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John Alcorn⇤, Hanspeter Schaub†, and Scott Piggott‡

Some spacecraft rely on a cluster of thruster pairs for attitude control, momentum
management, station keeping, and trajectory maneuvers. Most thrusters must be
operated in a on-off control fashion. The minimum impulse bit, the smallest im-
pulse the thruster can supply, is dictated by the minimum pulse duration of the
thruster. Furthermore, the pulse duration command is discretized according to the
servo frequency of the flight computer, effectively limiting the resolution of the
commanded pulse duration. Each of these discrete aspects of the thruster dynam-
ics presents a challenge when implementing a continuous control law for attitude
stabilization or reaction wheel momentum management. Pulse duration residuals,
that is, unimplemented thruster ON time, may be tracked and leveraged to better
approximate a continuous implementation of the control law. A numerical analysis
is presented of the trade space between minimum pulse duration and pulse dura-
tion resolution by characterizing performance in terms of steady state error and
propellant usage in a Monte Carlo fashion. Furthermore, thruster-based torque
uncertainties are taken into account to illustrate regimes where implementing the
pulse residual tracking no longer impacts the final pointing performance.

INTRODUCTION

The research presented is motivated by the need for precision attitude control of spacecraft. His-
torically, fine pointing of a spacecraft has been achieved using reaction wheels or control moment
gyroscopes and thrusters have been used as a means of coarse pointing and momentum manage-
ment. However with recent advancements in thrusters and micro-thrusters, spacecraft designers are
likely to put more emphasis on usage of thrusters for fine pointing. Unlike reaction wheels though,
thrusters may not in general be used to implement a continuous control law due to the fact that they
are not able to produce incremental levels of force. This restricts the problem to implementation of
a discrete control law at a high level. A bang-bang control law is typical of a discrete system such
as this, but introduces challenges regarding propellant usage and nonlinear behavior.

A continuous control law may be implemented on a configuration of thrusters in a discrete fash-
ion without simply using a bang-bang control law.1 Although the nominal magnitude of thrust
pulse (pulse height) is constant in general, the temporal characteristics of the thrust pulse may be
modulated. It is well established that when using thrusters for spacecraft attitude control pseudolin-
ear behavior may be achieved by using Pulse-Width Pulse Frequency Modulation (PWPF) or Pulse
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Duration Modulation (PDM)2 rather than bang-bang control. McClelland shows extensively that
PWPF modulation consistently performs better than bang-bang control or time-optimal bang-bang
control based on propellant usage, implements smoother control action, and more closely approxi-
mates a linear controller.3 Furthermore, it is demonstrated that by avoiding the nonlinear behavior of
a bang-bang controlled system that excitation of resonant frequencies of the spacecraft is commonly
avoided.4–6 A patent describes attitude control using PWPF modulation thruster control scheme and
methods of hardware implementation.7

A fundamental set of problems not covered by previous openly published literature is the limi-
tations imposed by flight electronics on thruster based attitude control. In general a thruster based
control system is further discretized due to the temporal resolution of the pulse time command and
minimum impulse bit/minimum pulse on-time. That is, any pulse duration command given to a
thruster must be greater than or equal to the minimum pulse time (dictated by how fast the thruster
can open/close its main valve) and must also be a multiple of the pulse time resolution (dictated by
the characteristics of the flight computer and electronics associated with the thruster). These limita-
tions mean that a linear controller will give pulse duration commands that cannot be applied due to
not being a integer multiple of the pulse duration resolution. Therefore, a pulse duration command
must be rounded either up, down, or to the nearest multiple of the pulse duration resolution in or-
der to be applied. A simple mathematical algorithm for tracking residual (partial/unimplemented)
thrust pulses is investigated to study how it may reduce the steady state error without impacting the
desired closed loop response characteristics.

This paper presents Monte Carlo simulation results of a general one-dimensional spacecraft atti-
tude control problem involving multiple thrusters that operate in a discrete on/off fashion using PDM
and different pulse rounding algorithms including the residual tracking method. Consideration is
given to performance of each algorithm and residual tracking versus a control law that includes an
integral gain. Performance of each algorithm under uncertain thruster behavior is analyzed, and the
sensitivity of each thruster characterizing parameter is explored. The body of the paper gives detail
on the mathematical model, control algorithms, numerical simulation, and draws conclusions on the
results.

PROBLEM STATEMENT

The research presented involves a general one-dimensional spacecraft with thrusters. Figure 1
gives a visualization of the problem. This section provides the equations of motion, thruster model,
controller, and discrete implementation of attitude control using PDM thrusters.

Equations of Motion

Without loss in generality, this study focuses on the fixed axis rotation case to investigate how
discrete thruster implementation issues impact the steady state fine pointing ability. The kinematic
differential equation assumes the simple form:

↵ =

d!

dt
=

d

2✓

dt2
(1)

where ↵ is the angular acceleration, ! is the angular velocity, and ✓ is the angle between the space-
craft frame and the inertial frame N .8, 9 Each of these parameters are taken about the normal axis
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Figure 1: A simplified spacecraft with thrusters.

of the spacecraft. The dynamics of the system are governed simply by

↵ =

⌧

I
(2)

where ⌧ is the sum of the torques applied by the thrusters and I is the inertia of the spacecraft about
the normal axis.

Thruster Model

Thruster modeling errors must consider pulse-to-pulse repeatability. This is a small deviation
from the nominal force a thruster produces. Pulse-to-pulse repeatability typically decreases (gets
better) as the thruster “warms up” to thermal steady-state and the valves operate more consistently
between consecutive pulses. For the scope of this study, the temporal variation of pulse-to-pulse
repeatability are not considered as this is very small.

In addition to pulse-to-pulse repeatability, a thruster may have a static thrust bias causing it to fire
either slightly hot or cold. The equation describing the actual thrust produced by a thruster is

F
actual

= F
nom

+ F
bias

+ �F
p2p

(3)

where F
nom

is the nominal force produced, F
bias

is the static bias force (i.e. the thruster is stronger
or weaker than expected), and �F

p2p

is the deviation caused by pulse-to-pulse repeatability, where

�F
p2p

⇠ N
�
0, �2

p2p

�
(4)

It is assumed that the specified pulse-to-pulse repeatability �
p2p

represents the fraction of max thrust
equivalent to the 3� value of �F

p2p

. Thus, the standard deviation of the disturbance �F
p2p

is given
by

�
p2p

=

1

3

�
p2p

F
nom

(5)

0 < �
p2p

(6)
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Without loss in generality it is assumed that each thruster is perpendicular to its moment arm with
the spacecraft center of mass. Thus, torque applied to the spacecraft by each thruster is given by

⌧
actual

= r
t

· F
actual

(7)

where r
t

is the separation of the thruster from the center of mass of the spacecraft.

Control Implementation

For the research presented, the simplified spacecraft under consideration is controlled using a
linear PID control law.10 The controlled parameter is the angle ✓. The control torque is given by

u
des

= �K✓
err

� P! � K
i

Z
✓
err

· dt (8)

where K is the proportional gain, P is the derivative gain, and K
i

is the integral gain. The angle
error ✓

err

is given by

✓
err

= ✓ � ✓
ref

(9)

where ✓
ref

is the reference angle. Since the thrusters under consideration use Pulse Duration Modu-
lation, the desired torque u

des

must be translated to a pulse duration.11 The level of thruster activity
relative to maximum ` is related to u

des

by the equation

` =

���
u
des

u
max

��� =

���
u
des

r
t

· F
nom

��� =

T
p

�t
(10)

Here T
p

is the desired pulse duration and �t is the control update period. Because ` is equivalent
to duty cycle it must satisfy

0  `  1 (11)

Rearranging equation (10) to express the pulse duration as a function of u
des

yields

T
p

= ` · �t =

���
u
des

r
t

· F
nom

��� · �t (12)

T
p

represents the desired duration of the thrust pulse. Equation (10) shows that by applying a force
F
nom

for duration T
p

at a frequency of 1/�t the average torque on the spacecraft is equivalent to
a case where pulse height modulation was applied. Equivalently, the total angular momentum im-
parted on the system is the same in each case. Thus, the most significant difference in performance
is the pseudolinear behavior of pulse duration modulation compared to continuous linear behavior
of pulse height modulation.

Discrete Implementations

The previous section showed that a desired torque may be translated to a pulse duration T
p

in
order to operate thrusters using PDM. Any pulse time command given to a thruster must be greater
than or equal to the minimum pulse time, T

min

, which is dictated by how fast the thruster can
open/close its valve. Any pulse time must also be a multiple of the pulse time resolution, T

res

which
is dictated by the characteristics of the flight computer and electronics associated with the thruster.
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Thus, T
p

is discretized in order to be applied to a thruster. Define �
f

as the fractional ratio of the
desired pulse duration and pulse duration resolution T

res

.

�
f

=

T
p

T
res

(13)

This ratio is generally not a whole number. Thus, in order to implement an integer number of pulses
�
f

must be rounded in some way. Four methods of rounding are investigated: FLOOR, ROUND,
CEIL, and the pulse residual tracking method REM. Algorithm 1 shows the FLOOR method of
rounding �

f

to obtain an applied pulse duration T
on

. Using this algorithm, non-integer desired
pulse ratios are always rounded down. If the desired pulse duration is less than the minimum pulse
duration, T

on

is rounded down to 0 and the thruster does not fire for the current control period.

Data: �
f

, T
min

, T
res

Result: T
on

�
d

= floor(�
f

)

if �
d

· T
res

< T
min

then
T
on

= 0

else
T
on

= �
d

· T
res

end
Algorithm 1: Discrete thrust pulsing using FLOOR.

Algorithm 2 shows the ROUND method of rounding �
f

to obtain T
on

. Using this algorithm, non-
integer desired pulse ratios are always rounded to the nearest integer. If the desired pulse duration
is greater than half the minimum pulse duration, T

on

is rounded up to T
min

. If the desired pulse
duration is less than half the minimum pulse duration, T

on

is rounded down to 0.

Data: �
f

, T
min

, T
res

Result: T
on

�
d

= round(�
f

)

if �
d

· T
res

< T
min

then
T
on

= round(

�d·Tres
Tmin

) · T
min

else
T
on

= �
d

· T
res

end
Algorithm 2: Discrete thrust pulsing using ROUND.

Algorithm 3 shows the CEIL method of rounding �
f

to obtain T
on

. Using this algorithm, non-
integer desired pulse ratios are always rounded up. Desired pulse duration values less than T

min

are
always rounded up to T

min

.

Algorithm 4 shows the REM method of processing �
f

to obtain T
on

. This algorithm also tracks
unimplemented thrust by retaining partial thrust pulses �

rem

. Using this algorithm, non-integer
desired pulse ratios are always rounded down. The fractional pulse is retained for the next call to
the algorithm. Desired pulse duration values less than T

min

are always rounded up to 0, and the
fractional pulse is retained.

5



Data: �
f

, T
min

, T
res

Result: T
on

�
d

= ceil(�
f

)

if �
d

· T
res

< T
min

then
T
on

= T
min

else
T
on

= �
d

· T
res

end
Algorithm 3: Discrete thrust pulsing using CEIL.

Data: �
f

, �
rem

, T
min

, T
res

Result: T
on

�
c

= �
f

+ �
rem

�
d

= floor(�
c

)

�
rem

= �
f

+ �
rem

� �
d

if �
d

· T
res

< T
min

then
T
on

= 0

�
rem

= �
rem

+ �
d

else
T
on

= �
d

· T
res

end
Algorithm 4: Discrete thrust pulsing using residual tracking.

NUMERICAL ANALYSIS

Using the hypothetical simple spacecraft described in the previous section, the performance of
Algorithms 1-4 are analyzed through numeric simulations. Analyses considered include an integral
gain sweep, disturbance sensitivity, and parameter sensitivity. All simulations are run in a Monte
Carlo fashion in order to obtain results that represent a span of initial angles, etc. Table 1 shows the
nominal values for parameters used in the simulation. Note that some of the parameters given in
Table 1 are varied in subsequent Monte Carlo simulations.

Integral Gain Sweep

The purpose of the integral gain sweep simulation is to demonstrate performance of Algorithms 1-
4 under the influence of various integral gain K

i

values. The introduction of an integral term in the
control law causes steady state errors to add up until they cause another pulse to be commanded.
Steady state error and impulse (propellant usage) are used as figures of merit for each K

i

sweep.
Table 2 provides parameters specific to the data given for the K

i

sweep Monte Carlo simulations.

Figure 2 shows the Monte Carlo simulation results for Algorithms 1-4, respectively. In Fig-
ure 2(a), it is shown that using an integral gain with the FLOOR method improves performance in
steady state error, but at a higher propellant cost. Figures 2(b) and 2(d) show that the ROUND and
REM algorithms are largely insensitive to the inclusion of a K

i

gain. The CEIL integral gain sweep
in Figure 2(c) shows that pointing performance may be slightly improved by using an integral gain.
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(a) Ki sweep using the FLOOR pulse rounding method.
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(b) Ki sweep using the ROUND pulse rounding method.
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(c) Ki sweep using the CEIL pulse rounding method.
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(d) Ki sweep using the REM pulse rounding method.

Figure 2: Results of the integral gain sweep analysis for each algorithm.
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Table 1: Nominal simulation parameters for the simple spacecraft.

Parameter Value Units

Inertia, I 800 kg·m2

Control Period, �t 0.5 s
Proportional Gain, K 17.5580 -

Derivative Gain, P 213.3333 -
Integral Gain, K

i

0.2 -
Servo Rate 100 Hz

Nominal Thrust, F
nom

2.56 N
Moment Arm, r

t

1 m
Pulse Duration Resolution, T

res

10 ms
Minimum Pulse Duration, T

min

20 ms
Pulse-to-pulse Repeatability, �

p2p

5 %

Table 2: Monte Carlo simulation parameters for the integral gain sweep.

Parameter Value(s) Units

Integral Gain, K
i

0 ! 1 -
MC Runs Each Method 220 -

Disturbance Sensitivity

The purpose of the disturbance sensitivity analysis is to show the performance of each algorithm
and each algorithm with K

i

influence as an unaccounted thrust bias is applied to a thruster. Table 3
provides parameters specific to the data given for the bias sweep Monte Carlo simulations.

Table 3: Monte Carlo simulation parameters for the static bias sweep.

Parameter Value(s) Units

Static Bias, F
bias

-90 ! 280 % of max thrust
MC Runs Each Method 260 -

Figures 3-4 show the results of the static bias sweep simulations. Figure 3 provides a comparison
of the results for all methods. Note that the FLOOR and ROUND algorithms are largely insensitive
to a bias. The CEIL and REM algorithms show degradation in pointing performance as a bias
is added. However, when using a integral gain with CEIL, the impact on performance is not as
severe. Note that the REM algorithm using integral is omitted from Figure 4(d) since it shows
poorer performance in certain regimes. Figure 4 shows the same data as Figure 3 in greater detail.
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Figure 3: Static bias sweep showing results for all methods. Dashed lines indicate use of an
integral term.

Parameter Sensitivity

The purpose of the parameter sensitivity analysis is to show the performance of each algorithm
as minimum pulse duration T

min

and pulse duration resolution T
res

are varied. Table 4 provides
parameters specific to the data given for the bias sweep Monte Carlo simulations. Figure 5 shows
heat maps of steady state error for each of the four algorithms. From the data, it is easy to infer
that steady state error is highly correlated with T

min

. The main difference between the algorithms is
sensitivity to T

res

. Figure 5(a) suggests that the FLOOR method shows a small correlation between
T
res

and steady state error. Figure 5(b) shows that for the ROUND method the correlation between
T
res

and steady state error is very large at small values of T
min

, and very small at larger values of
T
min

. Figure 5(c) shows that the CEIL algorithm is largely insensitive to T
res

with the exception of
a prominent “hot spot”. Figure 5(d) shows that the REM algorithm is insensitive to T

res

.

Table 4: Monte Carlo simulation parameters for the parameter sensitivity sweep.

Parameter Value(s) Units

Minimum Pulse Duration, T
min

0 ! 500 ms
Pulse Duration Resolution, T

res

0 ! 500 ms
MC Runs Each Method 160 -

CONCLUSION

The results show the performance of different methods of pulse rounding for discretely operat-
ing PDM thrusters. Monte Carlo simulations show the sensitivity of each algorithm to an integral
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(a) Static bias sweep for the FLOOR pulse rounding method.
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(b) Static bias sweep for the ROUND pulse rounding method.
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(c) Static bias sweep for the CEIL pulse rounding method.
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(d) Static bias sweep for the REM pulse rounding method.

Figure 4: Results of the static bias sweep analysis for each algorithm.
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(b) Static bias sweep for the ROUND pulse rounding method.
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(c) Static bias sweep for the CEIL pulse rounding method.
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(d) Static bias sweep for the REM pulse rounding method.

Figure 5: Results of the parameter sensitivity analysis for each algorithm.
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gain, static bias, and variation of timing parameters. The results show that the pulse remainder
tracking algorithm REM may be used to increase steady state pointing accuracy while maintaining
much lower propellant usage than other algorithms. Furthermore, the REM algorithm maintains its
superior performance under large static thrust biases if an integral gain is introduced.
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