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Fully-Coupled Dynamical Jitter Modeling of a Rigid Spacecraft
with Imbalanced Reaction Wheels

John Alcorn∗, Cody Allard† and Hanspeter Schaub‡

University of Colorado, Boulder, Colorado, 80309, US

A key source of pointing jitter is due to reaction wheels (RWs) mass imbalance about the wheel spin
axis. Although these effects are often characterized through experimentation in order to validate re-
quirements, it is of interest to include jitter in a computer simulation of the spacecraft in the early stages
of spacecraft development. An estimate of jitter amplitude may be found by modeling wheel imbalance
torques as an external disturbance on the spacecraft. In this case, reaction wheel mass imbalances are
lumped into static and dynamic imbalance parameters, allowing jitter force and torque to be simply
proportional to wheel speed squared. A physically realistic dynamic model may be obtained by defining
mass imbalances in terms of a RW center of mass location and inertia tensor. The fully-coupled dynamic
model allows momentum and energy validation of the system. This is often critical when modeling addi-
tional complex dynamical behavior such as flexible dynamics and fuel slosh. Furthermore, it is necessary
to use the fully-coupled model in instances where the relative mass properties of the spacecraft with re-
spect to the RWs cause the simplified jitter model to be inaccurate. This paper presents a generalized
approach to reaction wheel imbalance modeling of a rigid hub with N reaction wheels. A discussion
is included to convert from manufacturer specifications on RW imbalances to the introduced parame-
ters. In addition, a back-substitution method is introduced to increase the computational efficiency of a
computer simulation.

I Introduction
Momentum exchange devices are a fundamental component of most spacecraft for both coarse attitude control and

precision pointing. Most modern spacecraft include three or more reaction wheels (RWs), which consist of a flywheel
attached to a motor and bearing fixed to the spacecraft. A challenge to using RWs is that they may induce jitter due
to mass imbalances in the RW. Characterization and mitigation of RW induced jitter on a spacecraft is important to
many missions due to the increasingly rigorous attitude stability requirements and the necessity of avoiding excitation
of the spacecraft’s structural modes. Excessive vibration of a spacecraft may be detrimental to its instruments and
operation. Additionally, many instruments require rigorous attitude stability in order to effectively operate or collect
data. Optical instruments in particular often require attitude stability of less than one arc-second per second in order
to avoid optical smear or similar effects.1, 2

RW induced vibration on a spacecraft is usually characterized through experimentation prior to flight in order
to validate requirements. Empirical models of RWs allow imbalance parameters to be extracted.3, 4 In addition to
experimental demonstration of RW performance on an integrated spacecraft, it is of interest to use an analytic model
of a RW for simulation in the early stages of spacecraft development. A simplified model of RW jitter involves
including forces and torques resulting from RW imbalance as external disturbances.5–7 This method is attractive due
to its non-computationally expensive formulation – force and torque of jitter are simply proportional to wheel speed
squared. Furthermore, the simplified formulation allows a model to be constructed directly from the typical RW
manufacturer imbalance specifications: static imbalance and dynamic imbalance. This allows RW mass imbalances to
be implemented as lumped parameters instead of using specific terms such as RW center of mass location and inertia
tensor.7 Previous literature puts emphasis on empirical modeling of RW jitter and the effects of RW jitter within
context of spacecraft flexible dynamics.8–10
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The simplified “lumped parameter” method of modeling RW jitter is inaccurate due to the nonconservative nature
of adding a system-internal forcing effect as an external disturbance.11 Since angular momentum is not conserved
in this model, a time varying bias in angular velocity is observed. The magnitude of the bias is dependent on the
relative magnitude of the spacecraft inertia versus the reaction wheel imbalance and the wheel speed. For analysis
purposes this does not necessarily present a problem. The overall effect of the angular velocity bias is quite small for
spacecraft that have small wheel imbalance to spacecraft inertia ratios and the amplitude of RW induced jitter may be
computed by subtracting a polynomial fit of appropriate order from the resulting angular velocity. For spacecraft with
poorly balanced reaction wheels or small wheel mass/imbalance to spacecraft inertia ratios this approach may become
problematic. Additionally, it is undesirable to run this model in a simulation involving pointing accuracy assessment,
power assessment, flexible structures, propellant slosh, etc. due to momentum and energy validation being unavailable.

This paper presents a general derivation of equations of motion for a spacecraft withN imbalanced reaction wheels.
A Newtonian/Eulerian formulation approach is employed. Special consideration is given to the computational speed
of the solution. To avoid inverting a large system mass matrix, the equations of motion are written such that rigid
body and RW jitter modes can be solved for sequentially. This provides an elegant analytical one-way decoupling
of the equations of motion using a minimal coordinate set, and avoids the kinematic complexities of general N -th
order solution such as in Reference 12. Since the spacecraft hub is considered to be rigid, flexible dynamics are
not considered. The body of the paper gives detail on the mathematical model, numerical simulation, and draws
conclusions on the results.

II Problem Statement
An offset in the center of mass of the RW from the spin axis, denoted static imbalance, results in an internal force

on the spacecraft. Asymmetric distribution of mass about the RW spin axis, denoted dynamic imbalance, produces an
internal torque on the spacecraft. Figure 1 explains these imbalances geometrically. Ip is a line that is coincident with
the center mass of the RW and defines a principal axis of the RW. The static imbalance results in a center of mass offset
of the RW but does not change the direction of the principal axes. The dynamic imbalance is result of the principal
axes not being aligned with the spin axis. Deflection of the RW wheel bearing due to static and dynamic imbalances
further affects the vibrational modes of the system, however, this effect is beyond the scope of this work and is not
being considered.

ĝs

Ip

Static Imbalance Dynamic Imbalance

Figure 1: Reaction wheel static and dynamic imbalance.

When deriving the equations of motion (EOMs) for a spacecraft with N reaction wheels, an important assumption
is made that the reaction wheels are symmetric and results in the EOMs to be simplified to a convenient and compact
form.11 However, if the reaction wheels are imbalanced the EOMs have to be re-derived to account for the fully-
coupled dynamics between the RWs and the spacecraft. This paper follows a development path using Newtonian and
Eulerian mechanics using a formulation that uses a minimal coordinate description.11

Figure 2 shows the frame and variable definitions used for this problem. The formulation involves a rigid hub
with its center of mass location labeled as point Bc, and N RWs with their center of mass locations labeled as Wci .
The frames being used for this formulation are the body frame, B : {b̂1, b̂2, b̂3}, the motor frame of the ith RW,
Mi : {m̂si , m̂2i , m̂3i}, and the wheel frame of the ith RW,Wi : {ĝsi , ŵ2i , ŵ3i}. The dynamics are modeled with
respect to the B frame which can be oriented in any direction. The Wi frame is oriented such that the ĝsi axis is
aligned with the spin axis of the RW, the ŵ2i axis is perpendicular to ĝsi and points to Wci . The ŵ3i completes
the right hand rule. TheMi frame is defined as being equal to theWi frame at the beginning of the simulation and
therefore theWi andMi frames are offset by an angle, θi, about the m̂si = ĝsi axes. These are the necessary frame
and variable definitions needed for this formulation.
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Figure 2: Reference frame and variable definitions.

A few more key variables in Figure 2 need to be defined. Point B is the origin of the B frame and and is a general
body-fixed point that does not have to be identical to the spacecraft center of mass. Point Wi is the origin of theWi

frame and can also have any location relative to point B. Point C is the center of mass of the spacecraft including the
RWs and vector c points from point B to point C. Variable di is the center of mass offset of the RW, or the distance
from the spin axis, ĝsi to Wci . These variable and frame definitions are leveraged throughout the paper to derive the
EOMs.

III Equations of Motion
The system under consideration is an N + 6 degrees-of-freedom (DOF) system with the following second order

terms: inertial acceleration r̈B/N , angular acceleration ω̇B/N , and the acceleration of each RW Ω̇1, . . . , Ω̇N . Thus, a
total of N + 6 equations must be developed in order to solve for all second order terms. Section III.A describes the
derivation of the translational EOM and represents 3 DOF, section III.B describes the rotational motion and represents
3 DOF, and section III.C describes the motor torque equation and represents N DOF.

III.A Translational Motion
For the dynamical system considered the center of mass of the spacecraft is not constant with respect to the body

frame. This results in the necessity to track the center of mass of the spacecraft and its corresponding acceleration.
Following a similar derivation as seen in Reference 13, the derivation begins with Newton’s first law for the center of
mass of the spacecraft seen in Eq. (1).

r̈C/N =
F

msc
(1)

F is the sum of the external forces on the spacecraft which has a mass labeled as msc. The notation being used for this
work can be seen in Reference 11. For example, the vector vB/A is a vector that points from pointA toB. The inertial
time derivative of vB/A is denoted by v̇B/A and the time derivative taken with respect to the body frame is v′B/A.

Ultimately the acceleration of the body frame or point B is desired, which is expressed through

r̈B/N = r̈C/N − c̈ (2)

where the center of mass equation is rewritten to yield

c =
1

msc
(mhubrBc/B +

N∑
i=1

mrwi
rWci

/B) (3)
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Taking the first and second body frame time derivatives of point c results in

c′ =
1

msc

N∑
i=1

mrwi
r′Wci

/B (4)

c′′ =
1

msc

N∑
i=1

mrwi
r′′Wci

/B (5)

Takeing the first and second body frame time derivatives of rWci
/B results in

rWci
/B = rWi/B + rWci

/Wi
= rWi/B + diŵ2i (6)

r′Wci
/B = dŵ′2i = ωWi/B × diw2i = Ωiĝsi × diw2i = diΩiŵ3i (7)

r′′Wci
/B = Ωiĝsi × diΩiŵ3i = diΩ̇iŵ3i − diΩ2

i ŵ2i (8)

Using the transport theorem11 the inertial and body-relative time derivatives of c are related through

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N ×
(
ωB/N × c

)
(9)

Substituting Eqns. (8) and (9) into Eq. (2) and grouping second order terms on the left-hand side yields the translational
equation of motion.

r̈B/N − [c̃]ω̇B/N +
1

msc

N∑
i=1

mrwidiŵ3iΩ̇i = r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c+
1

msc

N∑
i=1

mrwidiΩ
2
i ŵ2i (10)

Equation (10) shows that the translational acceleration, r̈B/N , is coupled with the rotational acceleration, ω̇B/N , and
the wheel accelerations, Ω̇i. This is a result of the fact that the reaction wheels are unbalanced and therefore change
the center of mass location of the spacecraft.11

III.B Rotational Motion
The rotational motion equation of the spacecraft also needs to be modified. This derivation starts with the angular

momentum of the spacecraft about point B:

Hsc,B = Hhub,B +

N∑
i=1

Hrwi,B (11)

The EOM for the rotational motion is found using the definition of the inertial time derivative of angular momentum
when the body fixed coordinate frame origin is not coincident with the center of mass of the body.11

Ḣsc,B = LB +mscr̈B/N × c (12)

The inertial derivative of the spacecraft angular momentum is expressed as

Ḣsc,B = Ḣhub,B +

N∑
i=1

Ḣrwi,B (13)

Thus, in order to use Eq. (12), each derivative on the right-hand side of Eq. (13) needs to be evaluated. The equation
for finding the angular momentum about a point not coincident with the center of mass of that object11 is utilized and
the following definitions are found

Hhub,B = Hhub,Bc
+mhubrBc/B × ṙBc/B (14)

Hrwi,B = Hrwi,Wci
+mrwi

rWci
/B × ṙWci

/B (15)

where the angular momentum of the hub and reaction wheel about their respective center of masses are

Hhub,Bc = [Ihub,Bc ]ωB/N (16)
Hrwi,Wci

= [Irwi,Wci
]ωWi/N = [Irwi,Wci

](ωB/N + Ωiĝsi) (17)
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Taking the inertial time derivative of hub’s angular momentum yields

Ḣhub,B = [Ihub,Bc
]ω̇B/N + ωB/N × [Ihub,Bc

]ωB/N +mhubrBc/B × r̈Bc/B (18)

and knowing that rBc/B is fixed with respect to the body the following are defined

ṙBc/B = r′Bc/B
+ ωB/N × rBc/B = ωB/N × rBc/B (19)

r̈Bc/B = ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B) (20)

Substitute Eq. (20) into Eq. (18) yields

Ḣhub,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N

+mhubrBc/B × (ω̇B/N × rBc/B) +mhubrBc/B × (ωB/N × (ωB/N × rBc/B)) (21)

Employing the Jacobi triple-product identity, a × (b × c) = (a × b) × c + b × (a × c), on the right-hand side of
Eq. (21) and using the parallel axis theorem [Ihub,B ] = [Ihub,Bc ] +mhub[r̃Bc/B ][r̃Bc/B ]T , the hub angular momentum
derivative is finally written after much algebra as

Ḣhub,B =[Ihub,Bc
]ω̇B/N + [ω̃B/N ][Ihub,Bc

]ωB/N

+mhub[r̃Bc/B ][r̃Bc/B ]T ω̇B/N +mhub[ω̃B/N ][r̃Bc/B ][r̃Bc/B ]TωB/N

=[Ihub,B ]ω̇B/N + [ω̃B/N ][Ihub,B ]ωB/N

(22)

Following an equivalent derivation procedure, the inertial time derivative of reaction wheel angular momentum
about point B is

Ḣrwi,B =[Irwi,Wci
]′(ωB/N + Ωiĝsi) + [Irwi,Wci

](ω̇B/N + Ω̇iĝsi) + ωB/N × [Irwi,Wci
](ωB/N + Ωiĝsi)

+mrwi
rWci

/B × r̈Wci
/B

(23)

The body relative inertia tensor derivative [Irwi,Wci
]′ needs to be defined. For this general RW model, the inertia matrix

of the RW in theWi frame is defined as

[Irwi/Wci
] =

Wi
J11i J12i J13i
J12i J22i J23i
J13i J23i J33i

 (24)

The definition of [Irwi/Wci
] allows for any RW inertia matrix to be considered. Section IV describes the characteriza-

tion of the dynamic imbalance of the RW by defining parameters in [Irwi/Wci
].

In order to take the body frame derivative of [Irwi/Wci
], Eq. (24) is rewritten in a general form using outer product

expansions.

[Irwi/Wci
] =J11i ĝsi ĝ

T
si + J12i ĝsiŵ

T
2i + J13i ĝsiŵ

T
3i

+ J12iŵ2i ĝ
T
si + J22iŵ2iŵ

T
2i + J23iŵ2iŵ

T
3i

+ J13iŵ3i ĝ
T
si + J23iŵ3iŵ

T
2i + J33iŵ3iŵ

T
3i

(25)

The body frame derivatives of wheel frame basis vectors are

ĝ′si = ωWi/B × ĝsi = Ωiĝsi × ĝsi = 0 (26)
ŵ′2i = ωWi/B × ŵ2i = Ωiĝsi × ŵ2i = Ωiŵ3i (27)
ŵ′3i = ωWi/B × ŵ3i = Ωiĝsi × ŵ3i = −Ωiŵ2i (28)

Taking the body frame derivative and using Eqns. (26)-(28) to simplify yields

[Irwi/Wci
]′ =J12iΩiĝsiŵ

T
3i − J13iΩiĝsiŵ

T
2i

+ J12iΩiŵ3i ĝ
T
si + J22iΩiŵ3iŵ

T
2i + J22iΩiŵ2iŵ

T
3i + J23iΩiŵ3iŵ

T
3i − J23iΩiŵ2iŵ

T
2i

− J13iΩiŵ2i ĝ
T
si − J23iΩiŵ2iŵ

T
2i + J23iΩiŵ3iŵ

T
3i − J33iΩiŵ2iŵ

T
3i − J33iΩiŵ3iŵ

T
2i

(29)
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Eq. (29) is expressed in the wheel frame as

[Irwi/Wci
]′ =

Wi
 0 −J13i J12i
−J13i −2J23i J22i − J33i
J12i J22i − J33i 2J23i

Ωi (30)

The remaining term in Eq. (23) that needs to be defined is r̈Wci
/B . Following its definition, the time derivatives

are:

rWci
/B = rWi/B + diŵ2i (31)

ṙWci
/B = r′Wi/B

+ diŵ
′
2i + ωB/N × (rWi/B + diŵ2i) = diΩiŵ3i + ωB/N × (rWi/B + diŵ2i) (32)

r̈Wci
/B = diΩ̇iŵ3i − diΩ2

i ŵ2i + ω̇B/N × rWci
/B + 2ωB/N × diΩiŵ3i + ωB/N × (ωB/N × rWci

/B) (33)

Substituting Eq. (33) into Eq. (23) and applying the triple product identity and parallel axis theorem [Irwi,B ] =
[Irwi,Wci

] +mrwi [r̃Wci
/B ][r̃Wci

/B ]T results in

Ḣrwi,B =[Irwi,B ]′ωB/N + [Irwi,B ]ω̇B/N + [ω̃B/N ][Irwi,B ]ωB/N

+ [Irwi,Wci
]′Ωiĝsi + [Irwi,Wci

]Ω̇iĝsi + [ω̃B/N ][Irwi,Wci
]Ωiĝsi

+mrwirWci
/B × (diΩ̇iŵ3i − diΩ2

i ŵ2i) +mrwi
ωB/N × (rWci

/B × r′Wci
/B)

(34)

Note that taking the body time derivative of the parallel axis theorem equation yields

[Irwi,B ]′ = [Irwi,Wci
]′ +mrwi

[r̃′Wci
/B ][r̃Wci

/B ]T +mrwi
[r̃Wci

/B ][r̃′Wci
/B ]T (35)

Now the definition of the inertial time derivatives of the hub’s angular momentum and reaction wheels’ angular
momentum, Eqs. (22) and (34) respectively, are substituted into Eq. (13)

Ḣsc,B =[Ihub,B ]ω̇B/N + [ω̃B/N ][Ihub,B ]ωB/N +

N∑
i=1

[
[Irwi,B ]′ωB/N + [Irwi,B ]ω̇B/N + [ω̃B/N ][Irwi,B ]ωB/N

+ [Irwi,Wci
]′Ωiĝsi + [Irwi,Wci

]Ω̇iĝsi + [ω̃B/N ][Irwi,Wci
]Ωiĝsi

+mrwi
rWci

/B × (diΩ̇iŵ3i − diΩ2
i ŵ2i) +mrwi

ωB/N × (rWci
/B × r′Wci

/B)
] (36)

Noting that [Isc,B ] = [Ihub,B ] +
N∑
i=1

[Irwi,B ], Eq. (36) is simplified to

Ḣsc,B =[Isc,B ]ω̇B/N + [ω̃B/N ][Isc,B ]ωB/N + [Isc,B ]′ωB/N

+

N∑
i=1

[
[Irwi,Wci

]′Ωiĝsi + [Irwi,Wci
]Ω̇iĝsi + [ω̃B/N ]

(
[Irwi,Wci

]Ωiĝsi +mrwi [r̃Wci
/B ]r′Wci

/B

)
+mrwi [r̃Wci

/B ](diΩ̇iŵ3i − diΩ2
i ŵ2i)

] (37)

Eq. (37) is substituted into Eq. (12) to yield

LB +mscr̈B/N × c =[Isc,B ]ω̇B/N + [ω̃B/N ][Isc,B ]ωB/N + [Isc,B ]′ωB/N

+

N∑
i=1

[
[Irwi,Wci

]′Ωiĝsi + [Irwi,Wci
]Ω̇iĝsi + [ω̃B/N ]

(
[Irwi,Wci

]Ωiĝsi +mrwi [r̃Wci
/B ]r′Wci

/B

)
+mrwi [r̃Wci

/B ](diΩ̇iŵ3i − diΩ2
i ŵ2i)

]
(38)
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Grouping second order terms on the left-hand side yields the rotational EOM.

msc[c̃]r̈B/N+[Isc,B ]ω̇B/N +

N∑
i=1

(
[Irwi,Wci

]ĝsi +mrwi
di[r̃Wci

/B ]ŵ3i

)
Ω̇i

=

N∑
i=1

[
mrwi

[r̃Wci
/B ]diΩ

2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi

[r̃Wci
/B ]r′Wci

/B

)]
− [ω̃B/N ][Isc,B ]ωB/N − [Isc,B ]′ωB/N +LB

(39)

Eq. (39) shows that the rotational EOM is coupled with the other second order variables. Similar to the translational
EOM, this coupling is due to the fact that the center of mass of the spacecraft is not coincident with point B. The
motor torque equation is the remaining necessary EOM to describe the motion of the spacecraft and is defined in the
following section.

III.C Motor Torque Equation
The motor torque equation is used to relate body rate derivative ω̇B/N and wheel speed derivative Ω̇i. The motor

torque usi is the spin axis component of wheel torque about pointWi. The transverse torques acting on the wheel τw2i

and τw3i
are structural torques on the wheel and do not contribute to the motor torque equation.

LWi
=

Wi usiτw2i

τw2i

 (40)

Torque about point Wi relates to torque about Wci by11

LWi
= LWci

+ rWci
/Wi
×mrwi

r̈Wci
/N (41)

Euler’s equation11 applied as follows.
LWci

= Ḣrwi,Wci
(42)

The RW angular momentum about Wci is expressed as

Hrwi,Wci
= [Irwi,Wci

]ωWi/N = [Irwi,Wci
](ωB/N + Ωiĝsi) (43)

To aid in the simplification of the motor torque equation, [Irwi,Wci
] is expressed as an outer product sum as in Eq. (25)

and distributed into Eq. (43).

Hrwi,Wci
= J11i ĝsi(ωsi + Ωi) + J12i ĝsiωw2i

+ J13i ĝsiωw3i

+ J12iŵ2i(ωsi + Ωi) + J22iŵ2iωw2i
+ J23iŵ2iωw3i

+ J13iŵ3i(ωsi + Ωi) + J23iŵ3iωw2i
+ J33iŵ3iωw3i

(44)

Note that theWi frame components of ωB/N and their corresponding derivatives are defined as

ωsi = ĝTsiωB/N (45)

ωw2i
= ŵT

2iωB/N (46)

ωw3i
= ŵT

3iωB/N (47)

ω̇si = ĝTsi ω̇B/N (48)

ω̇w2i
= ŵT

2iω̇B/N + Ωiωw3i
(49)

ω̇w3i
= ŵT

3iω̇B/N − Ωiωw2i
(50)

Grouping like terms in Eq. (44) yields

Hrwi,Wci
= (J11iωsi + J11iΩi + J12iωw2i

+ J13iωw3i
)ĝsi + piŵ2i + qiŵ3i (51)
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where pi and qi are scalar components defined as

pi = J12iωsi + J12iΩi + J22iωw2i
+ J23iωw3i

(52)

qi = J13iωsi + J13iΩi + J23iωw2i
+ J33iωw3i

(53)

Taking the inertial derivative of wheel angular momentum about Wc gives

Ḣrwi,Wci
=(J11i ω̇si + J11iΩ̇i + J12i ω̇w2i

+ J13i ω̇w3i
)ĝsi + ṗiŵ2i + q̇iŵ3i

+ (J11iωsi + J11iΩi + J12iωw2i
+ J13iωw3i

) ˙̂gsi + pi ˙̂w2i + qi ˙̂w3i

(54)

where the inertial derivatives of theWi frame basis vectors are determined by evaluating the cross product in wheel
frame components such as

˙̂gsi = ωB/N × ĝsi = ωw3i
ŵ2i − ωw2i

ŵ3i (55)

Similarly, ˙̂w2i and ˙̂w3i are found to be

˙̂w2i = −ωw3i
ĝsi + (ωsi + Ωi)ŵ3i (56)

˙̂w3i = ωw2i
ĝsi − (ωsi + Ωi)ŵ2i (57)

Substituting Eqns. (55)-(57) into Eq. (54) and grouping like terms yields

Ḣrwi,Wci
=
[
(J11i ĝ

T
si + J12iŵ

T
2i + J13iŵ

T
3i)ω̇B/N + J11iΩ̇i + ωsi(J13iωw2i

− J12iωw3i
)

+ ωw3i
ωw2i

(J33i − J22i) + J23i(ω
2
w2i
− ω2

w3i
)
]
ĝsi + Piŵ2i +Qiŵ3i

(58)

Scalar quantities, Pi and Qi are the coefficients for ŵ2i and ŵ3i respectively. Since only the coefficient of ĝsi
relates directly to the motor torque equation as in Eqns. (40)-(41), specifying Pi and Qi is unnecessary as they do not
contribute to usi .

The next step is to define the remaining terms in Eq. (41). This begins by determining the second inertial derivative
of r̈Wci

/N .

rWci
/N = rB/N + rWi/B + rWci

/Wi
= rB/N + rWi/B + diŵ2i (59)

ṙWci
/N = ṙB/N + ωB/N × rWi/B + (ωB/N + Ωiĝsi)× diŵ2i (60)

r̈Wci
/N = r̈B/N + ω̇B/N × rWi/B + ωB/N × (ωB/N × rWi/B) + (ω̇B/N + Ω̇iĝsi)× diŵ2i

+ (ωB/N + Ωiĝsi)× diΩiŵ3i + ωB/N × [(ωB/N + Ωiĝsi)× diŵ2i ]
(61)

Each cross product in Eq. (61) is evaluated using wheel frame components. For example,

(ωB/N + Ωiĝsi)× diŵ2i = −diωw3i
ĝsi + di(ωsi + Ωi)ŵ3i (62)

Repeating this procedure several times yields the following expression for the right hand term of Eq. (41) (Ri is the
coefficient in front of ŵ3i and does need to be defined because only the ĝsi component is desired):

rWci
/Wi
×mrwi

r̈Wci
/N =mrwi

di

[
ŵT

3i r̈B/N − ŵT
3i [r̃Wi/B ]ω̇B/N + ŵT

3i [ω̃B/N ][ω̃B/N ]rWi/B

+ di(ĝ
T
si ω̇B/N + Ω̇i) + diωw2i

ωw3i

]
ĝsi −Riŵ3i

(63)

The motor torque equation is obtained by summing the ĝsi components of Eq. (58) and Eq. (63)

usi =(J11i ĝ
T
si + J12iŵ

T
2i + J13iŵ

T
3i)ω̇B/N + J11iΩ̇i + ωsi(J13iωw2i

− J12iωw3i
) + ωw3i

ωw2i
(J33i − J22i)

+ J23i(ω
2
w2i
− ω2

w3i
) +mrwidiŵ

T
3i r̈B/N −mrwidiŵ

T
3i [r̃Wi/B ]ω̇B/N +mrwi

diŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B

+mrwi
d2i (ĝTsi ω̇B/N + Ω̇i) +mrwi

d2iωw2i
ωw3i

(64)
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Grouping second order terms on the left-hand side yields the simplified motor torque equation.

[
mrwi

diŵ
T
3i

]
r̈B/N +

[
(J11i +mrwi

d2i )ĝTsi +J12iŵ
T
2i +J13iŵ

T
3i −mrwi

diŵ
T
3i [r̃Wi/B ]

]
ω̇B/N +

[
J11i +mrwi

d2i
]
Ω̇i

= J23i(ω
2
w3i
− ω2

w2i
) + ωsi(J12iωw3i

− J13iωw2i
) + ωw2i

ωw3i
(J22i − J33i −mrwi

d2i )

−mrwi
diŵ

T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi (65)

The balanced motor torque equation may be obtained by zeroing out all imbalance terms (di, J12i , J13i , J23i ) and
making the assumption J22i = J33i . Under these conditions, Eq. (65) may be simplified to

usi = J11i
(
ĝTsi ω̇B/N + Ω̇i

)
(66)

Eq. (66) is equivalent to the balanced motor torque equation found in Reference.11

This concludes the necessary derivations for the EOMs that are needed to describe the fully-coupled jitter model
for imbalanced RWs. Since the simplified RW jitter model5 assumes an external force and torque on the spacecraft,
the EOMs for the fully-coupled model and the simplified RW jitter model are significantly different. However, due to
the coupled nature of the EOMs, the similar terms in the simplified model compared to the fully-coupled model are
not readily apparent in EOMs presented thus far. In the following section a back-substitution method is introduced to
increase the computational efficiency of a computer simulation for this model and as a result the similar terms become
apparent.

III.D Back-Substitution Method

The equations presented in the previous sections result in N + 6 coupled differential equations. Therefore, if
the EOMs were placed into state space form, a system mass matrix of size N + 6 would need to be inverted to
numerically integrate the EOM. This can result in a computationally expensive simulation. In this section, the EOMs
are manipulated to increase the efficiency. This manipulation involves inverting an N × N matrix for the reaction
wheel motion EOM, inverting the rotational motion equation (3× 3), and then back solving for the reaction wheel and
translational motions. This derivation can be seen in the following sections.

Since the translational motion is coupled with both the rotational motion and the motor torque equation, the trans-
lational motion equation, Eq. (10), is placed into the motor torque equation

[
mrwi

diŵ
T
3i

](
[c̃]ω̇B/N−

1

msc

N∑
j=1

mrwjdjŵ3j Ω̇j + r̈C/N−2[ω̃B/N ]c′− [ω̃B/N ][ω̃B/N ]c+
1

msc

N∑
j=1

mrwjdjΩ
2
jŵ2j

)
+
[
(J11i +mrwid

2
i )ĝTsi + J12iŵ

T
2i + J13iŵ

T
3i −mrwi

diŵ
T
3i [r̃Wi/B ]

]
ω̇B/N +

[
J11i +mrwi

d2i
]
Ω̇i

= J23i(ω
2
w3i
− ω2

w2i
) + ωsi(J12iωw3i

− J13iωw2i
) + ωw2i

ωw3i
(J22i − J33i −mrwid

2
i )

−mrwi
diŵ

T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi (67)

The second order reaction wheel terms are isolated on the left hand side of the equation

[
J11i +mrwid

2
i −

m2
rwi
d2i

msc

]
Ω̇i −

1

msc

[
mrwi

diŵ
T
3i

] N∑
j=1;j 6=i

mrwj
djŵ3j Ω̇j

= −
[
mrwidiŵ

T
3i

](
[c̃]ω̇B/N + r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c+

1

msc

N∑
j=1;j 6=i

mrwjdjΩ
2
jŵ2j

)
−
[
(J11i +mrwi

d2i )ĝTsi + J12iŵ
T
2i + J13iŵ

T
3i −mrwi

diŵ
T
3i [r̃Wi/B ]

]
ω̇B/N

+ J23i(ω
2
w3i
− ω2

w2i
) + ωsi(J12iωw3i

− J13iωw2i
) + ωw2i

ωw3i
(J22i − J33i −mrwid

2
i )

−mrwi
diŵ

T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi (68)
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The ω̇B/N terms on the right hand side of the equation are combined

[
J11i +mrwi

d2i −
m2

rwi
d2i

msc

]
Ω̇i −

1

msc

[
mrwi

diŵ
T
3i

] N∑
j=1;j 6=i

mrwj
djŵ3j Ω̇j

= −
[
(J11i +mrwi

d2i )ĝTsi + J12iŵ
T
2i + J13iŵ

T
3i +

[
mrwi

diŵ
T
3i

](
[c̃]− [r̃Wi/B ]

)]
ω̇B/N

−
[
mrwi

diŵ
T
3i

](
r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c+

1

msc

N∑
j=1;j 6=i

mrwj
djΩ

2
jŵ2j

)
+ J23i(ω

2
w3i
− ω2

w2i
) + ωsi(J12iωw3i

− J13iωw2i
) + ωw2i

ωw3i
(J22i − J33i −mrwi

d2i )

−mrwidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi (69)

Eq. (69) can now be written in a simplified form

[A]


Ω̇1

.

.

Ω̇N

 = [F ]ω̇B/N + v (70)

Where [A] in an N ×N matrix with the following components

ai,i = J11i +mrwi
d2i −

m2
rwi
d2i

msc
(71a)

ai,j = −
mrwi

diŵ
T
3i

msc
mrwj

djŵ3j (71b)

[F ] is an N × 3 matrix with its row elements defined as

fT
i = −

[
(J11i +mrwid

2
i )ĝTsi + J12iŵ

T
2i + J13iŵ

T
3i +

[
mrwidiŵ

T
3i

](
[c̃]− [r̃Wi/B ]

)]
(72)

v is an N × 1 vector with the following elements

vi −
[
mrwidiŵ

T
3i

](
r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c+

1

msc

N∑
j=1;j 6=i

mrwj
djΩ

2
jŵ2j

)
+ J23i(ω

2
w3i
− ω2

w2i
) + ωsi(J12iωw3i

− J13iωw2i
) + ωw2i

ωw3i
(J22i − J33i −mrwi

d2i )

−mrwidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi (73)

Eq. (70) can now be solved by inverting matrix [A] ([E] = [A]−1).
Ω̇1

.

.

Ω̇N

 = [E][F ]ω̇B/N + [E]v (74)

Since the rotation EOM, Eq. (39), has Ω̇i terms, it is more convenient to use the expression for Ω̇i as

Ω̇i = eTi [F ]ω̇B/N + eTi v (75)

Where the subcomponents of [E] are defined as

[E] =


eT1
.
.

eTN

 (76)
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The modified Euler’s equation has both Ω̇i and r̈B/N terms. To decouple these equations, both the translational
equation and the motor torque equation need to be substituted into Euler’s equation. The translational equation is
substituted into Euler’s equation and the ω̇B/N and Ω̇i terms are combined which results in

(
[Isc,B ] +msc[c̃][c̃]

)
ω̇B/N +msc[c̃]

(
r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c+

1

msc

N∑
i=1

mrwi
diΩ

2
i ŵ2i

)
+

N∑
i=1

[
[Irwi,Wci

]ĝsi +mrwi
di

(
[r̃Wci

/B ]− [c̃]
)
ŵ3i

]
Ω̇i

=

N∑
i=1

[
mrwi

[r̃Wci
/B ]diΩ

2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi

[r̃Wci
/B ]r′Wci

/B

)]
− [ω̃B/N ][Isc,B ]ωB/N − [Isc,B ]′ωB/N +LB (77)

Replacing the Ω̇i term with Eq. (75), combining the resulting ω̇B/N terms and isolating them on the left hand side
yields

(
[Isc,B ] +msc[c̃][c̃] +

N∑
i=1

[
[Irwi,Wci

]ĝsi +mrwi
di

(
[r̃Wci

/B ]− [c̃]
)
ŵ3i

]
eTi [F ]

)
ω̇B/N

= −[ω̃B/N ][Isc,B ]ωB/N − [Isc,B ]′ωB/N −msc[c̃]
(
r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c

)
+

N∑
i=1

[
mrwi

[r̃Wci
/B ]diΩ

2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi

[r̃Wci
/B ]r′Wci

/B

)
−mrwi

diΩ
2
i [c̃]ŵ2i −

(
[Irwi,Wci

]ĝsi +mrwi
di

(
[r̃Wci

/B ]− [c̃]
)
ŵ3i

)
eTi v

]
+LB (78)

For simplification purposes, Eq. (78) is written in the following form

[ILHS]ω̇B/N = τRHS (79)

Where [ILHS] is a 3× 3 matrix defined as

[ILHS] = [Isc,B ] +msc[c̃][c̃] +

N∑
i=1

[
[Irwi,Wci

]ĝsi +mrwidi

(
[r̃Wci

/B ]− [c̃]
)
ŵ3i

]
eTi [F ] (80)

and τRHS is a 3× 1 vector with the following definition

τRHS = −[ω̃B/N ][Isc,B ]ωB/N − [Isc,B ]′ωB/N −msc[c̃]
(
r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c

)
+

N∑
i=1

[
mrwi

diΩ
2
i [r̃Wci

/B ]ŵ2i − [Irwi,Wci
]′Ωiĝsi − [ω̃B/N ]

(
[Irwi,Wci

]Ωiĝsi +mrwi
[r̃Wci

/B ]r′Wci
/B

)
−mrwidiΩ

2
i [c̃]ŵ2i −

(
[Irwi,Wci

]ĝsi +mrwi
di

(
[r̃Wci

/B ]− [c̃]
)
ŵ3i

)
eTi v

]
+LB (81)

At this point, Eq. (78), is the rotational motion equation that has been decoupled from the other second order state
variables, and Eq. (81) is the equivalent torque on the rotational motion due to the fully-coupled model. This now
gives insight into the similarities and differences between the simplified model and the fully-coupled model. The term
mrwi

[r̃Wci
/B ]diΩ

2
i ŵ2i is an internal torque due to the center of mass offset of the RW and is analogous to the external

torque due to static imbalance in the simplified model. The term [Irwi,Wci
]′Ωi is analogous to the dynamic imbalance

of the simplified model. The remaining terms in Eq. (81) are the terms that are missing in the simplified model which
results in angular momentum not being conserved. This comparison is further expounded upon in the next section.
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Now Eq. (79) can be solved for ω̇B/N . It is important to note that there are two remaining steps required to
implement these equations into a simulation. ω̇B/N is placed into the simplified motor torque equation, Eq. (75), to
solve for Ω̇i. The solutions for ω̇B/N and Ω̇i are placed into the translational motion equation to solve for r̈B/N . This
concludes the necessary steps needed to implement imbalanced reaction wheel dynamics into a computer simulation.
The recommended coordinate frames for this simulation are to solve everything in the body frame, B, and before
integration, place the translational motion in the inertial frame, N . However, this formulation is general, and any
coordinate frames can be chosen as needed.

IV Imbalance Parameter Adaptation
IV.A Simplified Imbalance Model

The well-used method to specify reaction wheel imbalance is to lump sources of imbalance into scalar parameters.
The simplified reaction wheel imbalance model directly utilizes such specifications to model jitter as an external
torque.5, 7 Static imbalance, Us, typically given in units of g·cm, specifies the proportionality of the square of wheel
speed to the magnitude of disturbance force caused by an offset in center of mass from the geometric center of the
reaction wheel. That is,

Fsi = UsiΩ
2
i ûi (82)

where ûi is an arbitrary unit vector normal to the wheel spin axis and Fsi is the resulting force on the spacecraft. If the
reaction wheel is not coincident with the spacecraft center of mass, torque on the spacecraft resulting from the static
imbalance force is given by the simplified model as

Lsi = rWi/B × Fsi = UsiΩ
2
i [r̃Wi/B ]ûi (83)

Note that the simplified model uses the approximation rWci
/B ≈ rWi/B since di is usually very small and rWi/B 6= 0.

Dynamic imbalance Ud, typically given in units g·cm2, specifies the proportionality of the square of wheel speed
to the magnitude of disturbance torque caused by off diagonal terms in the reaction wheel inertia tensor. That is,

Ldi = UdiΩ
2
i v̂i (84)

where v̂i is an arbitrary unit vector normal to the wheel spin axis andLdi
is the resulting torque on the spacecraft. Note

that ûi and v̂i are only required to be normal to their corresponding spin axis. This is because the lumped parameters
Usi and Udi

do not contain any information on orientation/location of mass imbalances about ĝsi . Additionally, the
initial value of the wheel angle parameter is arbitrarily chosen, which further emphasizes the arbitrariness of the
vectors ûi and v̂i since they relate to the body frame through wheel angle θi.

IV.B Imbalance Parameter Adaptation
To relate the simplified model to the fully-coupled model developed within this paper, Eq. (81) is analyzed to

identify terms that directly contribute to torque on the spacecraft. Noticing the presence of wheel speed squared and
the cross product of wheel location in the term

mrwi
diΩ

2
i [r̃Wci

/B ]ŵ2i

it is equated to the simplified static imbalance model to yield

UsiΩ
2
i [r̃W/Bi

]ûi = mrwidiΩ
2
i [r̃Wci

/B ]ŵ2i (85)

Rearranging this equation for Usi and making the approximation rWci
/B ≈ rWi/B yields an expression for di

di =
Usi

mrwi

(86)

For the dynamic imbalance, the presence of wheel speed multiplied by [Irwi,Wci
]′ term results in an inertia value

times the wheel speed squared
[Irwi,Wci

]′Ωiĝsi

Equating this term to the simplified dynamic imbalance model yields

UdiΩ
2
i v̂i = [Irwi,Wci

]′Ωiĝsi = Ω2
i

W 0
−J13
J12

 (87)
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Rearranging this equation for Udi
yields Eq. (88) and agrees with the relationship found in Reference 7.

Udi
=
√
J2
13i

+ J2
12i

(88)

Thus, the fully-coupled model is under-constrained with respect to the implementation of the simplified model, and
some combination of J12 and J13 must be selected for each wheel such that Eq. (88) is satisfied. Since the unit vector
v̂i is arbitrary (as well as ŵ2i and ŵ3i due to the arbitrariness of initial wheel angle), the following definitions are
chosen

J13i = Udi
(89a)

J12i = 0 (89b)

To complete the discussion of characterizing RW imbalance from manufactures’ specifications, the full inertia
matrix needs to be defined. The balanced reaction wheel inertia tensor is

[Irwi,Wci
] =

Pi
Jsi 0 0

0 Jti 0
0 0 Jti

 (90)

where Pi is the principal axes frame of the RW. Jsi and Jti are the spin axis inertia and transverse axis inertia of
the RW, respectively. For there to only be J13i terms present in theWi representation of the RW’s inertia tensor, the
rotation matrix betweenWi and Pi, labeled as [WiPi] must be a single axis rotation about the ŵ2i axis:

[WiPi] =

cos(βi) 0 − sin(βi)
0 1 0

sin(βi) 0 cos(βi)

 (91)

where βi is the angle of rotation. Transforming [Irwi,Wci
] from the Pi frame to theWi frame using Eq. (91) and using

small angle approximations yields

[Irwi,Wci
] =

Wi
 Jsi 0 (Jsi − Jti)βi

0 Jti 0
(Jsi − Jti)βi 0 Jti

 (92)

However, from Eq. (89a), [Irwi/Wci
] can be written in the following form

[Irwi/Wci
] =

Wi
Jsi 0 Udi

0 Jti 0
Udi

0 Jti

 (93)

This gives the following relationship between the rotation angle, βi, and Udi

βi =
Udi

Jsi − Jti
(94)

This concludes the necessary steps to relate manufactures’ specifications of RW imbalances to parameters needed
for the fully-coupled jitter model. In addition, the simplified description of [Irwi/Wci

] seen in Eq. (93) simplifies the
EOMs developed in the previous sections due to J12i = J13i = 0. In addition Eqs. (86), (89a) and (93) allow a
direct comparison of the results of the simplified model to the fully-coupled model which is discussed in the following
section.

V Numeric Simulations
Numeric simulations are provided to demonstrate the fully-coupled imbalanced reaction wheel model developed

within this paper. Angular momentum is calculated to confirm that when no external disturbances are present angular
momentum is conserved, and system energy is calculated to show that when no external disturbances or reaction wheel
motor torques are present, energy is conserved. The fully-coupled model is directly compared to the simplified model
using the formulation developed in Section IV.B. Simulation parameters used are given in Table 1.
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Table 1: Simulation parameters for the fully-coupled model. Note that wheel parameters apply to all wheels
unless otherwise specified.

Parameter Notation Value Units

Number of reaction wheels N 3 -
Total spacecraft mass msc 680 kg

Hub mass mhub 644 kg
Wheel mass mrw 12 kg

Hub inertia tensor about hub center of mass [Ihub,Bc
]

B 550 0.1045 −0.0840
0.1045 650 0.0001
−0.0840 0.0001 650

 kg·m2

Hub C.O.M. location w.r.t. B rBc/B
B
[1 −2 10]

T cm

Wheel orientation matrix [Gs]

B 0.7887 −0.2113 −0.5774
−0.2113 0.7887 −0.5774
0.5774 0.5774 0.5774

 -

Wheel static imbalance Us 0.48 g·cm
Wheel static imbalance Ud 15.4 g·cm2

Wheel C.O.M. offset (derived from Us) d 0.4 µm

Wheel inertia tensor about wheel C.O.M.
(derived from Ud) [Irw,Wc

]

W 1.5915 0 1.54E−6
0 0.8594 0

1.54E−6 0 0.8594

 kg·cm2

Wheel 1 location vector rW1/B
B
[0.6309 −0.1691 0.4619]

T

Wheel 2 location vector rW2/B
B
[−0.1691 0.6309 0.4619]

T

Wheel 3 location vector rW3/B
B
[−0.4619 −0.4619 0.4619]

T m
Initial position rB/N

N
[0 0 0]

T m
Initial velocity vB/N

N
[0 0 0]

T m/s
Initial attitude MRP σB/N [0 0 0]

T -
Initial angular velocity ωB/N

B
[0 0 0]

T deg/s
Initial wheel speeds Ω -558, -73, 242 RPM
Initial wheel angles θ 43, 179, 346 deg

Commanded wheel torques us 200, -500, 350 mN·m

V.A Spacecraft with N Imbalanced Reaction Wheels
The first simulation that is included simulates three RWs. The purpose of this simulation is to show the effect of

RW jitter on a spacecraft that is initially inertially fixed, and therefore the only perturbations to the spacecraft will
be due to the RW jitter. Accordingly, the spacecraft has no external forces present, has zero initial velocity, and zero
initial angular velocity. The RWs are initially spinning with specified values seen in Table 1. Also, to give further
confirmation in the model, the motor torque in each RW has a nonzero time history and can be seen in Figure 6(c).
Note that the wheel orientation matrix [Gs] (which is useful for many controls applications11) is formulated such that
each column contains the spin axis unit vector for the ith wheel, ĝsi , and has dimension 3×N .

[Gs] =
[
ĝs1 · · · ĝsN

]
(95)

Figures 3-7 show simulation results for the fully-coupled RW imbalance model with N = 3 wheels. In Figure 3,
the attitude of the spacecraft is shown to be drifting due to the imbalance in the RWs. The impact of jitter is visible in
the spacecraft’s body rates. Figure 4(a) shows the evolution of the principal angle where the jitter is visible. Whereas
in Figure 4(b) shows the principal angle with the drift subtracted out, so that only the jitter is visible. This shows
that the RW jitter results in over 0.1 deg of drift over 2 seconds and a jitter amplitude of around 6 arcseconds. These
parameters are important to consider when doing analysis of RW jitter.

In addition, the translational position and velocity can be seen in Figure 5 and shows that there is a non-zero effect
due to RW jitter on the position and velocity of the spacecraft. The wheel positions and wheel rates seen in Figs. 6(a)
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Figure 3: Attitude and body rates of spacecraft
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b) Principal angle jitter for the fully-coupled simulation

Figure 4: Principal angle and jitter plots

and 6(b) agree with the time history of the motor torque seen in Figure 6(c).
Figure 7 shows the change in energy and momentum during the simulation. Energy is plotted for a 2 second

duration because the motor torque is zero during this time and the change in energy only includes integration error.
The angular momentum is plotted for the entire simulation, and shows that angular momentum is conserved. These
checks give confidence in the formulation and also highlight the difference between this model and the simplified
RW jitter model. The energy and angular momentum of the spacecraft is not conserved for the RW jitter model
(plots not shown), which is expected based on the formulation. For numerical simulations of a spacecraft, angular
momentum and energy conservation is an important check to validate EOMs and for long simulation times the error
in the simplified model will grow. This need for validation checks and error propagations are important characteristics
to consider between both models. A second simulation is included the in the next section to directly compare results
from the two models.

V.B Comparison of Fully-Coupled and Simplified Models
The fully-coupled model is compared to the simplified model. These simulations involve similar initial conditions

as seen in Table 1, except only one RW is included for simplicity. Figure 8 shows principal angle jitter of the spacecraft
(drift subtracted out) for each model. This result gives confidence that the imbalance parameter adaptation is accurate
for converting manufacturers’ specifications on RW imbalances to the parameters needed for the fully-coupled sim-
ulation. However, this also shows that there is a noticeable difference between the two simulations which is a result
of the fully-coupled simulation modeling the RW jitter as in internal rather than an external force and torque on the
spacecraft.

VI Conclusion/Future Work
Previous work related to modeling jitter due to RW imbalances models the effect as an external force and torque

on the spacecraft. In reality, this effect is an internal force and torque on the spacecraft and thus requires a different
formulation. The work presented in this paper develops the general fully-coupled model of RW imbalances. The fully-
coupled model allows for momentum and energy validation to be implemented in a simulation. A back-substitution
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Figure 5: Position and velocity of the spacecraft
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c) Open-loop wheel motor torques for the fully-coupled simulation

Figure 6: Wheel angle, wheel speed, and motor torque of RWs
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Figure 7: Change in energy and momentum of the spacecraft
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Figure 8: Comparison of principal angle jitter results for the fully-coupled and simplified models.

method is employed to avoid the computational penalty of inverting a large system mass matrix. Additionally, a
discussion is included that aids in converting manufacturers’ specifications of RW imbalances to the parameters needed
for the fully-coupled simulation.

Energy is shown to be conserved when the motor torques are zero, and momentum is conserved throughout the
length of the simulations. This provides validation of the fully-coupled model and highlights drawbacks to the sim-
plified model. A comparison between the fully-coupled model and the simplified model shows that the imbalance
parameter adaptation is successful because the fully-coupled and simplified models give similar high-level results.
However, the simplified model is not valid in terms of conservation of energy and conservation of angular momentum.
This is undesirable when including additional complex dynamical models such as flexible dynamics or fuel slosh and
causes error propagation to be a concern for lengthy simulation times.

The fully-coupled model presented does not include higher order effects such as bearing friction, bearing instabili-
ties, and structural vibration.10 Including these effects will be considered for future work. Additionally, it is of interest
to derive the same equations for devices such as control moment gyros (CMGs) and dual-gimbal CMGs.
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