
(Preprint) AAS 18-091

MODULAR SOFTWARE ARCHITECTURE FOR FULLY-COUPLED
SPACECRAFT SIMULATIONS

Cody Allard∗, Manuel Diaz Ramos†, Patrick Kenneally‡, Hanspeter Schaub§and
Scott Piggott¶

Computer simulations of spacecraft dynamics are widely used in industry and
academia to predict how spacecraft will behave during proposed mission concepts.
Current technology and performance requirements have placed pressure on simu-
lations to be increasingly more representative of the environment and the physics
that spacecraft will encounter. This results in increasingly complex computer sim-
ulations. Designing the software architecture in a modular way is a crucial step to
allow for ease of testing, maintaining, and scaling of the software code base. How-
ever, for complex spacecraft modeling including flexible or multi-body dynamics,
modularizing the software is not a trivial task because the resulting equations of
motion are fully-coupled nonlinear equations. This requires manipulation of the
equations of motion to adhere to a modular form. In this paper, a software architec-
ture is presented for creating complex fully-coupled spacecraft simulations with a
modular framework. The architecture provides a solution to these common issues
seen in dynamics modeling. The modularization of the fully-coupled equations of
motion is completed by solving the complex equations analytically such that the
spacecraft rigid body translational and rotational accelerations are solved for first,
and the other second order state derivatives are found later. This architecture is
implemented in the Basilisk astrodynamics software package and is a fully tested
example of the proposed software architecture.

INTRODUCTION

An important aspect when considering software design is the scalability, maintainability, and
testability of the software.1 If the software is not designed well, adding complexity (scalability),
maintaining functionality amidst a changing code base (maintainability) and the ease of verifying
functionality (testability) can become extremely laborsome.2 For complex simulations of space-
craft, this methodology needs to be considered to avoid these complications. However, multi-body
dynamics poses a difficult problem because of the coupled nature of the system through the non-
diagonal system mass matrix.3 This mass matrix relates the dynamical effect of the second order
state variables between all of the interconnected bodies.

Although multi-body dynamics is a complex challenge not only from an equation of motion
(EOM) development but from a software implementation perspective, there is an abundant amount
∗Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder.
†Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder.
‡Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder.
§Professor, Glenn L. Murphy Chair, Department of Aerospace Engineering Sciences, University of Colorado, 431 UCB,
Colorado Center for Astrodynamics Research, Boulder, CO 80309-0431. AAS Fellow.
¶ADCS Integrated Simulation Software Lead, Laboratory for Atmospheric and Space Physics, University of Colorado

Boulder.

1

of open source software packages simulating multi-body dynamics. Bullet4 is an open source multi-
body dynamics software package that utilizes the Gauss-Seidel Method to solve the system mass
inverse for diagonally dominant matrices.5 Project CHRONO is an open source multi-physics soft-
ware package that utilizes parallel computing to solve multi-body dynamics with a large number of
degree’s of freedom.6 Rigid Body Dynamics Library is an open source multi-body dynamics soft-
ware package that utilizes the Articulated Body Algorithm and Composite Rigid Body Algorithm
for solving the dynamics.7 Adding spacecraft specific environmental factors and incorporating flight
software into these open source packages can be laborsome and is not the intended use of these soft-
ware packages.

In contrast to the open source packages, there are commercial software packages that are solving
multi-body dynamics problems. MathWorks Simscape Multibody8 can generate EOMs to be inte-
grated and can output simulation code to Matlab or C code. Motion Genesis uses Kanes method9, 10

to output simulation code to Matlab, C, or Fortran and includes energy and momentum validation.11

One downfall of these equation of motion generators is that the equations are specific to that system
which introduces scalability, maintainability, and testability issues with software architecture. Ad-
ditionally, these software packages, although general, present issues with computational efficiency.

In contrast to general multi-body dynamics software, there are software packages that focus only
on spacecraft simulation because of the unique environment that spacecraft encounter, and the spe-
cific challenges that modeling spacecraft dynamics entails. STK SOLIS is a software package for
modeling spacecraft with both translational and attitude dynamics but does not model disturbances
that can change the center of mass of the spacecraft, for example flexing solar arrays.12 The Jet
Propulsion Laboratory has a software package, Dynamics Algorithms for Real-Time Simulation
(DARTS).13 This simulation software package utilizes spacial operator algebra for the development
of the multibody dynamics14 to create the system mass matrix in a form that can be solved effi-
ciently with a recursive algorithm.15 NASA’s open source software package named 42,16 allows
for spacecraft composed of multiple rigid or flexible bodies using tree-topology17 to formulate the
dynamics resulting in a system mass matrix inversion solution. Orekit is an open source software
package for spacecraft simulations and flight software and models the spacecraft as a rigid body and
the dynamics are primarily focused on defining perturbations as external forces and torques.18

The software packages described that involve multi-body dynamics have to populate a system
mass matrix and either have to find the inverse of the matrix or use other linear algebra tech-
niques.14, 15 Populating the system mass matrix while retaining a modular software architecture
is difficult because the system needs to know the locations of the states in the system mass matrix
and also know the relative locations of other coupled states. Additionally, inverting the system mass
matrix can be computationally expensive because the calculation scales with N3. To combat these
common problems, this paper introduces a method to generalize the EOMs which will be applicable
to a wide range of spacecraft configurations, utilizes a back-substitution method to modularize the
EOMs, and develops a software architecture that will leverage the modularized equations. While the
prior methods allow for general multi-body setups, this method is specifically developed for com-
mon spacecraft configurations where there is a single rigid spacecraft hub onto which additional
bodies are attached. This assumption is a key enabler that leads to an elegant modular framework
that can be implemented in numerical simulations without dropping any dynamical coupling be-
tween the components. This allows for the underlying physics to be retained which enables energy
and momentum conservation checks to be completed.

2

N

ŝi,3
ĥi,3

ŝi,1

ĥi,1

ĥi,2 = ŝi,2

Sc,i

Bc

C

c

✓i
Hi

b̂3

b̂2b̂1

B

p̂j

Pj

⇢j mj

Pc,j

mspi

N

Figure 1. Complex spacecraft with multiple degrees of freedom

SPACECRAFT SPECIFIC COMPACT EQUATIONS OF MOTION FORM

An important consideration when first developing the EOMs are the associated assumptions be-
cause they will ultimately dictate how applicable the mathematical structure is to different dynami-
cal systems. Figure 1 shows an example spacecraft with flexing solar arrays and lumped mass fuel
slosh and will be the reference when discussing the assumptions.19 Since both of these types of
physical phenomena change the center of mass of the spacecraft, they are good examples for the
multi-body spacecraft problems. The common aspect the majority of spacecraft share is that, at
least, a small portion can be assumed to be rigid. In Figure 1 the rigid portion of the spacecraft is
the gray cylinder. This portion is called the rigid body hub. The hub is assumed to have a non-zero
mass, mhub, a center of mass location, Bc and an inertia tensor defined about its center of mass,
[Ihub,Bc].

The most important aspect of the rigid body hub is that it is the object that the body frame,
B : {b̂1, b̂2, b̂3}, is attached to. To keep the formulation as general as possible, the body frame
origin, point B, does not have to be coincident with the hub’s center of mass, point Bc. It is very
common to make the assumption that these two points are coincident, and makes the derivation of
the EOMs simpler,20, 9 however, allowing point B to be located at any location fixed with respect to
the rigid hub gives more generality. It is very common in spacecraft missions that a structure frame
is defined by the structural engineering team where its origin is not coincident with the rigid body
hub’s center of mass. Therefore, it gives flexibility in where the body frame origin can be defined.
An additional assumption that keeps the formulation as general as possible, is the inertia tensor
[Ihub,Bc] does not need to be diagonal when defined in body frame components. The formulation
would be simpler but less general if a diagonal matrix were used.20, 21, 22

Now that the rigid body hub is defined, the state variables that define the state of the hub at
any given time are: the position of point B with respect to point N , rB/N , the inertial velocity of
point B with respect to point N , ṙB/N , the Modified Rodrigues Parameters (MRPs) representation
of the body frame B with respect to the inertial frame N , σB/N and the inertial angular velocity
vector of the body frame B with respect to the inertial frame N , ωB/N . The MRPs are the chosen
attitude parameterization set because its a minimal set of 3 parameters with elegant non-singular
implementations.21 However the dynamics are independent of the chosen attitude parameterization,
therefore any attitude description can be used. These 4 variables represent the 6 degrees of freedom
that the rigid body hub exhibits and represents the 12 state variables that are needed to implement a

3

second order differential equation in software. These, at a minimum, are the states required for the
system. The additional degrees of freedom on the system will be referenced to the body frame, B.

Now that the important parameters have been defined for the rigid body hub, other degrees of
freedom need to be introduced and generalized. Figure 1 shows flexing solar panels and lumped
mass fuel slosh as additional degree’s of freedom as an example system. Each of those models are
labeled as “effectors”. Each effector is assumed to have a mass, meff, a center mass location, Ec,
and a position vector from point B to Ec, rEc/B . If the effector has inertia properties, the effector
has a frame, E : {ê1, ê2, ê3}, and an inertia tensor, [Ieff,Ec] that is defined about its center of mass.

With the hub parameters and the effector parameters defined, the general form proposed in this
research for the hub’s EOMs are shown in Eqs. (1) and (2). This general form was formalized by
using the same systematic approach for multiple dynamics problem formulations including flexible
solar arrays,23 lumped mass fuel slosh,19 imbalanced reaction wheels,24 fully-coupled mass deple-
tion,25 and imbalanced variable speed control moment gyroscopes.26, 27 These references explain
the derivations in detail and all result in a familiar form. The first equation proposed for this general
form is the translational motion equation seen in Eq. (1).

mscr̈B/N −msc[c̃]ω̇B/N +

Neff∑
i=1

NDOF,i∑
j=1

vTrans,LHSij
α̈ij = Fext − 2msc[ω̃B/N]c

′

−msc[ω̃B/N][ω̃B/N]c+

Neff∑
i=1

vTrans,RHSi
(1)

is in terms of the total mass of the spacecraft, msc, the vector from point B to the center of mass
of the spacecraft, c, and the time derivative with respect to the body frame of c, c′. Neff is the
number of effectors, and NDOF,i is the ith effector’s degrees of freedom, vTrans,LHSij

is a vector for
the translational equation that corresponds with the jth degree of freedom of the ith effector’s second
order derivative of its state, αij , and vTrans,RHSi

is the ith effector’s vector contribution to the forces
on the right hand side of Eq. (1). The rotational EOMs form are shown in Eq. (2).

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Neff∑
i=1

NDOF,i∑
j=1

vRot,LHSij
α̈ij = LB − [ω̃B/N][Isc,B]ωB/N

− [I ′sc,B]ωB/N +

Neff∑
i=1

vRot,RHSi
(2)

[Isc,B] is the inertia tensor of the spacecraft about point B, [I ′sc,B] is the time derivative with respect
to the body frame of [Isc,B], vRot,LHSij

is a vector for the rotational equation that corresponds with
the jth degree of freedom of ith effector’s second order derivative of its state, αij , and vRot,RHSi

is the
ith effector’s vector contribution to the torques on the right hand side of Eq. (2).

Finally, the individual effector degree of freedom EOMs are to fit the following form:

ajjiα̈ij +

NDOF,i∑
k=1;k 6=j

ajkiα̈ik = a
T
αij
r̈B/N + bTαij

ω̇B/N + cαij (3)

4

where each effector has NDOF,i EOMs to fully describe the motion of that effector. If NDOF,i = 1
for an effector, Eq. (3) simplifies to:

α̈i = a
T
αi
r̈B/N + bTαi

ω̇B/N + cαi (4)

Eqs. (1)-(4) are the generalized EOMs that can apply to a wide-variety of spacecraft. Utilizing this
common form yields consistent EOMs that enable the modular software architecture. While looking
at Eqs. (3) and (4), it should be pointed out that the ith effector EOM do not include the second order
state variables from other effectors, only the individual effectors and their corresponding degree’s
of freedom. This is a key assumption that will allow for modularity between all of the effectors
attached to the rigid body hub.

BACK-SUBSTITUTION METHOD

A product of multi-body dynamics is the dynamic coupling between the second order state vari-
ables that results in a non-diagonal system mass matrix.20 This can be troublesome in attempting to
integrate the EOMs in software. When integrating EOMs the form that is beneficial is Ẋ = f(X, t)
where X is the state vector, Ẋ is the time derivative of X , and f(X, t) is a function of the cur-
rent state and time, t. When there is a system mass matrix, [M], present, the form changes to
[M]Ẋ = f(X, t). Therefore, a system mass matrix needs to be inverted to solve this complex
problem. This results in two problems with inverting a system mass matrix. Firstly, inverting a
matrix can be computational inefficient because the calculation scales with N3. Secondly, the mod-
ularization of the dynamics from software implementation perspective is a difficult task because the
system needs to know the location of each effector within the system mass matrix and locations
relative to the other effectors. A back-substitution method is developed to solve this problem.

To visualize the impact of the EOMs generalized form, the spacecraft seen in Figure 2 is used as
an example. The spacecraft has panels modeled as as two interconnected rigid bodies with a single
rotational degree of freedom each. Figure 2 only shows 2 sets of dual-connected solar panels, but
the example is generalized to N number of sets. If the EOMs were put into the generalized form
from the previous section, the dynamical coupling of this complex system can be visualized in the
following equation:



3× 3 3× 3 3× 1 3× 1 3× 1 3× 1 . 3× 1 3× 1
3× 3 3× 3 3× 1 3× 1 3× 1 3× 1 . 3× 1 3× 1
1× 3 1× 3 1× 1 1× 1 0 0 . 0 0
1× 3 1× 3 1× 1 1× 1 0 0 . 0 0
1× 3 1× 3 0 0 1× 1 1× 1 . 0 0
1× 3 1× 3 0 0 1× 1 1× 1 . 0 0
.

1× 3 1× 3 0 0 0 0 . 1× 1 1× 1
1× 3 1× 3 0 0 0 0 . 1× 1 1× 1





r̈B/N
ω̇B/N
θ̈11
θ̈12
θ̈21
θ̈22
.

θ̈N1

θ̈N2


=



3× 1
3× 1
1× 1
1× 1
1× 1
1× 1
.

1× 1
1× 1


(5)

Eq.(5) shows the form of the second order state variable coupling that results from this configuration.
It confirms that the individual degrees of freedom for the sets of solar panels are coupled with each
other, but do not directly coupled through second order state derivatives with the other sets of panels.
This is a key insight and is exploited in the following back-substitution method.

5

O

N

ŝi1,3
ĥi1,3

ŝi1,1

ĥi1,1

ĥi1,2 = ŝi1,2

Sc,i1

Bc

C

c

✓i1
Hi

b̂3

b̂2b̂1

B

mspi1

ĥi1,3

✓i2

Sc,i2

ŝi2,3

ŝi2,2

ŝi2,1

ĥi2,1

Figure 2. Dual-hinged rigid bodies frame and variable definitions

Looking further into Eq. (5), all of the solar panel second order state derivatives are present in the
hub translational and rotational equations. On the other hand, the hub translational and rotational
second order state variables are present in the individual solar panel EOMs. This dynamic coupling
through the hub is another key insight that the back-substitution method will use to modularize the
EOMs.

The back-substitution method is presented for effectors that have NDOF,i = 1. Therefore, the
equation for each effector’s motion can be seen in Eq. (4). The first step in the back substitution
method is to substitute Eq. (4) into both the translational and rotational EOMs for the rigid body
hub. First, the substitution into the translational motion for NDOF,i = 1 is shown in the following
equation:

mscr̈B/N −msc[c̃]ω̇B/N +

Neff∑
i=1

vTrans,LHSi

[
aTαi
r̈B/N + bTαi

ω̇B/N + cαi

]
= Fext

− 2msc[ω̃B/N]c
′ −msc[ω̃B/N][ω̃B/N]c+

Neff∑
i=1

vTrans,RHSi
(6)

Simplifying and combining like terms yields the translational EOM that has been decoupled from
the other effector accelerations:

[
msc[I3×3] +

Neff∑
i=1

vTrans,LHSi
aTαi

]
r̈B/N +

[
−msc[c̃] +

Neff∑
i=1

vTrans,LHSi
bTαi

]
ω̇B/N = Fext

− 2msc[ω̃B/N]c
′ −msc[ω̃B/N][ω̃B/N]c+

Neff∑
i=1

[
vTrans,RHSi

− vTrans,LHSi
cαi

]
(7)

Following the same pattern for the rotational hub EOM, Eq. (2), yields:

[
msc[c̃] +

Neff∑
i=1

vRot,LHSi
aTαi

]
r̈B/N +

[
[Isc,B] +

Neff∑
i=1

vRot,LHSi
bTαi

]
ω̇B/N = LB

6

− [ω̃B/N][Isc,B]ωB/N − [I ′sc,B]ωB/N +

Neff∑
i=1

[
vRot,RHSi

− vRot,LHSi
cαi

]
(8)

The following matrices are defined to yield a more compact notation:

[A] = msc[I3×3] +

Neff∑
i=1

vTrans,LHSi
aTαi

(9)

[B] = −msc[c̃] +

Neff∑
i=1

vTrans,LHSi
bTαi

(10)

[C] = msc[c̃] +

Neff∑
i=1

vRot,LHSi
aTαi

(11)

[D] = [Isc,B] +

Neff∑
i=1

vRot,LHSi
bTαi

(12)

vTrans = Fext − 2msc[ω̃B/N]c
′ −msc[ω̃B/N][ω̃B/N]c+

Neff∑
i=1

[
vTrans,RHSi

− vTrans,LHSi
cαi

]
(13)

vRot = LB − [ω̃B/N][Isc,B]ωB/N − [I ′sc,B]ωB/N +

Neff∑
i=1

[
vRot,RHSi

− vRot,LHSi
cαi

]
(14)

Using these definitions, the coupled translation and rotation hub EOMs are written compactly as[
[A] [B]
[C] [D]

] [
r̈B/N
ω̇B/N

]
=

[
vTrans
vRot

]
(15)

Equation (15) represents a system of 6 equations, that can be solved using the Schur complement
matrix formulation28 for the partitioned form of the hub system mass matrix:

ω̇B/N =
(
[D]− [C][A]−1[B]

)−1
(vRot − [C][A]−1vTrans) (16)

r̈B/N = [A]−1(vTrans − [B]ω̇B/N) (17)

This shows that the back-substitution method only requires two 3×3 matrix inverses. The additional
degree of freedom state derivatives are found by back-substituting these solutions into Eqs. (3)
and (4).

MODULAR SOFTWARE ARCHITECTURE

Figure 3 shows the Unified Modeling Language (UML) class diagram for object oriented com-
puter programming languages proposed in this paper. This is the design that will allow for complex
fully-coupled dynamics to be implemented in software while retaining a modular architecture. Ad-
ditionally, it aims to solve the issues of testability, maintainability, and scalability that fully-coupled
dynamics problems pose.

7

+ integrate()
integrator

+ equationsOfMotion()
+ integrateState()
+ computeEnergyMom()

dynamicObject

spacecraftPlus

+ computeBodyForceTorque()
dynamicEffector+ updateEffectorMassProperties()

+ updateContributions()
+ computeDerivatives()
+ updateEnerMomContributions()

stateEffector

gravity

reactionWheels

fuelSloshLinear

fuelTank

hingedRigidBody

+ register()
+ getStates(stateName)
+ getStateDeriv(stateName)
+ setStates(stateName)
+ setStateDeriv(stateName)

stateManager

hubEffector

SRP

thrusters

euler

rK2

rK4
dualHingedRigidBody

VSCMG

fuelSloshPendulum

Figure 3. UML Diagram for Modular Architecture.

The dynamicObject seen in Figure 3 is a parent class or abstract class (depending on preference)
that defines the base functionality of the object that will control the calculation of the system EOMs
and essentially solve for the well-known state derivative vector Ẋ = f(X, t). However, the term
state vector is used loosely here because the stateManager organizes, stores, and controls all
states of the system. The dynamicObject is an abstract or parent class because this would
allow for different types of systems to be implemented in the future which are not necessarily using
the proposed back-substitution method in this paper. Therefore, the spacecraftPlus is an
instantiation of the dynamicObject and is the class that is implementing the back-substitution
method.

In the generalized EOMs introduced earlier in this paper, the term “effectors” was used to de-
fined objects that are attached to the spacecraft and have dynamic states that need to be integrated
and some examples are: reaction wheels, flexing solar arrays, fuel slosh, etc. In this modular soft-
ware architecture, those effectors are called stateEffectors and are illustrated in Figure 3. In
contrast, dynamicEffectors are phenomena that result in an external forces or torques being
applied to the spacecraft. Examples of these include: gravity, thrusters, SRP, etc.

The stateEffector abstract or parent class is the class that defines the necessary methods
(and variables) needed for each effector to provide contributions to the spacecrafts mass properties

8

(msc, [Isc,B], c, etc.) using the method updateEffectorMassProperties and contributions
to the back substitution matrices ([A], [B]...vTrans, etc.) using the method updateContributions.
Each effector needs to be able to compute their own state derivatives and uses the method
computeDerivatives(). Finally, the method computeEnerMomContributions is the
method that enables effectors add their contributions to the energy and momentum of the system for
validation purposed. Additionally, it should be noted that in Figure 3 it shows that stateEffectors
are aggregated in spacecraftPlus. This allows for the modularity of the dynamics because
spacecraftPlus does not know the type of effectors attached to it, but rather has an array of
stateEffectors which makes it general.

Another important aspect of the software architecture is the hubEffector instantiation of
stateEffector. The hubEffector is representing the rigid body hub defined in the gener-
alized EOM form and has translational and attitude states associated with it. The hubEffector is
unique to all of the stateEffectors because it is not included in the array of stateEffectors
that are looped over in spacecraftPlus but rather defined as an object in spacecraftPlus
and its methods are always called in equationsOfMotion(). This is because the assumption
for the back-substitution method and the generalized EOM form is that the spacecraft will always
have a rigid body hub with a body frame, B, attached and with the corresponding states: rB/N ,
ṙB/N , σB/N and ωB/N .

Since spacecraftPlus is an instantiation of dynamicObject, it inherits the methods that
are defined in Figure 3. The method equationsOfMotion() is the method that solves for all
of the state derivatives of the spacecraft system. To explain this method in more detail, Figure 4
is included to show the flow in pseudo code. The spacecraft mass properties need to be calculated
first because in Eqs. (1) and (2) the total spacecraft mass, msc, inertia, [Isc,B] and other parameters
are needed. Next, the gravityEffector class is called to compute the gravity acting on the
spacecraft. This is done at this location because some stateEffectors might need to know
the gravitational force. Following this step, the stateEffectors are looped over to find their
contributions to the back-substitution matrices. Now, all of the values have been computed for the
hub state derivatives to be calculated using Eq. (15), which is computed in the hubEffector’s
computeDerivatives. Finally, the stateEffectors are looped over to compute their
derivatives using r̈B/N and ω̇B/N .

Since the hubEffector’s derivative calculation is so vital in this structure, Figure 5 is shown
to explain the calculations needed for this step. Again, this is shown using pseudo code. Addition-
ally, this method shows the interaction between the stateManager and the rest of the system.
The stateManager stores the states of the system in individual objects. These objects can be
accessed using a string and once the object has been accessed, the methods seen in Figure 3 under
the stateManager class are available. For example, the getState method delivers the current
value of the state stored in that state object. In Figure 5, the hub effector uses those methods to
retrieve the desired information from the stateManager. Ultimately setting the derivative values
for the hubEffector is the goal of the computeDerivatives method and does so by using
setStateDeriv for both r̈B/N and ω̇B/N .

Another important method in this architecture is the computeDerivatives method for a
generic stateEffector. To highlight this method, an effector representing a hinged rigid body
is used and more details about this formulation can be seen in Reference 23. Figure 6 shows the
pseudo code for the computeDerivatives method of a hinged rigid body effector. When this
method is being computed, r̈B/N and ω̇B/N have already been calculated, therefore the hinged rigid

9

spacecraftPlus

equationsOfMotion()

 hubEffector.updateEffectorMassProperties()
 for(effector in stateEffectors)
 effector.updateEffectorMassProperties()
 end

 gravityEffector.computeGravField()

 for(effector in stateEffectors)
 effector.updateContributions()
 end

 for(effector in dynEffectors)
 effector.computeBodyForceTorque()
 end

 hubEffector.computeDerivatives()
 for(effector in stateEffectors)
 effector.computeDerivatives()
 end

end

Figure 4. Pseudo code for the equationsOfMotion() method within spacecraftPlus

hubEffector

computeDerivatives()

 rBN_NState = stateManager.getStateObject('hubPosition')
 rBNDot_NState = stateManager.getStateObject('hubVelocity')
 sigmaBN_State = stateManager.getStateObject('hubRotPosition')
 omegaBN_BState = stateManager.getStateObject('hubRotVelocity')

 rBNDot_N = rBNDot_NState.getState()
 rBN_NState.setStateDeriv(rBNDot_N)

 sigmaBNDot = omegaToSigmaDot(omegaBN_BState.getState())
 sigmaBN_State.setStateDeriv(sigmaBNDot)

 omegaBN_BState.setStateDeriv(omegaBN_Dot)
 rBNDot_NState.setStateDeriv(rBNDDot_N)

end

Figure 5. Pseudo code for hubEffector computeDerivatives() method

10

hingedRigidBody

computeDerivatives()

 theta_State = stateManager.getStateObject('panelTheta')
 thetaDot_State = stateManager.getStateObject('panelThetaDot')
 hubVelocity_State = stateManager.getStateObject('hubVelocity')
 hubRotVelocity_State = stateManager.getStateObject('hubRotVelocity')

 thetaDot = thetaDot_State.getState()
 theta_State.setStateDeriv(thetaDot)

 rBNDDot_N = hubVelocity_State.getStateDeriv()
 omegaDotBN_B = hubRotVelocity_State.getStateDeriv()

 thetaDot_State.setStateDeriv(thetaDDot)

end

✓̈i = aT
✓i

r̈B/N + bT
✓i
!̇B/N + c✓i

Figure 6. Pseudo code for hingedRigidBody computeDerivatives() method

body effector can use the state manager’s method called getStateDeriv which gives access to
those pre-computed values. Looking at Eq. (4), the hinged rigid body effector utilizes r̈B/N and
ω̇B/N in its calculation, and utilizes saved variables for faster results.

The power of this design is that stateEffectors can just be attached to the spacecraft in no
particular order and the scalability of this design is unconstrained. Adding another effector does
not depend on any other effectors even though the fully-coupled nature is still retained. All of the
coupling is through the rigid body hub and the analytical form of the back-substitution method
allows for this modularity. Additionally, a fixed size system mass matrix is inverted as opposed to a
variably sized matrix which is common in fully-coupled dynamics simulations.

CONCLUSION

The results of this paper show that a modular software architecture is introduced for fully-coupled
dynamics and solves the issue of maintainability, scalability, and testability for this problem. The
elegant modularity is achieved by considering a specific spacecraft dynamical system where a range
of dynamical sub-systems are attached to a central rigid hub. The proposed software architecture
is shown to be relatively simple, allows for a fixed size system mass matrix to be inverted, allows
effectors to be attached to the spacecraft in no particular order and does not have scaling limitations.
Future work will be to extend this work multiple interconnected and independent spacecraft with
effectors attached to them.

REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std 610.12-1990, Dec 1990,
pp. 1–84, 10.1109/IEEESTD.1990.101064.

11

[2] R. Filman, T. Elrad, S. Clarke, and M. Akşit, Aspect-oriented Software Development. Addison-Wesley
Professional, first ed., 2004.

[3] J. Junkins and Y. Kim, Introduction to Dynamics and Control of Flexible Structures. AIAA education
series, American Institute of Aeronautics & Astronautics, 1993.

[4] “Bullet: Real-Time Physics Simulation,” October, 2017. http://bulletphysics.org/wordpress/.
[5] H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics. Cambridge Mathematical Library, Cam-

bridge University Press, 1999.
[6] “CHRONO: An Open Source Framework for the Physics-Based Simulation of Dynamic Systems,” Oc-

tober, 2017. http://projectchrono.org.
[7] “RBDL: Rigid Body Dynamics Library,” October, 2017. https://rbdl.bitbucket.io/.
[8] “Simscape Multibody - Model and simulate multibody mechanical systems,” October, 2017.

https://www.mathworks.com/products/simmechanics.html.
[9] T. R. Kane and D. A. Levinson, “Formulation of Equations of Motion for Complex Spacecraft,” Journal

of Guidance, Control, and Dynamics, Vol. 3, 2017/09/27 1980, pp. 99–112, 10.2514/3.55956.
[10] T. R. Kane and D. A. Levinson, “Multibody Dynamics,” Journal of Applied Mechanics, Vol. 50, 12

1983, pp. 1071–1078.
[11] “Motion Genesis: Symbolic force, motion, and code-generation tools,” October, 2017.

www.MotionGenesis.com.
[12] “SOLIS: Commercial plug-in to the Analytical Graphics, Inc (AGI) Systems ToolKit (STK),” April,

2017. http://www.go-asi.com/solutions/stk-solis/.
[13] “DARTS: Dynamics Algorithms for Real-Time Simulation,” June, 2017.

https://dartslab.jpl.nasa.gov/DARTS/index.php.
[14] G. Rodriguez and A. Jain, “Spatial operator algebra for multibody system dynamics,” Journal of the

Astronautical Sciences, 1992.
[15] A. JAIN and G. RODRIGUEZ, “Recursive flexible multibody system dynamics using spatial oper-

ators,” Journal of Guidance, Control, and Dynamics, Vol. 15, 2017/10/26 1992, pp. 1453–1466,
10.2514/3.11409.

[16] “42: A Comprehensive General-Purpose Simulation of Attitude and Trajectory Dynamics and Con-
trol of Multiple Spacecraft Composed of Multiple Rigid or Flexible Bodies,” September, 2017.
https://software.nasa.gov/software/GSC-16720-1.

[17] P. W. Likins, “Point-connected rigid bodies in a topological tree,” Celestial mechanics, Vol. 11, May
1975, pp. 301–317, 10.1007/BF01228809.

[18] “OreKit: An accurate and efficient core layer for space flight dynamics applications,” October, 2017.
https://www.orekit.org/.

[19] C. Allard, M. Diaz-Ramos, and H. Schaub, “Spacecraft Dynamics Integrating Hinged Solar Panels and
Lumped-Mass Fuel Slosh Model,” AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA,
Sept. 12–15 2016.

[20] T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft dynamics. McGraw-Hill Book Co., 1983.
[21] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. Reston, VA: AIAA Education

Series, 3rd ed., 2014, 10.2514/4.102400.
[22] M. Sidi, Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge Aerospace

Series, Cambridge University Press, 1997, 10.1017/CBO9780511815652.
[23] C. Allard, H. Schaub, and S. Piggott, “General Hinged Solar Panel Dynamics Approximating First-

Order Spacecraft Flexing,” AAS Guidance and Control Conference, Breckenridge, CO, Feb. 5–10 2016.
Paper No. AAS-16-156.

[24] J. Alcorn, C. Allard, and H. Schaub, “Fully-Coupled Dynamical Modeling of a Rigid Spacecraft with
Imbalanced Reaction Wheels,” AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, Sept.
12–15 2016.

[25] P. Panicucci, C. Allard, and H. Schaub, “Spacecraft Dynamics Employing a General Multi-tank and
Multi-thruster Mass Depletion Formulation,” AAS Guidance, Navigation and Control Conference,
Breckenridge, CO, Feb. 2–8 2017. Paper AAS 17-011.

[26] J. Alcorn, C. Allard, and H. Schaub, “Fully-Coupled Dynamical Jitter Modeling Of Variable-Speed
Control Moment Gyroscopes,” AAS/AIAA Astrodynamics Specialist Conference, Stevenson, WA, Aug.
20–24 2017. Paper No. AAS-17-730.

[27] J. Alcorn, “Fully-Coupled Dynamical Jitter Modeling of Momentum Exchange Devices,” Master’s the-
sis, University of Colorado - Boulder, Boulder, CO, May 2017.

[28] J. L. Junkins and Y. Kim, Introduction to Dynamics and Control of Flexible Structures. Washington
D.C.: AIAA Education Series, 1993.

12

	Introduction
	Spacecraft Specific Compact Equations of Motion Form
	Back-Substitution Method
	Modular Software Architecture
	Conclusion

