇥
�S, �targ

⇤
T (18)

Superb estimation of the LROE relative position is possible using short observational arcs.35 The
change in the relative position due to an electrostatic forces perturbation is much slower than the
convergence of position-only estimation process. When the target craft potential is included in the
rapid measurement updates used for relative position estimation, the extended Kalman filter tends
to diverge. The filter divergence is a symptom of weak observability and computational precision.
A simple solution for correcting this problem is to use longer propagation steps between measure-
ment updates. However, the longer propagation gaps is less desirable for a servicer craft using
the relative position estimate to perform station keeping. Therefore, a two-time-scale filter is pro-
posed. Two-time-scale filters find application in estimation where elements of the dynamical system
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Figure 8. Two-Time-Scale Filter Information Flow

evolve on different time scales. An insightful example of two-time-scale filters is exhibited by the
missile-intercept problem where the target vehicle may change course much faster than the smaller
corrections to missile trajectory.43 The two-time-scale estimation approach is directly applicable
to the fast-evolving relative motion and the longer (or slower) observation of the target spacecraft
electrostatic potential. Consider a nested set of estimation filters where the fast-estimate of the rela-
tive position is in part de-coupled from a longer propagation arc estimation of the proposed state in
Eq. (18). The two-time-scale filter is shown in Figure 8.

The inner estimation filter that estimates the relative position, shown at the bottom of Figure 8,
represents the fast-time estimation of the position. This estimate is achieved through a consider EKF
and provides more frequent position information to the servicer spacecraft. The position estimation
utilizes the current estimate of the target spacecraft potential with a consider covariance supplied by
the outer filter. The outer estimation loop estimates the full state in Eq. (18) using the position from
the inner loop to propagate the intermediate steps between updates.43 This ensures that the outer
filter computes an estimate on the best available relative position.

Illustrative Electrostatic Potential and LROE Estimation Cases

The target spacecraft is initialized with a semi-major axis of 42160 kilometers and all other orbit
elements as zero indicative of a GEO orbit. The true relative orbit is initialized with X true and the
filter is given the initial conditions X true + �X . The LROE filter is applied to a circumnavigating
servicer satellite defined by the Cartesian initial conditions and filter state error as

X true =

2

6666664

A1

A2

xoff
yoff
B1

B2

3

7777775
=

2

6666664

0
-12.5

0
0
0

-21.66

3

7777775
[m] �X =

2

6666664

1
1
1
1
1
1

3

7777775
[m] (19)

The electrostatic potential is set to on the order of kilovolts to provide longer observation arcs.
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Figure 9. Hill frame relative orbit for the circularly projected example case. Start at
o, finish at o about the target.

The 20 kV magnitudes used for electrostatic detumble evolve much faster than an initialized two-
time-scale filter is able to reasonably track. The estimation approach also introduces modeling
error with the consider errors set to only kilovolt levels to provide longer duration measurement
arcs without separating and consider errors on the order of what might be first achieved through
auxiliary measurements and/or modeling.

Ctrue =
⇥
�obs, �targ

⇤
T

= [1900, � 1700] c = [10, � 100] (20)

The true drifting relative orbit over a simulated two orbit periods is shown in Cartesian Hill frame
coordinates in Figure 9 with the filter cutoff shown in red. The presented Hill frame relative orbit
is the basis for the more rapid relative position estimation and the less frequent updates to the target
craft potential. The target craft electrostatic potential estimation is completed by the outer, slower
time scale extended Kalman filter. The outer filter performs one measurement update for every 32
innner loop relative position updates.42 Furthermore, the propagation of the combined LROE and
electrostatic potential state utilizes the inner loop LROE estimate. The outer filter is delayed to
allow the inner filter to converge first. The current realization of the filter waits for 10 estimation
cycles, or 320 measurements, prior to performing the first update of the electrostatic potential. The
start of the estimation and the convergence of the estimate is shown in Figure 10.

The final estimate of the target electrostatic potential differs by ��tag ⇡ 36.4 V down from
the initialized -100 V error.42 The present noise model and process noise, convergence of the co-
variance, and the bias in the servicer potential drive diminishing estimation returns following two
orbit periods. However, the filter estimate of the target craft electrostatic potential is comparable
to the error injected into the servicer craft potential. This filter demonstrates the feasibility of esti-
mating electrostatic potential from relative motion and advantages of the two-time-scale estimation
approach for electrostatic actuation applications.

FORMATION FLYING METHODOLOGY FOR ELECTROSTATIC ACTUATION

Two target geometries are considered. The cylindrical target, representative of a booster upper
stage, provides fundamental insights into electrostatic actuation and links to additional electrostatic
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Figure 10. LROE and target potential estimated state error and covariance envelopes
indicative of full relative motion estimation while refining electrostatic potential.

charging research. The more general box-and-panel target provides key geometry features repre-
sentative of on-orbit satellite configurations.

Consider first the cylindrical target in Figure 2(a). The projection angle formulation sufficiently
captures the detumble-specific attitude behavior for 3-dimensional tumble. Therefore, the projection
angle is employed as a feedback control variable. Noting that the moment of inertia about the torque
axis ê

L

is always perpendicular to b̂1, Euler’s equations of tumbling motion are written in terms of
E-frame components to yield the following three scalar differential equations44

I
a

!̇1 = 0 (21a)

I
t

⌘̇ � I
a

!1�̇ sin� = 0 (21b)

I
t

✓
�̈ sin� � ⌘2

cos �

sin2 �

◆
+ I

a

!1⌘ = L (21c)

In Eq. (21), the angular velocity measures ⌘ and �̇, as well as the proposed electrostatic control
torque L, are defined by

⌘ ⌘ �!2(r̂ · b̂2) � !3(r̂ · b̂3) (22a)

�̇ sin� = �!2(r̂ · b̂3) + !3(r̂ · b̂2) (22b)
L = �Lê

L

= ��f (�) g (�) ê
L

(22c)

where the control torque L is summarized here.

Representing the equations of motion in the projection angle coordinate system E shows that
the control only influences torques around the cylinder’s transverse ê

L

axis. Consistent with the
assumption of an axi-symmetric geometry, there exists no control authority in the b̂1 axis scalar
equation and no cross coupling is present. Thus, !1 is constant for all time. Revising the control
formulation in Reference 31 leads to the new control law f(�1) for regulating the servicer craft
potential, �1:

f(�1) = �sgn

 
nX

m=1

g
m

(�)

!
h(↵�̇) (23)
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where ↵ > 0 is a constant feedback gain and the function h is chosen for stability such that:31

h(x)x > 0 if x 6= 0 (24)

Large tumble rates that tend toward infinity necessitate a limit on commanding a physical poten-
tial. The following h function smoothly limits, or saturates, the control at a maximum achievable
potential.31

h(↵�̇) = f(�max)
arctan(↵�̇)

⇡/2
(25)

This control formulation is derived using the deep space assumption that the relative position
is not changing. However, References 44 and 33 explain that the relative motion contribution to
relative attitude change is sufficiently small to apply a deep space control formulation over most of
the detumble mission. The benefits of formation flying while retaining the more simple deep space
control formulation are shown in the following sections. The deep space control is also re-examined
for non-axisymmetric targets.

Lead-Follower Detumble Performance Improvement - Cylinder

A lead-follower orbit as applied to the electrostatic detumble case consists of the servicer craft
leading the target in the same orbit. The separation distance from center-to-center is 12.5 meters
and can be described by a true anomaly difference or an LROE yoff = 12.5. The relative motion
is regulated using the LROE feedback controller provided in a previous section. The deep-space
detumble control design described in Eq. (23) is able to reduce the deep space angular momentum
of a cylinder with an initial angular velocity magnitude of 2�/sec in about 10 days as shown in the
top row of Figure 11.

Figure 11(a) clearly highlights the predictability of the electrostatic detumble in deep space pro-
vided by momentum analysis. However, shown in Figure 11(b), the angular velocity is reduced but
not eliminated recalling that the symmetrical axis spin !1 will not be removed. Inspection of the
on-orbit case in Figure 11(d) demonstrates the convergence of the !2 and !3 terms with similar
detumble time to the deep space case. The relative motion introduces greater momentum observ-
ability by the servicer leading to more effective momentum removal. As expected, the body frame
angular velocities for the on orbit cases are reduced to nearly zero while the slender axis !1 remains
unaffected. The on-orbit projection angle, Figure 11(c), collapses to 90� defined by the relationship
of the relative motion and angular momentum vector while the deep-space steady-state projection
angle is predicted by the phase-space relationship.

The circumnavigation of the servicer craft about the tumbling cylinder in a simple lead-follower
configuration demonstrates a more complete detumble in the same amount of time. This is at-
tributed to the systematic reconfiguration away from torque-free relative attitudes. Optimization of
the relative orbit may further reduce detumble time and residual momentum.

LROE Relative Orbit Optimization for Detumble Performance

The angular momentum as seen in the relative frame provides key insights for relative orbit
optimization. In the absence of perturbations, the inertially-fixed angular momentum vector H
appears to cone in the rotating local-horizontal local-vertical, or Hill, frame in accordance with
HH = [HN ]HN where H is the relative frame, and N is the inertial frame with coordinate system

14
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rotation matrix [HN ]. This is exemplified in Figure 12 where the target cylinder is the center of the
Hill frame and the servicer position is controlled.

The relative orbit as seen in the Hill frame H = [ı̂
r

, ı̂
✓

, ı̂
h

] is shown in Figure 12 as the blue swept
relative ellipse. The inertially fixed angular momentum vector H precesses through a cone centered
on the Hill frame orbit normal. The precession of this vector is leveraged to inform a relative orbit
that enhances the detumble performance.

Proposed is an optimization cost function that minimizes both the separation distance and min-
imizes the off-perpendicular alignment of the relative position and momentum vector. First con-
sidered is a cost function that utilizes just the torque obtained for the particular relative position
and attitudes about the angular momentum vector. However, this approach introduces local minima
because the cost function relies on a sweep of attitudes and additional discretization assumptions.
Therefore, a more general cost function that does not require instantaneous attitude information is
explored to help reduce the number of local minima. The relative orbit elements are selected as
the optimization state variables because these elements are directly sensed and controlled by the
servicer spacecraft. Any optimization over the detumbling time and fuel usage requires multi-day
GEO simulations at small time scales and thus large computational effort. However the detumbling
time is directly proportional to the relative orbit configuration and inversely proportional to the sep-
aration distance. Thus, a cost function that maximizes the geometrical detumble torque opportunity
and minimizes the separation distance achieves reductions in detumble time. The inclusion of rela-
tive position in the cost function allows the optimizer to trade significant improvements in geometry
for separation distance.

J =
NX

i=0

✓
�1000 ln[|r

i

| � r⇤ + 1] � 10 ln

����
r
i

· H
i

kr
i

kkH
i

k
����+ 1

�◆
(26)

The cost in EQ. (26) is accumulated over a single discretized relative orbit with N time segments.
This approach utilizes 50 uniform time segments. The relative position and angular momentum
are expressed in the Hill frame where r

i

= r(t
i

) and H
i

= H(t
i

) at time t
i

. The minimum
separation distance is prescribed by r⇤. The relative weights are selected to achieve the same order
of magnitude contribution for both separation distance and angle error. Both values are increased
by an order of magnitude to help the convergence characteristics of the fmincon optimizer.

Only positive values of the LROE state are considered. This limits the relative orbit space to only
the positive combinations, however it captures the full space in the cost function. The cosine cost,
from the dot product, is symmetric about ⇡/2 radians. Recall that the angular momentum traces
a cone as viewed in the Hill frame over a single orbit. The cost function seeks a relative position
vector that is perpendicular to the angular momentum vector. This is achieved by the absolute value
of the dot product approaching zero. Consider a relative orbit plane with a normal parallel to the
centerline of the angular momentum cone as shown in Figure 12. Should the servicer reside in
either point separated by a relative orbit phase angle of ⇡, then both points will have equivalent
cost because both points provide equivalent cosine angle magnitudes relative to the instantaneous
angular momentum vector. This allows the LROE state search to be reduced to a subset of all
available LROE combinations where the symmetry can be later invoked to create pairs of optimized
relative orbits.
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Table 1. Simulation parameters for cylinder detumble system.

Parameter Value Units Description

R1 2 m Servicer radius
m1 500 kg Servicer mass
m2 1000 kg Cylinder mass
I
a

125.0 kg·m2 Axial inertia
I
t

812.5 kg·m2 Transverse inertia
!0 2 deg/sec Cylinder tumble
↵ 5 ⇥ 104 - Control Gain

�
max

20 kV Max voltage

LROE Optimization of Servicer Relative Trajectory - Cylinder

The simulation initializes the servicer spacecraft 12.5 meters away from a generally tumbling
cylinder using the optimized output state. The numerical simulation includes the 6-DOF motion of
the debris and 3-DOF translational motion of the servicer sphere. The closed-loop feedback control
in (10) is used to maintain a fixed relative position between servicer and debris. A 4th order Runge-
Kutta integration is employed with a time step of 0.01 seconds for 14 days. The servicer vehicle
potential is controlled via (23) and the charging model in Reference,45 while the electrostatic force
is evaluated using the full MSM model in Eq. (2b).

The gain developed for the LROE controller is set to provide a bounding box of 1% of the relative
separation distance. The gain is scaled by the mean motion of the chief orbit such that the relative
motion leverages the natural dynamics of formation flying.

[K] = (n · 105) ⇥ diag([1, 1, 30, 1, 1, 1]) (27)

The gain matrix utilized may not be optimal, however sufficient performance is obtained. Future
studies will address the gain matrix and seek dynamical system leverage in precisely scaling the gain
values. Using the fmincon optimization approach, the optimized LROE state and lead-follower
state are set to

X = [A1, A2, xoff, yoff, B1, B2] [m]

X
opt
0 = [0, 6.25, 0, 0, 0, 10.83] [m]

X lf
0 = [0, 0, 0, 12.5, 0, 0] [m]

Utilizing the LROE control scheme over the 14 day simulation period, the optimized LROE orbit
and the lead-follower orbit follow the paths shown in Figure 13. The LROE controller keeps the
relative orbit close to the desired state through feedback control. The position error distance between
the actual and reference trajectory never exceeds 20 centimeters. If desired, implementation of a
more aggressive control would reduce the state error further.

Of interest is the reduction in angular momentum as seen by the Hill frame as shown in Figure 14..
Recall that the optimization approach leverages the revolution of the angular momentum in the Hill
frame to design a relative trajectory. Inspection of Figure 14 reveals that the optimized ellipse
delivers a more complete detumble in the radial and transverse directions where the lead-follower
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Figure 14. Hill frame momentum and detumble performance for a large cone angle.

provides more complete reduction of the orbit-normal angular momentum. This is consistent with
the relative position advantages where the lead-follower is most often perpendicular to the orbit
normal where the optimized state provides a relative position that is more perpendicular to the
orbit radial and along-track directions. This alignment is further seen in Figure 15 where the cross
product between the relative position and angular momentum vector is subtracted from unity. Note
that best detumble alignment occurs when the relative position vector is perpendicular to the angular
momentum vector: a cross product of unity and thus a deviation of zero. The GEO orbit period of
the relative orbit emerges in the daily cyclic drops in alignment benefit for both the lead-follower and
the LROE configurations. However, it is quite evident that the LROE configuration consistently is
better aligned for the removal of angular momentum. The cross product becomes more variable for
the optimized state following the transition from primary to secondary detumble phases. Transition
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Figure 15. Detumble geometry and orbit maintenance for a large cone angle.

points, such as that following the primary detumble, suggests that the optimization approach could
be re-applied to obtain a new optimized LROE state later reached by the LROE feedback controller.

The station-keeping acceleration for both the lead-follower and the optimized state is shown in
Figure 15. The transition from primary to secondary detumble phases is clearly jointed for both
LROE states which is attributed to the arctan control decrease for small angular velocities. The
total acceleration is comparable between the two relative orbits. However, the variation in the rel-
ative orbit seen in Figure 13 suggests that the control gain should be more aggressive to reduce
the variation in the state due to the electrostatic perturbations. A more aggressive controller may
exaggerate the acceleration requirement differences between the two states. In addition, the con-
trol implemented is only a feedback control where the provided LROE form enables feed-forward
capability.

Expanding the Formation Flying Approach to More General Targets

The generic target detumble scheme employs an MSM distribution to compute the expected
torque rather than an analytical approximation. The volume MSM distribution is most attractive
for this application as it requires the fewest number of spheres to capture the electrostatic force and
torque behavior.46 The reduced number of spheres translates to reduced computational load on a
flight software system. Consider the more generic target Lyapuov function in Eq. (28) where ! is
the body angular velocity vector and I is the body-fixed inertia.

V =
1

2
!T I! (28)

Taking one time derivative of Eq. 28 and inserting Euler’s rotational equations of motion, as is done
in Eq. (21), produces the result in Eq. 29.

V̇ = !TL (29)

The simplicity of the Lyapunov derivative in Eq. (29) is made possible by neglecting the relative
orbit motion thus assuming that the relative tumble is equal to body angular velocities. This is a
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Figure 16. Angular momentum and velocities with initial conditions: ! =
[0.9, 1.7, �0.6]�/sec, comparing optimized (top row) and lead-follower (bottom row).

reasonable assumption for significant portions of the detumble mission as is seen for the on-orbit
detumble of the cylindrical target. To achieve Lyapunov optimal control, the commanded servicer
potential assumes the value46

�cmd = C
�

⇥ {sign(�) : !TL(�)  0} where C
�

> 0 (30)

The control law in Eq. (30) is Lyapunov optimal and guarantees, with perfect knowledge, that the
servicer will detumble the target. Setting the coefficient C

�

to �max provides a bang-bang type
control. The leading coefficient may be scaled based on the angular velocity to emulate the tangent
saturation controller so long as the coefficient is always non-zero positive.

The box-and-panel target shown in Figure 2(b) is detumbled in Figure 16 using the generic con-
trol. The target is initialized in a flat momentum cone where the tumble about the body axes is given
by ! = [0.9, 1.7, � 0.6]�/sec. Here, the optimized relative orbit is much more suited to removing
angular momentum than a lead-follower.
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CONCLUSIONS

The guidance, navigation, and control necessary for on-orbit electrostatic detumble of both cylin-
drical and generic shapes are presented. The Linearized Relative Orbit Elements (LROEs) provide
a convenient form for describing, estimating, and regulating the relative orbit. The application of
LROEs further allows for estimation of the target craft potential as required by the detumble control
formulations. The LROEs are last applied to optimization of the relative trajectory to reduce on-
orbit detumble time and provide more complete angular momentum reduction. The presented work
provides an overview of the electrostatic modeling, the control formulations, and the formation
flying benefits for implementing electrostatic detumble on many orbiting targets.
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