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GENERAL HINGED SOLAR PANEL DYNAMICS APPROXIMATING
FIRST-ORDER SPACECRAFT FLEXING

Cody Allard⇤, Hanspeter Schaub†, and Scott Piggott‡

For many spacecraft with deployable structural components, such as solar panels
or deployable antennas, the rigid-body assumption does not accurately model the
full system dynamics. Spacecraft with large deployed solar panels exhibit flexible
dynamics that can impact the final pointing and jitter performance of an attitude
control system, or the simulation of an on-board accelerometer. For simulation
and analysis purposes, it is desirable to include approximate flexible dynamics
in a manner that easily integrates with the rigid body translational and rotational
equations of motion. Current methods either require extensive derivation to im-
plement flexible dynamics into the simulation or do not provide enough fidelity.
This paper introduces a first-order model of the flexible dynamics using hinged
multi-body dynamics that is applicable to a range of spacecraft shapes and config-
urations, but fully accounts for three-dimensional motion of this component. The
formulation assumes the appended bodies are rigid bodies, and are connected to a
main rigid body (hub) by a single degree of freedom torsional hinge. The numeri-
cal simulations are validated through a range of energy and momentum checks. A
simple example of a simulation is included and highlights the necessity to include
flexing for certain spacecraft.

INTRODUCTION

Spacecraft come in many shapes and sizes and some spacecraft have large appended solar panels
or antennas. Typically these objects are connected to the spacecraft as cantilevered elements, there-
fore they are susceptible to flexing behavior. This behavior needs to be included in the dynamics.
Often the spacecraft is assumed to be a rigid body, but this assumption will degrade the fidelity of
the simulation if there are certain components that will flex. Flexing will impact both the transla-
tional and rotational motion (and associated stability margins) of the spacecraft, as well as sensor
modeling such as accelerometers and rate gyros. For simulation and analysis purposes, flexing is
very important because it can impact performance, requirements and success of the mission.

There are many different ways to model flexible dynamics. One method is to assume that the
primary impact will be on the attitude dynamics of the spacecraft so the translational motion cou-
pling can be ignored. Also, in some scenarios the effects of flexing can be assumed to only impact
one plane of rotation, therefore one method is to constrain the motion to 1D rotational motion.1

This approach allows the flexing body to be modeled as a finite number of masses on a cantilevered
beam and allows for different frequency modes to be present.1 This derivation results in a transfer
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Figure 1. Components, variables and coordinate frames used for this derivation.

function that is useful in determining the stability and frequency response due to different inputs.
However, it neglects the cross coupling affect on the other rotational axes, and the effect on trans-
lational motion. This method is helpful in the early stages of a mission, but lacks fidelity and is
limited in its application.

In contrast, the field of multi-body dynamics has extensive research on modeling flexible dynam-
ics and the equations of motion presented are generalized for complex and diverse problems. This
results in requiring derivation of equations because of generality.2–4 These methods are required for
unique and complex systems because the equations of motion depend on how many joints that are
interconnected. For example, in robotic systems, the number of interconnected joints varies widely,
and the equations of motion are specific to that system.5, 6 Since there are many spacecraft that have
similar designs with appended solar panels, there is a need to develop equations of motion that could
be applied to these spacecraft.

Similar to this paper, multiple publications present models of spacecraft dynamics with appended
solar panels.7–9 However, this previous research is mainly focused on the deployment of solar panels
and how the deployment affects the dynamics of the spacecraft.7–9 Also, the previous research on
deployable solar panels are specific to solar panels that are composed of interconnected bodies. This
paper considers systems where the solar panels are single rigid bodies.

This paper introduces a method of modeling the flexible dynamics of the solar panels by assuming
that the hub of the spacecraft and the solar panels are rigid bodies, but the solar panels are connected
to the hub by single degree-of-freedom torsional springs. The torsional spring constants could be
attenuated to match the natural frequencies of the solar panels which could be found from Finite
Element Analysis or testing. This method in modeling the flexible dynamics is a first order model,
and other effects like bending and torsional bending could be added later. However, in contrast to
earlier work, the multi-body system is allowed to undergo general three-dimensional motions in
translation and rotation.

PROBLEM STATEMENT

The purpose of this paper is to develop equations of motion describing flexible dynamics of a
spacecraft that can be smoothly integrated into computer simulation. It will reduce the need of
deriving equations of motion for new missions. This formulation is completed in a general way that
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applies to a wide range of spacecraft. The description of the spacecraft, componenets, coordinate
frames and variables are introduced in Figure 1. This describes each component being considered
in the derivation.

Figure 1 is composed of a rigid hub connected to two solar panels by one degree-of-freedom
joints. These joints are composed of torsional hinges that have a linear spring constant of ki, and
an angular rate damping term, ci. Two panels are shown for simplicity, however the formulation
assumes there are N solar panels.

There are four coordinate frames defined for this formulation. The inertial reference frame is
indicated by N : {n̂1, n̂2, n̂3}. The body fixed coordinate frame, B : {b̂1, b̂2, b̂3}, is defined
with its origin, B, to be coincident with the center of mass of the spacecraft when the solar panels
are undeflected and can be oriented in any direction. The solar panel frames, Si : {ŝi,1, ŝi,2, ŝi,3},
are frames with their origins at the location of their hinge joints, Hi. The Si frame is oriented such
that ŝi,1 points anti-parallel to the center of mass of the solar panel, Si. The ŝi,2 axis is defined
as the rotation axis that would yield a positive ✓i using the right-hand rule. The hinge frames,
Hi : {ĥi,1, ĥi,2, ĥi,3}, are frames fixed with respect to the body frame, and are equivalent to the
respective Si frames when the solar panel is undeflected. The i indicates the ith solar panel.

Point B is the origin of the body frame, C is the center of mass location of the entire spacecraft,
Bc is the center mass location of the the rigid hub, and Si is the center of mass of the ith solar panel.
The vector c points from the origin of the body frame to the center of mass of the spacecraft. The
formulation assumes that if there is no deflection in the solar panels, then point B will be coincident
with point C. The variable di defines the distance between points Hi and Si.

The remaining sections of the paper explain the derivation of the equations using Newtonian
and Eulerian mechanics and give results of a tutorial simulation. Equations of motion (EOM) are
required for the translational, rotational, and solar panel motion.

DERIVATION OF EQUATIONS OF MOTION

Spacecraft Translational Motion

The derivation begins with Newton’s first law for the center of mass of the spacecraft.

r̈C/N =
F

msc
(1)

Ultimately the acceleration of the body frame or point B is desired

r̈B/N = r̈C/N � c̈ (2)

The definition of c can be seen in Eq. (3).

c =
mhubrBc/B +

PN
i mspirSi/B

msc
(3)

To find the inertial time derivative of c, it is first necessary to find the time derivative of c with
respect to the body frame. A time derivative of any vector, v, with respect to the body frame is
denoted by v0; the inertial time derivative is labeled as v̇. The first and second body-relative time
derivatives of c can be seen in Eqs. (4) and (5).

c0 =

PN
i mspir

0
Si/Hi

msc
(4)
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c00 =

PN
i mspir

00
Si/Hi

msc
(5)

The variable rSi/Hi can easily be defined using the ŝi,1 axis

rSi/Hi
= �diŝi,1 (6)

Now the first and second time derivatives with respect to the body frame of rSi/Hi
are taken

r0
Si/Hi

= di✓̇iŝi,3 (7)

r00
Si/Hi

= di

⇣
✓̈iŝi,3 + ✓̇2i ŝi,1

⌘
(8)

Eqs. (4) and (5) can now include these new definitions and yields

c0 =

PN
i mspidi✓̇iŝi,3

msc
(9)

c00 =

PN
i mspidi

⇣
✓̈iŝi,3 + ✓̇2i ŝi,1

⌘

msc
(10)

Using the transport theorem10 yields the following definition for c̈

c̈ = c00 + 2!B/N ⇥ c0 + !̇B/N ⇥ c + !B/N ⇥ �!B/N ⇥ c
�

(11)

Eq. (2) can be updated to include Eq. (11)

r̈B/N = r̈C/N � c00 � 2!B/N ⇥ c0 � !̇B/N ⇥ c � !B/N ⇥ �!B/N ⇥ c
�

(12)

Eq. (12) is one of the three equations required to describe the motion of the spacecraft. It describes
the motion of the body frame with respect to the inertial frame and is in terms of the rotational
motion and solar panel motion. In the next section, the EOM for a solar panel is derived.

Solar Panel Motion

The solar panel frame Si is assumed to be a principle frame such that the solar panel inertia tensor
about its center of mass is

[ISi ] =

S2

4
Isi,1 0 0
0 Isi,2 0
0 0 Isi,3

3

5 (13)

Let LHi = Li,1ŝi,1 + Li,2ŝi,2 + Li,3ŝi,3 be the total torque acting on the solar panel. The
corresponding hinge torque is given through

Li,2 = �ki✓i � ci✓̇i (14)

The hinge structure produces the other two torques Li,1 and Li,3.

The inertial angular velocity vector for the solar panel frame is

!Si/N = !Si/Hi
+ !Hi/B + !B/N (15)
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where !Si/Hi
= ✓̇iŝi,2. Because the hinge frame Hi is fixed relative to the body frame B the

relative angular velocity vector is !Hi/B = 0. The body angular velocity vector is written in Si-
frame components as

!B/N = (ŝi,1 · !B/N )ŝi,1 + (ŝi,2 · !B/N )ŝi,2 + (ŝi,3 · !B/N )ŝi,3 (16)

= !si,1 ŝi,1 + !si,2 ŝi,2 + !si,3 ŝi,3 (17)

Using this definition greatly simplifies the following algebraic development. Finally, the inertial
solar panel angular velocity vector is written as

!Si/N = !si,1 ŝi,1 + (!si,2 + ✓̇i)ŝi,2 + !si,3 ŝi,3 (18)

As ŝi,2 is a body-fixed vector, note that

!̇si,2 =
Bd
dt

�
!B/N · ŝi,2

�
=

Bd
dt

�
!B/N

� · ŝi,2 = !̇B/N · ŝi,2 (19)

Substituting these angular velocity components into the rotational equations of motion of a rigid
body with torques taken about its center of mass,10 the general solar panel equations of motion are
written as

Isi,1!̇si,1 = �(Isi,3 � Isi,2)(!si,2 + ✓̇i)!si,3 + Lsi,1 (20)

Isi,2(!̇si,2 + ✓̈i) = �(Isi,1 � Isi,3)!si,3!si,1 + Lsi,2 (21)

Isi,3!̇si,3 = �(Isi,2 � Isi,1)!si,1(!si,2 + ✓̇i) + Lsi,3 (22)

where LSi = Lsi,1 ŝi,1 + Lsi,2 ŝi,2 + Lsi,3 ŝi,3 is the net torque acting on the solar panel about its
center of mass. The second differential equation is used to get the equations of motion of ✓i. The
first and third equation could used to back-solve for the structural hinge torques embedded in Lsi,1

and Lsi,3 if needed.

Let FSi be the net force acting on the solar panel. Using the superparticle theorem10 yields

FSi = mspi r̈Si/N (23)

The torque about the solar panel center of mass can be related to the torque about the hinge point
Hi using

LHi = LSi + rSi/Hi
⇥ FSi (24)

Solving for the torque about Si yields

LSi = LHi � rSi/Hi
⇥ mspi r̈Si/N (25)

Taking the vector dot product with ŝi,2 and using rSi/Hi
= �diŝi,1 results in

Lsi,2 = ŝi,2 · LSi = ŝi,2 · LHi| {z }
Li,2

�ŝi,2 · �rSi/Hi
⇥ mspi r̈Si/N

�
(26)

= �ki✓ � ci✓̇i + mspidiŝi,2 · �ŝi,1 ⇥ r̈Si/N

�
(27)

Taking two inertial time derivatives of rSi/N = rHi/N � dŝi,1 yields

r̈Si/N = ṙHi/N � !̇Si/N ⇥ (dŝi,1) � !Si/N ⇥ (!Si/N ⇥ (dŝi,1)) (28)
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Substituting this inertial acceleration into the above Ls2 expression provides

Lsi,2 = �ki✓i � ci✓̇i + mspidiŝi,2 · (ŝi,1 ⇥ r̈Hi/N ) + mspid
2
i ŝi,2 · (ŝi,1 ⇥ (ŝi,1 ⇥ !̇Si/N ))

� mspid
2
i ŝi,2 · (ŝi,1 ⇥ (!Si/N ⇥ (!Si/N ⇥ ŝi,1))) (29)

Using the double vector cross product identity, as well as a · (b ⇥ c) = (a ⇥ b) · c, the Lsi,2 torque
component is simplified to

Lsi,2 = �ki✓i � ci✓̇i �mspidiŝi,3 · r̈Hi/N �mspid
2
i ŝi,2 · !̇B/N �mspid

2
i ✓̈i +mspid

2
i!si,3!si,1 (30)

Substituting this torque into the earlier differential equation

Isi,2(!̇si,2 + ✓̈i) = �(Isi,1 � Isi,3)!si,3!si,1 + Lsi,2 (31)

leads to the desired scalar hinged solar panel equation of motion
�
Isi,2 + mspid

2
i

�
ŝTi,2!̇B/N +

�
Isi,2 + mspid

2
i

�
✓̈i + mspidiŝ

T
i,3r̈Hi/N + ki✓ + ci✓̇i

+
�
Isi,1 � Isi,3 � mspid

2
i

�
!si,3!si,1 = 0 (32)

The term r̈Hi/N needs to be expanded to be in terms of the desired translational motion r̈B/N .
Knowing that the hinge location is a fixed point on the body, Eq. (32) is changed to the following
form
�
Isi,2 + mspid

2
i

�
ŝTi,2!̇B/N + mspidiŝ

T
i,3(r̈B/N + !̇B/N ⇥ rHi/N + !B/N ⇥ (!B/N ⇥ rHi/N ))

+
�
Isi,2 + mspid

2
i

�
✓̈i + ki✓i + ci✓̇i +

�
Isi,1 � Isi,3 � mspid

2
i

�
!si,3!si,1 = 0 (33)

Eq. (33) is the second EOM required to describe the motion of the spacecraft and will be utilized
later in the paper. The next section explains the formulation of the rotational motion.

Spacecraft Rotational Motion

The last EOM that needs to be developed is the rotational motion. Starting with Euler’s equation
when the body fixed coordinate frame origin is not coincident with the center of mass of the body10

Ḣsc,B = LB + mscr̈B/N ⇥ c (34)

where LB is the total external torque about point B. The definition of the angular momentum vector
of the spacecraft about point B is:

Hsc,B = [Ihub,Bc ]!B/N + mhubrBc/B ⇥ ṙBc/B

+
NX

i

⇣
[Ispi,Si ]!B/N + ✓̇iIspi,Si,2ĥi,2 + mspirSi/B ⇥ ṙSi/B

⌘
(35)

Now the inertial derivative of Eq. (35) is taken and yields

ḢB = [Ihub,Bc ]!̇B/N + !B/N ⇥ [Ihub,Bc ]!B/N + mhubrBc/B ⇥ r̈Bc/B

+
NX

i

✓
[I 0spi,Si

]!B/N + [Ispi,Si ]!̇B/N + !B/N ⇥ [Ispi,Si ]!B/N

+ ✓̈iIspi,Si,2ĥi,2 + !B/N ⇥ ✓̇iIspi,Si,2ĥi,2 + mspirSi/B ⇥ r̈Si/B

◆
(36)
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The terms r̈Bc/B and r̈Si/B are found using the transport theorem and knowing that rBc/B is fixed
with respect to the body frame.

r̈Bc/B = !̇B/N ⇥ rBc/B + !B/N ⇥ (!B/N ⇥ rBc/B) (37)

r̈Si/B = r00
Si/B

+ 2!B/N ⇥ r0
Si/B

+ !̇B/N ⇥ rSi/B + !B/N ⇥ (!B/N ⇥ rSi/B) (38)

Incorporating Eqs. (37) and (38) into Eq. (36) results in:

ḢB = [Ihub,Bc ]!̇B/N + !B/N ⇥ [Ihub,Bc ]!B/N + mhubrBc/B ⇥ (!̇B/N ⇥ rBc/B)

+mhubrBc/B⇥[!B/N⇥(!B/N⇥rBc/B)]+
NX

i

✓
[I 0spi,Si

]!B/N+[Ispi,Si ]!̇B/N+!B/N⇥[Ispi,Si ]!B/N

+ ✓̈iIspi,Si,2ĥi,2 + !B/N ⇥ ✓̇iIspi,Si,2ĥi,2 + mspirSi/B ⇥ r00
Si/B

+ 2mspirSi/B ⇥ (!B/N ⇥ r0
Si/B

)

+ mspirSi/B ⇥ (!̇B/N ⇥ rSi/B) + mspirSi/B ⇥ [!B/N ⇥ (!B/N ⇥ rSi/B)]

◆
(39)

Introducing the tilde operator to replace the cross product, and applying the parallel axis theorem
the following can be defined:

[Ihub,B] = [Ihub,Bc ] + mhub[r̃Bc/B][r̃Bc/B]T (40)

[Ispi,B] = [Ispi,Si ] + mspi [r̃Si/B][r̃Si/B]T (41)

[Isc,B] = [Ihub,B] +
NX

i

[Ispi,B] (42)

[I 0sc,B] =
NX

i

⇢✓
[I 0spi,Si

] � 2mspi [r̃Si/B][r̃0
Si/B

]

◆
(43)

This produces

ḢB = [Isc,B]!̇B/N + !B/N ⇥ [Isc,B]!B/N + [I 0sc,B]!B/N

+
NX

i

⇢
✓̈iIspi,Si,2ĥi,2 + !B/N ⇥ ✓̇iIspi,Si,2ĥi,2 + mspirSi/B ⇥ r00

Si/B

�
(44)

Eqs. (34) and (44) are equated and yield

LB + mscr̈B/N ⇥ c = [Isc,B]!̇B/N + !B/N ⇥ [Isc,B]!B/N + [I 0sc,B]!B/N

+
NX

i

⇢
✓̈iIspi,Si,2ĥi,2 + !B/N ⇥ ✓̇iIspi,Si,2ĥi,2 + mspirSi/B ⇥ r00

Si/B

�
(45)

Finally, using skew symmetric matrix and simplifying yields the modified Euler equation, which is
the last EOM necessary to describe the motion of the spacecraft.

[Isc,B]!̇B/N = �[!̃B/N ][Isc,B]!B/N � [I 0sc,B]!B/N �
NX

i

⇢
✓̈iIspi,Si,2ĥi,2

+ [!̃B/N ]✓̇iIspi,Si,2ĥi,2 + mspirSi/B ⇥ r00
Si/B

�
+ LB + mscr̈B/N ⇥ c (46)
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SIMULATION IMPLEMENTATION

The equations presented in the previous sections result in N + 6 coupled differential equations.
Therefore if the EOM were placed into state space form, a system mass matrix of size N + 6 would
need to be inverted to numerically integrate the EOM. This can result in a computationally expensive
simulation. In the following section, the EOM are manipulated to increase the efficiency. This
manipulation involves inverting an N ⇥N matrix for the solar panel motion, inverting the rotational
motion equation (3 ⇥ 3), and then back solving for the solar panel and translational motions. This
derivation can be seen in the following sections.

Solar Panel Motion

In Eq. (33), the solar panel motion is coupled with the translational motion and the rotational
motion. The translational motion needs to be decoupled from the solar panel motion. To perform
this task, Eq. (12) is substituted into Eq. (32). After some simplification this substitution yields
"
�
Ispi,2 + mspid

2
i

�� m2
spi

msc
d2i

#
✓̈i � mspi

msc
diŝ

T
i,3

0

@
NX

j=1;j 6=i

mspjdj ✓̈j ŝj,3

1

A =

� ⇥�Ispi,2 + mspid
2
i

�
ŝTi,2 + mspidiŝ

T
i,3 ([c̃] � [r̃Hi/B]

�
]!̇B/N � ki✓ � ci✓̇i

+
�
Ispi,3 � Ispi,1 � +mspid

2
i

�
!si,3!si,1�mspidiŝ

T
i,3

⇥
r̈C/N � 2!B/N ⇥ c0 � !B/N ⇥ �!B/N ⇥ c

�

+!B/N ⇥ (!B/N ⇥ rHi/N ) � 1

msc

0

@
NX

j=1;j 6=i

mspjdj ✓̇
2
j ŝj,1

1

A

3

5 (47)

Eq. (47) is written in matrix form to utilize some linear algebra techniques.

[A]

2

664

✓̈1
.
.

✓̈N

3

775 = [F ]!̇B/N + P (48)

Where [A] is an N ⇥ N matrix with the following definitions

ai,i =

"
�
Ispi,2 + mspid

2
i

�� m2
spi

msc
d2i

#
(49a)

ai,j = �mspi
msc

diŝ
T
i,3

0

@
NX

j=1;j 6=i

mspjdj ✓̈j ŝj,3

1

A (49b)

[F ] is an N ⇥ 3 matrix with its row elements defined as

fT
i = � ⇥�Ispi,2 + mspid

2
i

�
ŝTi,2 + mspidiŝ

T
i,3 ([c̃] � [r̃Hi/B]

�
] (50)

P is an N ⇥ 1 vector with the following elements

pi = �ki✓ � ci✓̇i +
�
Ispi,3 � Ispi,1 � +mspid

2
i

�
!si,3!si,1 � mspidiŝ

T
i,3

⇥
r̈C/N � 2!B/N ⇥ c0

�!B/N ⇥ �!B/N ⇥ c
�

+ !B/N ⇥ (!B/N ⇥ rHi/N ) � 1

msc

0

@
NX

j=1;j 6=i

mspjdj ✓̇
2
j ŝj,1

1

A

3

5 (51)
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Eq. (48) can now be solved by inverting matrix [A] ([E] = [A]�1).
h
✓̈1 . . ✓̈N

iT
= [E][F ]!̇B/N + [E]P (52)

Since the modified Euler’s equation, Eq. (46), has ✓̈i terms, it is more convenient to use the expres-
sion for ✓̈i as

✓̈i = eT
i [F ]!̇B/N + eT

i P (53)

Where the subcomponents of [E] are defined as

[E] =

2

664

eT
1

.

.

eT
N

3

775 (54)

Rotational Motion

The rotational motion is coupled with both the solar panel and translational motion. Therefore,
the translational and solar panel EOM need to be substituted into the modified Euler’s equation,
Eq. (46). This substitution and simplification is performed and results in

([Isc,B] + msc[c̃][c̃]) !̇B/N +
NX

i

h
Ispi,Si,2ĥi,2 + mspidi

�
[r̃Si/B] � [c̃]

�
ŝi,3

i
✓̈i

= LB � [!̃B/N ][Isc,B]!B/N � [I 0sc,B]!B/N
� msc[c̃]

�
r̈C/N � 2[!̃B/N ]c0 � [!̃B/N ][!̃B/N ]c

�

�
NX

i

⇢
Ispi,Si,2✓̇i[!̃B/N ]ĥi,2 + mspidi✓̇

2
i

�
[r̃Si/B] � [c̃]

�
ŝi,1

�
(55)

For simplification purposes, a new set of variables are defined and Eq. (55) simplifies to

[Isc,C ]!̇B/N +
NX

i

Ri✓̈i = S (56)

Where Ri and S are 3 ⇥ 1 vectors and are defined in the following equations

Ri =
h
Ispi,Si,2ĥi,2 + mspidi

�
[r̃Si/B] � [c̃]

�
ŝi,3

i
(57)

S = LB � [!̃B/N ][Isc,B]!B/N � [I 0sc,B]!B/N � msc[c̃]
�
r̈C/N � 2[!̃B/N ]c0 � [!̃B/N ][!̃B/N ]c

�

�
NX

i

⇢
Ispi,Si,2✓̇i[!̃B/N ]ĥi,2 + mspidi✓̇

2
i

�
[r̃Si/B] � [c̃]

�
ŝi,1

�
(58)

Substituting Eq. (53) into Eq. (56) results in
 

[Isc,C ] +
NX

i

Rie
T
i [F ]

!
!̇B/N = S �

NX

i

Ri[E]P (59)
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[Z] and V are new variables defined in the following equations

[Z] = [Isc,C ] +
NX

i

Rie
T
i [F ] (60)

V = S �
NX

i

Ri[E]P (61)

[Z] is a 3 ⇥ 3 matrix and V is a 3 ⇥ 1 vector. This allows the final equation to be simplified to the
following form

[Z]!̇B/N = V (62)

Now Eq. (62) can be solved for !̇B/N .

It is important to note that there are two remaining steps required to implement these equations
into a simulation. The solution for !̇B/N is substituted into the solar panel motion equation, Eq. (53)
to solve for ✓̈i. And finally, the solution for ✓̈i and !̇B/N is placed into the translational motion
equation, Eq. (12). This concludes the necessary steps needed to implement flexible dynamics
into a computer simulation. The recommended coordinate frames for this simulation are to solve
everything in the body frame, B, and then before integration, place the translational motion in the
inertial frame, N . However, this formulation is general, and any coordinate frames can be chosen
as needed.

This simplification results in a much more efficient simulation. The simplified EOM takes 62%
of the time it take the original formulation to execute for two solar panels. This is a dramatic speed
up and is very desirable.

NUMERICAL SIMULATION

To validate the EOM and to provide a simple example of the flexing behavior, the spacecraft
shown in Figure 1 is used. The hub is a cylinder with its center of mass located at the center of the
cylinder. It has two identical solar panels modeled as rectangular prisms located opposite from each
other. There are two scenarios: one with damping and one without.

For simplicity, the spacecraft is given initial conditions that will constrain the spacecraft to planar
motion. This is done by aligning the inertial frame and body frame initially, having no external
forces acting on the body, and giving the solar panel deflection, ✓1, an initial value of 5�. All other
initial values are set to zero. A new angle, ✓ is defined and is the angle between the b̂3 and n̂3. It
should be noted here that ✓ is only defined for use in this planar case, but otherwise 3-dimensional
orientation descriptions would need to be used to describe the relationship between the B and N
frames. The results from this simulation can be seen in Figures 2-4.

Knowing that total energy needs to be conserved for the undamped case and momentum needs to
be conserved for both cases, the results agree with this insight. The first solar panel initially responds
by traveling back to equilibrium, and the rotational, translational motions are each affected. Fig. 4
shows that momentum is conserved in both cases, energy is conserved in the undamped case, and
energy decays to zero in the damped scenario. This gives confidence in the formulation presented.
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Figure 2. Rotational and solar panel motion

CONCLUSION

This paper presents a very convenient and compact formulation for a first-order approximation for
flexible dynamics that can be applied to spacecraft with appended solar panels or hinged structural
sub-components that can be modeled as single rigid bodies. It is not applicable to appended solar
panels that consist of multiple interconnect panels. For applicable missions, the EOM would not
need to be rederived and they could be smoothly integrated into simulation of the spacecraft.

The EOM are derived using Newtonian and Eulerian mechanics and are meant to be similar to
the well recognized 6 DOF rigid body EOM for spacecraft. The translational and rotational motion
are familiar equations with a few extra terms for the flexing behavior. The EOMs were developed
to be efficient computationally. A one-way decoupling is introduced that allows for the center of
mass acceleration, solar panel angular accelerations, and then the hub angular acceleration to be
determined. Future work will investigate adding variable fuel tank mass and fuel slosh to this
formulation.

REFERENCES

[1] M. Sidi, Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge Aerospace
Series, Cambridge University Press, 1997.

11



time (s)
0 20 40 60 80 100

X 
tra

ns
la

tio
n 

(m
m

)

-3

-2.5

-2

-1.5

-1

-0.5

0
Undamped
Damped

(a) X-direction translational motion

time (s)
0 20 40 60 80 100

Z 
tra

ns
la

tio
n 

(m
m

)

-20

0

20

40

60

80
Undamped
Damped

(b) Z-direction translational motion

Figure 3. Translational motion of spacecraft

time (s)
0 20 40 60 80 100

To
ta

l E
ne

rg
y 

(J
ou

le
s)

×10-3

0

0.5

1

1.5

2

Undamped
Damped

(a) Change of total energy of spacecraft

time (s)
0 20 40 60 80 100In

er
tia

l A
ng

ul
ar

 M
om

en
tu

m
 (N

-m
-s

) ×10-15

-4

-3

-2

-1

0

1
Undamped
Damped

(b) Total inertial angular momentum vector

Figure 4. Energy and momentum check
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