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Spacecraft Dynamics Integrating Hinged Solar Panels and
Lumped-Mass Fuel Slosh Model

Cody Allard,∗ Manuel Diaz Ramos† and Hanspeter Schaub‡

University of Colorado, Boulder, Colorado, 80309, US

A large portion of spacecraft missions have stringent pointing, attitude knowledge, and control re-
quirements. This results in the necessity of high fidelity dynamics modeled in the numerical simulation
of the spacecraft. A crucial aspect of this high fidelity is modeling the components susceptible to flexing
and vibration. For most spacecraft, the flexible components are appended objects like solar panels and
the vibrational component is fuel slosh. However, to incorporate these effects into numerical simulation,
extensive derivation is required because the single rigid-body assumption no longer applies. There is
significant on-going research on how to effectively model structural flexing and slosh dynamics using
multi-body dynamics. However, many formulations require complex re-derivations for a specific space-
craft design. This paper introduces a ready-to-be-applied solution to rigorously integrate structural
flexing and fuel slosh dynamics into a numerical simulation using the classical Newtonian and Eulerian
approach. This solution can be applied to a wide variety of spacecraft configurations. This formulation
approximates solar panel flexing with hinged rigid body dynamics and fuel slosh with a lumped mass vi-
brational model. A novel contribution of this paper is a generalized back-substitution method which can
increase the computational efficiency (as much as a 180% speedup). Numerical simulations are included
to show the effect of flex and slosh and the simulation is validated studying energy and momentum.

I Introduction
Flexing appended bodies and fuel slosh are the sources of excitation of vibration for many spacecraft. This vibra-

tion impacts both the translational and rotational spacecraft motion. In order to analyze these effects, it is desirable
to incorporate the dynamics in fast computer simulations. However, developing the associated equations of motion
(EOMs) is not a trivial task for general three-dimensional motion and often requires a custom re-derivation of the
EOMs which can be time intensive. There is a need to introduce EOMs that would be applicable to many space-
craft configurations and could be used without the need of re-derivation. The EOMs considered in this paper are the
translational rotational dynamics of a spacecraft with flexible structural sub-components and a tank with sloshing fuel
dynamics.

There are many different ways to model flexible dynamics.1 One method is to assume that the primary impact is
on the attitude dynamics of the spacecraft so the translational motion coupling can be ignored. Also, in some scenarios
the effects of flexing can be assumed to only impact one plane of rotation, therefore one method is to constrain the
motion to fixed-axis rotational motion.2 This approach allows the flexing body to be modeled as a finite number of
masses on a cantilevered beam and allows for different frequency modes to be present.2 This derivation results in a
transfer function that is useful in determining the stability and frequency response due to different inputs. However,
it neglects the cross coupling effect on the other rotational axes and on translational motion which does not allow for
complex three-dimensional motion. This method is helpful in the early stages of a mission, but lacks fidelity and is
limited in its application.

In contrast, the field of multi-body dynamics has extensive research on modeling flexible dynamics and the equa-
tions of motion presented are generalized for complex and diverse problems. This results in requiring a custom
derivation of equations because of generality.3–5 These methods are required for unique and complex systems because
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the equations of motion depend on how many joints are interconnected. For example, in robotic systems, the number
of interconnected joints varies widely, and the equations of motion are specific to each system.6, 7

Similar to this paper, multiple publications present models of spacecraft dynamics with appended solar panels.8–10

However, this previous research is mainly focused on the deployment of solar panels and how the dynamics of the
spacecraft are affected.8–10 Also, the previous research on deployable solar panels is specific to solar panels that are
composed of interconnected bodies. This paper considers systems where the solar panels are single rigid bodies. It
uses a method of modeling the flexible dynamics of the solar panels by assuming that the hub of the spacecraft and
the solar panels are rigid bodies, but the solar panels are connected to the hub by single degree-of-freedom torsional
springs.1 The torsional spring constants could be attenuated to match the natural frequencies of the solar panels which
could be found from Finite Element Analysis (FEA) or testing. This method in modeling the flexible dynamics is a
first order model, and other effects like bending and torsional bending are not included.

The other vibrational driver being considered is fuel slosh. Slosh occurs when there is relative motion between
a tank and the liquid it contains. The main structure of a spacecraft and the liquid exchange linear momentum,
angular momentum, and energy.11 Mathematically, the equations of motion of the structure and the liquid are tightly
coupled.12, 13 In space, the liquid is subjected not only to inertial forces, but also to microgravity, viscous, and surface
tension forces.14, 15 Furthermore, a moving liquid inside a tank produces a change in the position of the center of mass
of the whole system in addition to internal torques and forces when a liquid wave hits the walls of the tank.

The most rigorous mathematical approach to sloshing phenomena is given by the Navier-Stokes equations with
nonlinear boundary conditions.11 Several Computational Fluid Dynamics (CFD) methods have been applied to solve
this problem using different formulations.12, 13, 16–18 Quasi-simultaneous methods can be used to solve the coupled
equations of motion.12 From a control perspective, however, as pointing and maneuvering requirements tighten, slosh
models are needed on spacecraft with large fuel tanks to evaluate the effect of the liquid movement on the attitude
control loop. The combined CFD-rigid-body model, although more exact, has some drawbacks from a simulation
point of view. First, the inherent complexity of the combined model might not be feasible in early stages of the design.
Second, integrating continuum and lumped models can be computationally time consuming.19, 20

To avoid these complications, often simplified slosh models are used for control loop modeling.14, 15, 21, 22 Slosh
is comprised of several different kinds of movement, many of which are highly nonlinear. Small-amplitude waves
and stable nonlinear rotary slosh can be approximated using lumped mechanical multi-mode models,14, 15, 23 including
either masses, springs, and dampers or pendulums. Using a lumped model may be a useful simplification in a dynamic
model for control design purposes. It can be viewed as a complement of the more accurate CFD approach. In this
work, a systematic approach to slosh modeling is proposed using approximated multi-mode mechanical models. The
slosh model is integrated into the rigid spacecraft and hinged panel models, providing a fully-coupled model that
satisfies momentum and energy conservations. The estimation of the parameters of the model, which may be either
computed through CFD simulation or observed experimentally,19 is not considered.

Another key challenge, beyond the derivation, is the ability to create a fast numerical simulation. If the EOMs are
formulated in a way where all the modes are fully cross-coupled, a large system mass matrix must be inverted which is
computationally expensive. In Reference 1 a solution to decrease the computational impact for a rigid body spacecraft
configuration with N hinged panel models is introduced. The resulting system mass matrix needed to be inverted for
this problem is an (N + 6)× (N + 6) matrix. Fast computational speed is achieved by analytically back-substituting
the flexing EOM into the rigid body EOM (requires an N ×N inverse), and obtaining a closed form solution for the
inertial angular acceleration that can be computed with the typical 3 × 3 matrix inverse. The flexing modes are then
solved as a second stage using the found body angular acceleration term. Using this back-substitution approach, a key
contribution of this paper is how to generalize this back-substitution approach for flexible dynamics and fuel slosh
together.

The paper is outlined as follows. First, the nonlinearly coupled EOMs for the rigid body translational and rotational
degrees of freedom are developed, followed by the EOM of the hinged panels and the fuel slosh. Next, an analytical
back-substitution is presented which helps speed up the numerical evaluation. Lastly, computational performance and
validation of the EOMs through energy and momentum checks is illustrated with numerical simulation of the EOMs.

II Problem Statement
The formulation assumes that there is a rigid hub, withNS solar panels (or appended rigid bodies) andNP lumped

masses in the tank for the fuel. Subscript i is used to indicated the ith solar panel and subscript j is used to indicate the
jth fuel slosh mass, mj . Figure 1 displays the frame and variable definitions used for this formulation.

There are four coordinate frames defined for this formulation. The inertial reference frame is indicated by N :
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Figure 2: Further detail of solar panels and fuel slosh

{n̂1, n̂2, n̂3}. The body fixed coordinate frame, B : {b̂1, b̂2, b̂3}, which is anchored to the hub and can be oriented
in any direction. The solar panel frame, Si : {ŝi,1, ŝi,2, ŝi,3}, is a frame with its origin located at its corresponding
hinge location, Hi. The Si frame is oriented such that ŝi,1 points antiparallel to the center of mass of its solar panel,
Sc,i. The ŝi,2 axis is defined as the rotation axis that would yield a positive θi using the right-hand rule. The distance
from point Hi to point Sc,i is defined as di. The hinge frame, Hi : {ĥi,1, ĥi,2, ĥi,3}, is a frame fixed with respect to
the body frame, and is equivalent to the respective Si frame when the corresponding solar panel is undeflected.

There are a few more key locations that need to be defined. Point B is the origin of the body frame, and can
have any location with respect to the hub. Point Bc is the location of the center of mass of the rigid hub. Pj is the
undeflected or equilibrium position of each corresponding slosh mass, while point Pc,j is the current position of that
slosh mass.

Figure 2 provides further detail of the fuel slosh and hinged solar panel parameters. As seen in Figure 2(a), an
individual slosh particle is constrained to move along its corresponding p̂j direction while connected by a spring with
a linear spring constant value kj and by a linear damper with a damping coefficient, cj . The variable, ρj is a state
variable and quantifies the displacement from equilibrium for the corresponding slosh mass. Analogously, Figure 2(b)
shows that each solar panel, with mass mspi , is connected by a torsional spring with spring constant, kθ,i and has
a rotational damper with coefficient cθ,i. The state variable describing a solar panel’s angular displacement from
equilibrium is θi.

Using the variables and frames defined, the following section outlines the derivation of equations of motion for the
spacecraft.

III Derivation of Equations of Motion
III.A Rigid Spacecraft Hub Translational Motion

Following a similar derivation as in previous work,1 the derivation begins with Newton’s first law for the center of
mass of the spacecraft.

r̈C/N =
F

msc
(1)
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Ultimately the acceleration of the body frame or point B is desired

r̈B/N = r̈C/N − c̈ (2)

The definition of c can be seen in Eq. (3).

c =
1

msc

(
mhubrBc/B +

NS∑
i=1

mspirSc,i/B +

NP∑
j=1

mjrPc,j/B

)
(3)

To find the inertial time derivative of c, it is first necessary to find the time derivative of c with respect to the body
frame. A time derivative of any vector, v, with respect to the body frame is denoted by v′; the inertial time derivative
is labeled as v̇. The first and second body-relative time derivatives of c can be seen in Eqs. (4) and (5).

c′ =
1

msc

( NS∑
i=1

mspir
′
Sc,i/B

+

NP∑
j=1

mjr
′
Pc,j/B

)
(4)

c′′ =
1

msc

( NS∑
i=1

mspir
′′
Sc,i/B

+

NP∑
j=1

mjr
′′
Pc,j/B

)
(5)

The vector rSc,i/B is readily defined using the ŝi,1 axis

rSc,i/B = rHi/B − diŝi,1 (6)

Now the first and second time derivatives with respect to the body frame of rSc,i/B are taken

r′Sc,i/B
= diθ̇iŝi,3 (7)

r′′Sc,i/B
= di

(
θ̈iŝi,3 + θ̇2i ŝi,1

)
(8)

Similarly rPc,j/B is defined in the following

rPc,j/B = rPj/B + ρj p̂j (9)

And, the first and second body time derivatives of rPc,j/B are

r′Pc,j/B
= ρ̇j p̂j (10)

r′′Pc,j/B
= ρ̈j p̂j (11)

Eqs. (4) and (5) are next reformulated to include these new definitions:

c′ =
1

msc

( NS∑
i=1

mspidiθ̇iŝi,3 +

NP∑
j=1

mj ρ̇j p̂j

)
(12)

c′′ =
1

msc

[ NS∑
i=1

mspidi

(
θ̈iŝi,3 + θ̇2i ŝi,1

)
+

NP∑
j=1

mj ρ̈j p̂j

]
(13)

Using the transport theorem24 yields the following definition for c̈

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N ×
(
ωB/N × c

)
(14)

Eq. (2) is updated to include Eq. (14)

r̈B/N = r̈C/N − c′′ − 2ωB/N × c′ − ω̇B/N × c− ωB/N ×
(
ωB/N × c

)
(15)
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Substituting Eq.(13) into Eq.(15) results in

r̈B/N = r̈C/N −
1

msc

[NS∑
i=1

mspidi

(
θ̈iŝi,3 + θ̇2i ŝi,1

)
+

NP∑
j=1

mj ρ̈j p̂j

]
− 2ωB/N × c′ − ω̇B/N × c− ωB/N ×

(
ωB/N × c

)
(16)

Moving second order terms to the left hand side and introducing the tilde matrix24 to replace the cross product operators
simplifies the equation to

r̈B/N − [c̃]ω̇B/N +
1

msc

NS∑
i=1

mspidiŝi,3θ̈i +
1

msc

NP∑
j=1

mj p̂j ρ̈j = r̈C/N − 2[ω̃B/N ]c
′

− [ω̃B/N ][ω̃B/N ]c−
1

msc

NS∑
i=1

mspidiθ̇
2
i ŝi,1 (17)

Equation (17) is the translational motion equation and is the first EOM needed to describe the motion of the spacecraft.
The following section develops the rotational EOM.

III.B Rigid Spacecraft Hub Rotational Motion
Starting with Euler’s equation when the body fixed coordinate frame origin is not coincident with the center of

mass of the body24

Ḣsc,B = LB +mscr̈B/N × c (18)

where LB is the total external torque about point B. The definition of the angular momentum vector of the spacecraft
about point B is

Hsc,B = [Ihub,Bc ]ωB/N +mhubrBc/B × ṙBc/B +

NP∑
j=1

mjrPc,j/B × ṙPc,j/B

+

NS∑
i=1

(
[Ispi,Sc,i

]ωB/N + θ̇iIsi,2 ŝi,2 +mspirSc,i/B × ṙSc,i/B

)
(19)

The solar panel inertia about its center of mass is assumed to be defined along principal inertia axes and is of the form

[Ispi,Sc,i ] =

SIsi,1 0 0
0 Isi,2 0
0 0 Isi,3

 (20)

Now the inertial time derivative of Eq. (19) is taken and yields

Ḣsc,B = [Ihub,Bc
]ω̇B/N + ωB/N × [Ihub,Bc

]ωB/N +mhubrBc/B × r̈Bc/B +

NP∑
j=1

mjrPc,j/B × r̈Pc,j/B

+

NS∑
i=1

(
[I ′spi,Sc,i

]ωB/N + [Ispi,Sc,i
]ω̇B/N + ωB/N × [Ispi,Sc,i

]ωB/N

+ θ̈iIsi,2 ŝi,2 + ωB/N × θ̇iIsi,2 ŝi,2 +mspirSc,i/B × r̈Sc,i/B

)
(21)

The terms r̈Bc/B , r̈Sc,i/B and r̈Pc,j/B are found using the transport theorem and knowing that rBc/B is fixed with
respect to the body frame.

r̈Bc/B = ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B) (22)
r̈Sc,i/B = r′′Sc,i/B

+ 2ωB/N × r′Sc,i/B
+ ω̇B/N × rSc,i/B + ωB/N × (ωB/N × rSc,i/B) (23)

r̈Pc,j/B = r′′Pc,j/B
+ 2ωB/N × r′Pc,j/B

+ ω̇B/N × rPc,j/B + ωB/N × (ωB/N × rPc,j/B) (24)
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Incorporating Eqs. (22) - (24) into Eq. (21) results in

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × (ω̇B/N × rBc/B)

+mhubrBc/B ×
[
ωB/N × (ωB/N × rBc/B)

]
+

NP∑
j=1

mjrPc,j/B ×
[
r′′Pc,j/B

+ 2ωB/N × r′Pc,j/B
+ ω̇B/N × rPc,j/B

+ ωB/N × (ωB/N × rPc,j/B)
]
+

NS∑
i=1

(
[I ′spi,Sc,i

]ωB/N + [Ispi,Sc,i
]ω̇B/N + ωB/N × [Ispi,Sc,i

]ωB/N

+ θ̈iIsi,2 ŝi,2 + ωB/N × θ̇iIsi,2 ŝi,2 +mspirSc,i/B × r′′Sc,i/B
+ 2mspirSc,i/B × (ωB/N × r′Sc,i/B

)

+mspirSc,i/B × (ω̇B/N × rSc,i/B) +mspirSc,i/B × [ωB/N × (ωB/N × rSc,i/B)]

)
(25)

Applying the parallel axis theorem the following inertia tensor terms are defined as

[Ihub,B ] = [Ihub,Bc
] +mhub[r̃Bc/B ][r̃Bc/B ]

T (26)

[Ispi,B ] = [Ispi,Sc,i
] +mspi [r̃Sc,i/B ][r̃Sc,i/B ]

T (27)

[Isc,B ] = [Ihub,B ] +

NS∑
i=1

[Ispi,B ] +

NP∑
j=1

mj [r̃Pc,j/B ][r̃Pc,j/B ]
T (28)

Taking the body-relative time derivative of Equation (28) yields

[I ′sc,B ] =

NS∑
i=1

[
[I ′spi,Sc,i

]−mspi

(
[r̃′Sc,i/B

][r̃Sc,i/B ] + [r̃Sc,i/B ][r̃
′
Sc,i/B

]
)]

−
NP∑
j=1

mj

(
[r̃′Pc,j/B

][r̃Pc,j/B ] + [r̃Pc,j/B ][r̃
′
Pc,j/B

]
)

(29)

[I ′spi,Sc,i
] needs to be defined and can be conveniently expressed by leveraging the assumption that the inertia matrix

is diagonal and is written in terms of its base vectors:

[Ispi,Sc,i ] = Isi,1 ŝi,1ŝ
T
i,1 + Isi,2 ŝi,2ŝ

T
i,2 + Isi,3 ŝi,3ŝ

T
i,3 (30)

Taking the body time derivative of Eq. (30) results in

[I ′spi,Sc,i
] = Isi,1 ŝ

′
i,1ŝ

T
i,1 + Isi,1 ŝi,1ŝ

′T
i,1 + Isi,2 ŝ

′
i,2ŝ

T
i,2 + Isi,2 ŝi,2ŝ

′T
i,2 + Isi,3 ŝ

′
i,3ŝ

T
i,3 + Isi,3 ŝi,3ŝ

′T
i,3 (31)

Using the transport theorem: ŝ′i,j = ωSi/B × ŝi,j = θ̇iŝi,2× ŝi,j , and applying this to Eq. (31) and simplifying results
in

[I ′spi,Sc,i
] = θ̇i(Isi,3 − Isi,1)(ŝi,1ŝTi,3 + ŝi,3ŝTi,1) (32)

Substituting Eq. (32) into Eq. (25) and using Eq. (28) to simplify results in Eq. (33). The Jacobi Identity, (a×b)×c =
a× (b× c)− b× (a× c), is used to combine terms and produce the following simplified equation

Ḣsc,B = [Isc,B ]ω̇B/N + ωB/N × [Isc,B ]ωB/N + [I ′sc,B ]ωB/N +

NP∑
j=1

[
mjrPc,j/B × r′′Pc,j/B

+mjωB/N ×
(
rPc,j/B × r′Pc,j/B

)]
+

NS∑
i=1

[
θ̈iIsi,2 ŝi,2 + ωB/N × θ̇iIsi,2 ŝi,2

+mspirSc,i/B × r′′Sc,i/B
+mspiωB/N ×

(
rSc,i/B × r′Sc,i/B

)]
(33)
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Eqs. (18) and (33) are equated and yield

LB +mscr̈B/N × c = [Isc,B ]ω̇B/N + ωB/N × [Isc,B ]ωB/N + [I ′sc,B ]ωB/N +

NP∑
j=1

[
mjrPc,j/B × r′′Pc,j/B

+mjωB/N ×
(
rPc,j/B × r′Pc,j/B

)]
+

NS∑
i=1

[
θ̈iIsi,2 ŝi,2 + ωB/N × θ̇iIsi,2 ŝi,2

+mspirSc,i/B × r′′Sc,i/B
+mspiωB/N ×

(
rSc,i/B × r′Sc,i/B

)]
(34)

Finally, using tilde matrix and simplifying yields the modified Euler equation, which is the second EOM necessary to
describe the motion of the spacecraft.

[Isc,B ]ω̇B/N = −[ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N −
NP∑
j=1

(
mj [r̃Pc,j/B ]r

′′
Pc,j/B

+mj [ω̃B/N ][r̃Pc,j/B ]r
′
Pc,j/B

)
−

NS∑
i=1

(
θ̈iIsi,2 ŝi,2 + [ω̃B/N ]θ̇iIsi,2 ŝi,2 +mspi [r̃Sc,i/B ]r

′′
Sc,i/B

+mspi [ω̃B/N ][r̃Sc,i/B ]r
′
Sc,i/B

)
+LB −msc[c̃]r̈B/N (35)

Rearranging Eq. (35) to be in the same form as the previous sections results in

msc[c̃]r̈B/N + [Isc,B ]ω̇B/N +

NS∑
i=1

{
Isi,2 ŝi,2 +mspidi[r̃Sc,i/B ]ŝi,3

}
θ̈i +

NP∑
j=1

mj [r̃Pc,j/B ]p̂j ρ̈j =

− [ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N −
NS∑
i=1

{
θ̇i[ω̃B/N ]

(
Isi,2 ŝi,2 +mspidi[r̃Sc,i/B ]ŝi,3

)
+mspidiθ̇

2
i [r̃Sc,i/B ]ŝi,1

}
−

NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B ]r
′
Pc,j/B

+LB (36)

III.C Solar Panel Motion
The following section follows the same derivation seen in previous work1 and is summarized here for convenience.

Let LHi
= Li,1ŝi,1+Li,2ŝi,2+Li,3ŝi,3 be the total torque acting on the solar panel. The corresponding hinge torque

is given through
Li,2 = −kiθi − ciθ̇i + ŝi,2 · τext,Hi

(37)

The hinge structure produces the other two torques Li,1 and Li,3. τext,Hi
is the external torque on the solar panel and

is projected onto the ŝi,2 direction to find its contribution to Li,2. Gravity, for example would apply the following
torque on the solar panel about point Hi

τg,Hi
= rSc,i/Hi

× Fg (38)

The inertial angular velocity vector for the solar panel frame is

ωSi/N = ωSi/Hi
+ ωHi/B + ωB/N (39)

where ωSi/Hi
= θ̇iŝi,2. Because the hinge frameHi is fixed relative to the body frame B the relative angular velocity

vector is ωHi/B = 0. The body angular velocity vector is written in Si-frame components as

ωB/N = (ŝi,1 · ωB/N )ŝi,1 + (ŝi,2 · ωB/N )ŝi,2 + (ŝi,3 · ωB/N )ŝi,3 (40)
= ωsi,1 ŝi,1 + ωsi,2 ŝi,2 + ωsi,3 ŝi,3 (41)
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Using this definition greatly simplifies the following algebraic development. Finally, the inertial solar panel angular
velocity vector is written as

ωSi/N = ωsi,1 ŝi,1 + (ωsi,2 + θ̇i)ŝi,2 + ωsi,3 ŝi,3 (42)

As ŝi,2 is a body-fixed vector, note that

ω̇si,2 =
Bd
dt
(
ωB/N · ŝi,2

)
=
Bd
dt
(
ωB/N

)
· ŝi,2 = ω̇B/N · ŝi,2 (43)

Substituting these angular velocity components into the rotational equations of motion of a rigid body with torques
taken about its center of mass,24 the general solar panel equations of motion are written as

Isi,1 ω̇si,1 = −(Isi,3 − Isi,2)(ωsi,2 + θ̇i)ωsi,3 + Lsi,1 (44)

Isi,2(ω̇si,2 + θ̈i) = −(Isi,1 − Isi,3)ωsi,3ωsi,1 + Lsi,2 (45)

Isi,3 ω̇si,3 = −(Isi,2 − Isi,1)ωsi,1(ωsi,2 + θ̇i) + Lsi,3 (46)

where LSc,i
= Lsi,1 ŝi,1 + Lsi,2 ŝi,2 + Lsi,3 ŝi,3 is the net torque acting on the solar panel about its center of mass.

The second differential equation is used to get the equations of motion of θi. The first and third equation could used
to back-solve for the structural hinge torques embedded in Lsi,1 and Lsi,3 if needed.

Let FSc,i
be the net force acting on the solar panel. Using the superparticle theorem24 yields

FSc,i = mspi r̈Sc,i/N (47)

The torque about the solar panel center of mass can be related to the torque about the hinge point Hi using

LHi
= LSc,i

+ rSc,i/Hi
× FSc,i

(48)

Solving for the torque about Sc,i yields

LSc,i = LHi − rSc,i/Hi
×mspi r̈Sc,i/N (49)

Taking the vector dot product with ŝi,2 and using rSc,i/Hi
= −diŝi,1 results in

Lsi,2 = ŝi,2 ·LSc,i
= ŝi,2 ·LHi︸ ︷︷ ︸

Li,2

−ŝi,2 ·
(
rSc,i/Hi

×mspi r̈Sc,i/N

)
(50)

= −kiθ − ciθ̇i + ŝi,2 · τext,Hi
+mspidiŝi,2 ·

(
ŝi,1 × r̈Sc,i/N

)
(51)

Taking two inertial time derivatives of rSc,i/N = rHi/N − dŝi,1 yields

r̈Sc,i/N = r̈Hi/N − ω̇Si/N × (dŝi,1)− ωSi/N × (ωSi/N × (dŝi,1)) (52)

Substituting this inertial acceleration into the above Lsi,2 expression provides

Lsi,2 = −kiθ − ciθ̇i + ŝi,2 · τext,Hi
+mspidiŝi,2 · (ŝi,1 × r̈Hi/N ) +mspid

2
i ŝi,2 · (ŝi,1 × (ŝi,1 × ω̇Si/N ))

−mspid
2
i ŝi,2 · (ŝi,1 × (ωSi/N × (ωSi/N × ŝi,1))) (53)

Using the double vector cross product identity, as well as a · (b × c) = (a × b) · c, the Lsi,2 torque component is
simplified to

Lsi,2 = −kiθ− ciθ̇i + ŝi,2 · τext,Hi −mspidiŝi,3 · r̈Hi/N −mspid
2
i ŝi,2 · ω̇B/N −mspid

2
i θ̈i +mspid

2
iωsi,3ωsi,1 (54)

Substituting this torque into the earlier differential equation

Isi,2(ω̇si,2 + θ̈i) = −(Isi,1 − Isi,3)ωsi,3ωsi,1 + Lsi,2 (55)

leads to the desired scalar hinged solar panel equation of motion(
Isi,2 +mspid

2
i

)
ŝTi,2ω̇B/N +

(
Isi,2 +mspid

2
i

)
θ̈i +mspidiŝ

T
i,3r̈Hi/N + kiθ + ciθ̇i − ŝi,2 · τext,Hi

+
(
Isi,1 − Isi,3 −mspid

2
i

)
ωsi,3ωsi,1 = 0 (56)
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The term r̈Hi/N needs to be expanded to be in terms of the desired translational motion r̈B/N . Knowing that the hinge
location is a fixed point on the body, Eq. (56) is changed to the following form(

Isi,2 +mspid
2
i

)
ŝTi,2ω̇B/N +mspidiŝ

T
i,3(r̈B/N + ω̇B/N × rHi/N + ωB/N × (ωB/N × rHi/N ))

+
(
Isi,2 +mspid

2
i

)
θ̈i + kiθi + ciθ̇i − ŝi,2 · τext,Hi

+
(
Isi,1 − Isi,3 −mspid

2
i

)
ωsi,3ωsi,1 = 0 (57)

Following the same form introduced in the previous sections, the second order state variables are isolated to the left-
hand side of the equation and the cross products are replaced with the skew symmetric matrices:

mspidiŝ
T
i,3r̈B/N +

[(
Isi,2 +mspid

2
i

)
ŝTi,2 −mspidiŝ

T
i,3[r̃Hi/B ]

]
ω̇B/N +

(
Isi,2 +mspid

2
i

)
θ̈i

= −kiθi − ciθ̇i + ŝi,2 · τext,Hi
+
(
Isi,3 − Isi,1 +mspid

2
i

)
ωsi,3ωsi,1 −mspidiŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B (58)

Eq. (58) is the third EOM required to describe the motion of the spacecraft and will be utilized later in the paper. The
next section explains the formulation of the fuel slosh motion.

III.D Fuel Slosh Motion
The fuel slosh motion is being approximated by a lumped mechanical multi-mode model.14, 15, 23 Figure 2(a) shows

that a single fuel slosh particle is free to move along its corresponding p̂j direction and this formulation is generalized
to include NP number of fuel slosh particles. The derivation begins with Newton’s law for each fuel slosh particle:

mj r̈Pc,j/N = FG + FC − kjρj p̂j − cj ρ̇j p̂j (59)

Where FG is the force of gravity and FC is the constraint force that maintains the fuel slosh mass to travel along the
direction p̂j . The forces due to the spring and damper are explicitly included in Eq. (59) and result in a restoring force
and damping force. r̈Pc,j/N is defined in the following equation.

r̈Pc,j/N = r̈B/N + r̈Pc,j/B (60)

The inertial acceleration vector r̈Pc,j/B is defined in Eq. (24). Plugging this definition into Eq. (59) results in

mj

[
r̈B/N + ρ̈j p̂j + 2ωB/N × r′Pc,j/B

+ ω̇B/N × rPc,j/B + ωB/N × (ωB/N × rPc,j/B)
]

= FG + FC − kjρj p̂j − cj ρ̇j p̂j (61)

Equation (61) is the dynamical equation for a fuel slosh particle, however, the constraint force, FC , is undefined.
Since the fuel slosh particle is free to move in the p̂j direction, the component of FC along the p̂j direction is zero.
Leveraging this insight, Eq. (61) is projected into the p̂j direction by multiplying both sides of the equation by p̂j

T .

mj

(
p̂j
T r̈B/N + ρ̈j + 2p̂j

TωB/N × r′Pc,j/B
+ p̂j

T ω̇B/N × rPc,j/B + p̂j
TωB/N × (ωB/N × rPc,j/B)

)
= p̂j

TFG − kjρj − cj ρ̇j (62)

Moving the second order terms to the left hand side and introducing the tilde matrix notation yields the final equation
needed to describe the motion of the spacecraft.

mj p̂j
T r̈B/N −mj p̂j

T [r̃Pc,j/B ]ω̇B/N +mj ρ̈j

= p̂j
TFG − kjρj − cj ρ̇j − 2mj p̂j

T [ω̃B/N ]r
′
Pc,j/B

−mj p̂j
T [ω̃B/N ][ω̃B/N ]rPc,j/B (63)

IV Back-substitution Method
The equations presented in the previous sections result in NS +NP +6 coupled differential equations. Therefore,

if the EOMs were placed into state space form, a system mass matrix of size NS +NP + 6 would need to be inverted
to numerically integrate the EOMs. This can result in a computationally expensive simulation. The computation effort
to numerically invert an N × N matrix scales with N3. In the following section, the EOMs are manipulated using a
back-substitution bethod to increase the computational efficiency.

To give a visual representation of the back-substitution method, Figure 3 is presented. This manipulation involves
inverting an NS × NS matrix for the solar panel motion, inverting an NP × NP for the fuel slosh motion, inverting
the rotational motion equation (3× 3), and then back solving for the solar panel, fuel slosh and translational motions.
The derivation of the back-substitution method can be seen in the following sections.
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✓̈i

NS ⇥ NS Inverse NP ⇥ NP Inverse

3 ⇥ 3 Inverse

Figure 3: Back-substitution simulation implementation logic tree

IV.A Solar Panel and Fuel Slosh Motion
In Eq. (58), the solar panel motion is coupled with the translational motion and the rotational motion. The trans-

lational motion needs to be decoupled from the solar panel motion. To perform this task, Eq. (17) is substituted into
Eq. (58).

mspidiŝ
T
i,3

(
[c̃]ω̇B/N −

1

msc

NS∑
i=1

mspidiŝi,3θ̈i −
1

msc

NP∑
j=1

mj p̂j ρ̈j + r̈C/N − 2[ω̃B/N ]c
′

−[ω̃B/N ][ω̃B/N ]c−
1

msc

NS∑
i=1

mspidiθ̇
2
i ŝi,1

)
+

[(
Isi,2 +mspid

2
i

)
ŝTi,2−mspidiŝ

T
i,3[r̃Hi/B ]

]
ω̇B/N+

(
Isi,2 +mspid

2
i

)
θ̈i

= −kiθi − ciθ̇i +
(
Isi,3 − Isi,1 +mspid

2
i

)
ωsi,3ωsi,1 −mspidiŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B (64)

Isolating the second order solar panel variables and moving everything else to the right hand side results in

(
Isi,2+mspid

2
i−

m2
spi

msc
d2i

)
θ̈i−

mspidiŝ
T
i,3

msc

NS∑
k=1;k 6=i

mspkdkŝk,3θ̈k = −mspidiŝ
T
i,3

(
[c̃]ω̇B/N−

1

msc

NP∑
j=1

mj p̂j ρ̈j+r̈C/N

− 2[ω̃B/N ]c
′− [ω̃B/N ][ω̃B/N ]c−

1

msc

NS∑
k=1;k 6=i

mspkdkθ̇
2
kŝk,1

)
−
[(
Isi,2 +mspid

2
i

)
ŝTi,2−mspidiŝ

T
i,3[r̃Hi/B ]

]
ω̇B/N

− kiθi − ciθ̇i +
(
Isi,3 − Isi,1 +mspid

2
i

)
ωsi,3ωsi,1 −mspidiŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B (65)

Combining second order terms on the right hand side yields

(
Isi,2 +mspid

2
i −

m2
spi

msc
d2i

)
θ̈i −

mspidiŝ
T
i,3

msc

NS∑
k=1;k 6=i

mspkdkŝk,3θ̈k

= −
[(
Isi,2 +mspid

2
i

)
ŝTi,2 −mspidiŝ

T
i,3

(
[r̃Hi/B ]− [c̃]

)]
ω̇B/N +

mspidiŝ
T
i,3

msc

NP∑
j=1

mj p̂j ρ̈j

−mspidiŝ
T
i,3

[
r̈C/N − 2[ω̃B/N ]c

′ + [ω̃B/N ][ω̃B/N ]
(
rHi/B − c

)
− 1

msc

NS∑
k=1;k 6=i

mspkdkθ̇
2
kŝk,1

]
− kiθi − ciθ̇i +

(
Isi,3 − Isi,1 +mspid

2
i

)
ωsi,3ωsi,1 (66)

10 OF 19
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



Eq. (66) is written in matrix form to utilize some linear algebra techniques.

[A]


θ̈1
.
.

θ̈NS

 = [F ]ω̇B/N + [G]


ρ̈1
.
.

ρ̈NP

+ v (67)

Where [A] is an NS ×NS matrix with the following definitions

ai,i = Ispi,2 +
(
mspi −

m2
spi

msc

)
d2i (68a)

ai,k = −mspi

msc
diŝ

T
i,3

(
mspkdkŝk,3

)
(68b)

[F ] is an NS × 3 matrix with its row elements defined as

fTi = −
[(
Isi,2 +mspid

2
i

)
ŝTi,2 −mspidiŝ

T
i,3

(
[r̃Hi/B ]− [c̃]

)]
(69)

Here [G] is an NS ×NP matrix with the following definitions

gi,j =
mspidiŝ

T
i,3

msc
mj p̂j (70)

The parameter v is an NS × 1 matrix with the following elements

vi = −mspidiŝ
T
i,3

[
r̈C/N − 2[ω̃B/N ]c

′ + [ω̃B/N ][ω̃B/N ]
(
rHi/B − c

)
− 1

msc

NS∑
k=1;k 6=i

mspkdkθ̇
2
kŝk,1

]
− kiθi − ciθ̇i + ŝi,2 · τext,Hi +

(
Isi,3 − Isi,1 +mspid

2
i

)
ωsi,3ωsi,1 (71)

Eq. (67) can now be solved by inverting matrix [A]. Note the definition [E] = [A]−1.
θ̈1
.
.

θ̈NS

 = [E][F ]ω̇B/N + [E][G]


ρ̈1
.
.

ρ̈NP

+ [E]v (72)

Since the modified Euler’s equation, Eq. (36), has θ̈i terms, it is more convenient to use the expression for θ̈i as

θ̈i = e
T
i [F ]ω̇B/N + eTi [G]


ρ̈1
.
.

ρ̈NP

+ eTi v (73)

Where the subcomponents of [E] are defined as

[E] =


eT1
.
.

eTNS

 (74)

The next step required is to decouple the translational and solar panel motions from the slosh EOM. Substituting
the translational motion into the slosh equation, Eq. (63), results in

mj p̂j
T
(
[c̃]ω̇B/N −

1

msc

NS∑
i=1

mspidiŝi,3θ̈i −
1

msc

NP∑
j=1

mj p̂j ρ̈j + r̈C/N − 2[ω̃B/N ]c
′

− [ω̃B/N ][ω̃B/N ]c−
1

msc

NS∑
i=1

mspidiθ̇
2
i ŝi,1

)
−mj p̂j

T [r̃Pc,j/B ]ω̇B/N +mj ρ̈j

= p̂j
TFG − kjρj − cj ρ̇j − 2mj p̂j

T [ω̃B/N ]r
′
Pc,j/B

−mj p̂j
T [ω̃B/N ][ω̃B/N ]rPc,j/B (75)

11 OF 19
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



Replacing the second order solar panel variables with Eq. (73) yields

mj p̂j
T

[
[c̃]ω̇B/N−

1

msc

NS∑
i=1

mspidiŝi,3

(
eTi [F ]ω̇B/N+

NS∑
k=1

ei,k

NP∑
l=1

gk,lρ̈l+e
T
i v
)
− 1

msc

NP∑
l=1

mlp̂lρ̈l+r̈C/N−2[ω̃B/N ]c′

− [ω̃B/N ][ω̃B/N ]c−
1

msc

NS∑
i=1

mspidiθ̇
2
i ŝi,1

]
−mj p̂j

T [r̃Pc,j/B ]ω̇B/N +mj ρ̈j

= p̂j
TFG − kjρj − cj ρ̇j − 2mj p̂j

T [ω̃B/N ]r
′
Pc,j/B

−mj p̂j
T [ω̃B/N ][ω̃B/N ]rPc,j/B (76)

Isolating fuel slosh second order terms to the left hand side and combining ω̇B/N terms on the right hand side of the
equation yields[

mj −
m2
j

msc
− mj p̂j

T

msc

NS∑
i=1

mspidiŝi,3

NS∑
k=1

ei,kgk,j

]
ρ̈j −

mj p̂j
T

msc

NP∑
l=1;l 6=j

[( NS∑
i=1

mspidiŝi,3

NS∑
k=1

ei,kgk,l+mlp̂l

)
ρ̈l

]

= −mj p̂j
T
(
[c̃]− [r̃Pc,j/B ]−

1

msc

NS∑
i=1

mspidiŝi,3e
T
i [F ]

)
ω̇B/N

−mj p̂j
T

(
− 1

msc

NS∑
i=1

mspidi

[
ŝi,3e

T
i v + θ̇2i ŝi,1

]
+ r̈C/N −

FG
mj

+ 2[ω̃B/N ]
[
r′Pc,j/B

− c′
]

+ [ω̃B/N ][ω̃B/N ]
[
rPc,j/B − c

])
− kjρj − cj ρ̇j (77)

Eq. (77) is written in matrix form

[N ]


ρ̈1
.
.

ρ̈NP

 = [O]ω̇B/N + q (78)

Where [N ] is an NP ×NP matrix with the following definitions

nj,j = mj −
m2
j

msc
− mj p̂j

T

msc

NS∑
i=1

mspidiŝi,3

NS∑
k=1

ei,kgk,j (79a)

nj,l = −
mj p̂j

T

msc

( NS∑
i=1

mspidiŝi,3

NS∑
k=1

ei,kgk,l +mlp̂l

)
(79b)

[O] is an NP × 3 matrix with its row elements defined as

oTj = −mj p̂j
T
(
[c̃]− [r̃Pc,j/B ]−

1

msc

NS∑
i=1

mspidiŝi,3e
T
i [F ]

)
(80)

q is an NP × 1 vector with the following elements

qj = −mj p̂j
T

(
− 1

msc

NS∑
i=1

mspidi

[
ŝi,3e

T
i v + θ̇2i ŝi,1

]
+ r̈C/N −

FG
mj

+ 2[ω̃B/N ]
[
r′Pc,j/B

− c′
]

+ [ω̃B/N ][ω̃B/N ]
[
rPc,j/B − c

])
− kjρj − cj ρ̇j (81)

Inverting matrix [N ] ([T ] = [N ]−1) solves the equation for second order slosh terms
ρ̈1
.
.

ρ̈NP

 = [T ][O]ω̇B/N + [T ]q (82)
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It is also convenient to write the slosh equations in the following form

ρ̈j = t
T
j [O]ω̇B/N + tTj q (83)

Where the subcomponents of [T ] are defined as

[T ] =


tT1
.
.

tTNP

 (84)

IV.B Hub Rotational Motion

The rotational motion is coupled with the solar panel, fuel slosh and translational motions. Therefore, the transla-
tional, solar panel, and fuel slosh EOMs need to be substituted into the modified Euler’s equation, Eq. (36). First, the
translational motion is substituted into Eq. (36).

msc[c̃]

(
[c̃]ω̇B/N −

1

msc

NS∑
i=1

mspidiŝi,3θ̈i −
1

msc

NP∑
j=1

mj p̂j ρ̈j + r̈C/N − 2[ω̃B/N ]c
′

−[ω̃B/N ][ω̃B/N ]c−
1

msc

NS∑
i=1

mspidiθ̇
2
i ŝi,1

)
+[Isc,B ]ω̇B/N+

NS∑
i=1

{
ISc,i,2ŝi,2+mspidi[r̃Sc,i/B ]ŝi,3

}
θ̈i+

NP∑
j=1

mj [r̃Pc,j/B ]p̂j ρ̈j =

− [ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N −
NS∑
i=1

{
θ̇i[ω̃B/N ]

(
ISc,i,2ŝi,2 +mspidi[r̃Sc,i/B ]ŝi,3

)
+mspidiθ̇

2
i [r̃Sc,i/B ]ŝi,1

}
−

NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B ]r
′
Pc,j/B

+LB (85)

Second order variables are combined

(
[Isc,B ] +msc[c̃][c̃]

)
ω̇B/N +

NS∑
i=1

{
ISc,i,2ŝi,2 +mspidi

(
[r̃Sc,i/B ]− [c̃]

)
ŝi,3

}
θ̈i +

NP∑
j=1

mj

(
[r̃Pc,j/B ]− [c̃]

)
p̂j ρ̈j

+msc[c̃]

(
r̈C/N − 2[ω̃B/N ]c

′ − [ω̃B/N ][ω̃B/N ]c−
1

msc

NS∑
i=1

mspidiθ̇
2
i ŝi,1

)
=

− [ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N −
NS∑
i=1

{
θ̇i[ω̃B/N ]

(
ISc,i,2ŝi,2 +mspidi[r̃Sc,i/B ]ŝi,3

)
+mspidiθ̇

2
i [r̃Sc,i/B ]ŝi,1

}
−

NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B ]r
′
Pc,j/B

+LB (86)
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Next Eqs. (73) and (83) are substituted into Eq. (86) and the ω̇B/N terms are isolated to the left hand side of the
equation{

[Isc,B ] +msc[c̃][c̃] +

NS∑
i=1

[
ISc,i,2ŝi,2 +mspidi

(
[r̃Sc,i/B ]− [c̃]

)
ŝi,3

](
eTi [F ] + e

T
i [G][T ][O]

)
+

NP∑
j=1

mj

(
[r̃Pc,j/B ]− [c̃]

)
p̂jt

T
j [O]

}
ω̇B/N = −[ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N +LB

−msc[c̃]

(
r̈C/N−2[ω̃B/N ]c′−[ω̃B/N ][ω̃B/N ]c

)
−
NS∑
i=1

{[
ISc,i,2ŝi,2+mspidi

(
[r̃Sc,i/B ]−[c̃]

)
ŝi,3

][
eTi [G][T ]q+e

T
i v
]

+ θ̇i[ω̃B/N ]
(
ISc,i,2ŝi,2 +mspidi[r̃Sc,i/B ]ŝi,3

)
+mspidiθ̇

2
i

(
[r̃Sc,i/B ]− [c̃]

)
ŝi,1

}
−

NP∑
j=1

mj

{
[ω̃B/N ][r̃Pc,j/B ]r

′
Pc,j/B

+
(
[r̃Pc,j/B ]− [c̃]

)
p̂jt

T
j q

}
(87)

Here [R] is a 3×NS matrix with its column elements defined as

Ri = Isi,2ŝi,2 +mspidi
(
[r̃Si/B ]− [c̃]

)
ŝi,3 (88)

and [X] is a 3×NP matrix with its column elements defined as

xj = mj

(
[r̃Pc,j/B ]− [c̃]

)
p̂j (89)

The following definitions are defined to simplify the EOM to

[ILHS] = [Isc,B ] +msc[c̃][c̃] +

NS∑
i=1

Ri

(
eTi [F ] + e

T
i [G][T ][O]

)
+

NP∑
j=1

xjt
T
j [O] (90)

τRHS = −[ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N +LB

−msc[c̃]

(
r̈C/N − 2[ω̃B/N ]c

′ − [ω̃B/N ][ω̃B/N ]c

)
−

NS∑
i=1

{
Ri

[
eTi [G][T ]q + e

T
i v
]

+ θ̇i[ω̃B/N ]
(
ISc,i,2ŝi,2 +mspidi[r̃Sc,i/B ]ŝi,3

)
+mspidiθ̇

2
i

(
[r̃Sc,i/B ]− [c̃]

)
ŝi,1

}
−

NP∑
j=1

{
mj [ω̃B/N ][r̃Pc,j/B ]r

′
Pc,j/B

+ xjt
T
j q

}
(91)

[ILHS] is a 3× 3 matrix and τRHS is a 3× 1 vector. This allows the final equation to be simplified to the following form

[ILHS]ω̇B/N = τRHS (92)

IV.C Remaining Back-substitution Steps
Now Eq. (92) can be solved for ω̇B/N . It is important to note that there are three remaining steps required to

implement these equations into a simulation. ω̇B/N is placed into the fuel slosh motion equation, Eq. (83), to solve
for ρ̈j . The solutions for ω̇B/N and ρ̈j are placed into Eq. (73) to solve for θ̈i. And finally, the solution for θ̈i, ρ̈j and
ω̇B/N are placed into the translational motion equation, Eq. (17), to solve for r̈B/N . This concludes the necessary
steps needed to implement flexible and fuel slosh dynamics into a computer simulation. The recommended coordinate
frames for this simulation are to solve everything in the body frame, B, and before integration, place the translational
motion in the inertial frame, N . However, this formulation is general, and any coordinate frames can be chosen as
needed.
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Table 1: Hub simulation parameters

Hub

mhub [kg] 750

[Ihub,Bc
] [kg-m2] diag([900 800 600])

BrBc/B [0.00133 −0.267 0]
T

Table 2: Solar panel simulation parameters

Solar Panels

msp1 , msp2 [kg] 100

[ISc,1
], [ISc,2

] [kg-m2] diag([100 50 50])

BrH1/N [m] [0.5 1 0]
T

BrH2/N [m] [−0.5 1 0]
T

[H1B]

−1 0 0
0 0 1
0 1 0


[H2B]

1 0 0
0 0 −1
0 1 0


d1, d2 [m] 1.5

k1, k2 [N ] 43426.26

c1, c2 [Ns] 138.23

Table 3: Slosh simulation parameters

Slosh modes

m1, m2 [kg] 10, 20

BrPc,1/B [m] [0.1 0 0]
T

BrPc,2/B [m] [−0.1 0 0]
T

Bp̂1, Bp̂2 [0 1 0]
T

k1, k2 [N/m] 3.95, 71.06

c1, c2 [Ns/m] 2.51, 7.54

V Numerical Simulation
In order to validate the EOMs and to provide a simple example of the flexing and slosh behavior, a numerical

simulation is setup. The spacecraft is composed by a hub, two solar panels, and two slosh masses. The parameters
used for the simulation can be seen in Tables 1-3. Two different simulations are run: with and without damping. The
table shows the damping parameters for the damped case. For the undamped case they are all zero.

For simplicity, the spacecraft is given initial conditions that will constrain its movement to planar motion. No
external forces are acting on the body. The non-zero initial values are θ10 = 5◦, ρ10 = 5 cm, ρ20 = −2.5 cm. All
other initial values are set to zero.

To describe the one-dimensional planar rotation, the angle between b̂3 and n̂3 is defined as φ. It should be noted
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Figure 4: Solar panel, slosh, and rotational motion.
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Figure 5: Translational motion of spacecraft.

here that φ is only defined for use in this planar case, but otherwise 3-dimensional orientation descriptions would need
to be used to describe the relationship between the B and N frames. The results from this simulation can be seen in
Figures 4-6.

Knowing that total energy needs to be conserved for the undamped case and momentum needs to be conserved for
both cases, the results agree with this insight. The first solar panel and both slosh modes initially respond by traveling

16 OF 19
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



0 2 4 6 8 10 12 14

time [s]

0

5

10

15

20

25

30

E
 [
J
]

Undamped

Damped

a) Change of total energy of spacecraft.

0 2 4 6 8 10 12 14

time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
H

  
[N
−
m
−
s]

1e 12

Undamped

Damped

b) Variation in the total inertial angular momentum.

Figure 6: Energy and momentum check.
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Figure 7: Computational efficiency of back substitution method.

back to equilibrium, and the rotational, translational motions are each affected. Fig. 6 shows that momentum is
conserved in both cases, energy is conserved in the undamped case, and energy decays to zero in the damped scenario.
This gives confidence in the formulation presented. General three-dimensional motion is also confirmed to obey the
laws of physics, and the simple planar case is included for simplicity.

In addition to the numerical simulation, a simple program was developed to quantify the computational efficiency
of using the back substitution method. Figure 7 shows the results of this analysis. It is important to note that a Singular
Value Decomposition algorithm is used to invert the necessary matrices for this comparison. The percent speed up
for the back-substitution method compared to the system mass matrix method is the metric being used. The back
substitution performs very well when the number of slosh masses and solar panels are relatively small. 26 percent of
the 121 options considered, result in at-least a 50 percent speed up, with 12 of the combinations resulting in over a
100 percent speed up.

However, as expected, as the number of both the slosh masses and solar panels increase, the speed up decreases.
With a large number of panels or slosh particles there is still a large matrix to invert which reduces the benefit of
the back-substitution method. For large numbers of particles and panels the system mass matrix appears to be more
computationally efficient. The reason for the mass-matrix approach being faster is still being investigated. There is
a lot of additional math required to perform the back-substitution, which provides additional overhead on top a large
sub-component matrix inversion. Depending on the spacecraft and the analysis being completed, the back substitution
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method can save a significant amount of computation time. For typical spacecraft scenario with 1-3 panels and 3 slosh
particles the speed savings is still significant near 50%.

VI Conclusion
A general formulation for incorporating flexible dynamics and fuel slosh into a fully coupled spacecraft simulation

is introduced. The flexible and fuel slosh dynamics is approximated using hinged rigid bodies and constraining the
lumped fuel slosh particles to travel in a fixed unit direction with respect to the body. Taking in consideration these
approximations, this general formulation can apply to a wide range of spacecraft and could be directly applied without
the need for re-derivation. Additionally, this paper introduces a back-substitution method to increase computational
efficiency.

A numerical simulation is included and energy and momentum behaves appropriately. This validation check gives
confidence in the formulation. Furthermore, the back-substitution method can significantly decrease the computational
effort and can result in as much as a 180% speedup. For long simulation times, this speedup can be extremely
beneficial. However, as the number of slosh masses and solar panels increase the back-substitution method loses
its computational efficiency when compared to inverting the system mass matrix. This result will be investigated
in the future to understand the reasons for the decrease in computational efficiency and ways to improve the back-
substitution method. Additionally, other methods will be investigated to further increase the computational efficiency
of the simulation.

The paper acknowledges that there are approximations made, however, for a large population of spacecraft mis-
sions, the fidelity of this model is sufficient. Future work will investigate higher fidelity models for both flexing and
fuel slosh motion which will give insight into the accuracy of the approximate models.
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