

Object Relative Heading Estimation with Binary Wide Field of View X-Ray Sensing

Andrea López NASA FINESST Fellow Graduate Research Assistant andrea.lopez@colorado.edu

> 2023 Applied Space Environments Conference Huntsville, AL, 9-13 October 2023

Hanspeter Schaub Professor and Department Chair Schaden Leadership Chair

Motivation

Detecting objects in the vicinity of a spacecraft

- Passive: exploiting space environment interactions
- Regions of interest: GEO, cislunar
- Applications:
 - Artificial/natural debris: detect and track in situ
 - Proximity operations: On Orbit Servicing, Assembly and Manufacturing (OSAM)

Ambient generated x-rays

(A) Backscatter; (B) secondary electrons; (C) characteristic x-rays; (D) bremsstrahlung x-rays

Wilson, K. and Schaub, H., 2019. X-ray spectroscopy for electrostatic potential and material determination of space objects. IEEE Transactions on Plasma Science, 47(8), pp.3858-3866.

Problem Statement

Coarse Sun Sensor (CSS) assembly

CSS pyramid

Cosine law (blue) and typical CSS behavior (orange)

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

X-ray Sensors: COTS, 15 deg FOV

Signal acquisition/loss at edge of FOV

$m^T h = \cos f$

Peak intensity is not known \rightarrow only on or off information

Testing on/off hypothesis

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Problem Statement: Trigger events

Sensor configuration

Static target: heading

Objects With Binary Wide Field Of View X-Ray Sensing," AAS Astrodynamics Specialist Conference, Charlotte, NC, 2022. Paper No. AAS 22-602

Need events from multiple sensors to disambiguate

Problem Statement: Configuration

CSS-like configuration

Rotating platform

 $\boldsymbol{\omega} = \omega \widehat{\boldsymbol{p}}_3$

López, A., Hammerl, J., and Schaub, H., "Detecting Space Objects With Binary Wide Field Of View X-Ray Sensing," AAS Astrodynamics Specialist Conference, Charlotte, NC, 2022. Paper No. AAS 22-602

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Only two unique measurements: under-determined problem

Problem Statement: Configuration

Elevation distributed configuration

at edges

 $\phi \ [\mathrm{deg}]$

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Problem Statement: Configuration

Sensor configuration

Sensor	θ [deg]	φ [deg]
1	0	0
2	0	15
3	0	30
4	0	45
5	0	60
6	0	75

Rotating platform $\boldsymbol{\omega} = \omega \widehat{\boldsymbol{p}}_3$

López, A., Hammerl, J., and Schaub, H., "Detecting Space Objects With Binary Wide Field Of View X-Ray Sensing," AAS Astrodynamics Specialist Conference, Charlotte, NC, 2022. Paper No. AAS 22-602

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

2.52 π sr around \widehat{p}_3 1.93π sr with 2 sensor

Rotating, partially overlapping sensors

Problem Statement: Multiple clusters

- a) Two six-sensor clusters
- b) Three four-sensor clusters
- c) Four three-sensor clusters
- d) Six two-sensor clusters

López, A., Hammerl, J., and Schaub, H., "Detecting Space Objects With Binary Wide Field Of View X-Ray Sensing," AAS Astrodynamics Specialist Conference, Charlotte, NC, 2022. Paper No. AAS 22-602

Relative Orbit Cases

$\Delta i \; [\mathrm{rad}]$	$\Delta \omega$ [rad]	$\Delta\Omega \ [\mathrm{rad}]$	$\Delta M_0 \; [{ m rad}]$
5e-4	1.5e-4	1.5e-4	-1.5e-3
0	0	0	-3e-3

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Batch pre-processing

 $\boldsymbol{m}_i^T(t_i)\boldsymbol{h}(t_i) = \cos f$

$$\begin{bmatrix} \boldsymbol{m}_1^T(t_1) \\ \boldsymbol{m}_2^T(t_2) \\ \dots \\ \boldsymbol{m}_p^T(t_p) \end{bmatrix}$$

Measu

Urement:

$$y = \begin{pmatrix} \theta \\ \varepsilon \end{pmatrix} = \begin{pmatrix} \arctan({}^{\mathcal{P}}h_2 / {}^{\mathcal{P}}h_1) \\ \arctan({}^{\mathcal{P}}h_3) \end{pmatrix}$$

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Batch pre-processing

Static target case:

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Gi

Relative orbit case (case 1):

Error is linked to precision in knowledge of sensor pointing and target motion

Heading estimation: error statistics

Sampling every 1s

To reduce error in sensor pointing knowledge:

- Reducing platform ulletangular speed
- Reducing sampling time

Relative Orbit Estimation: Case 1

Angles-only ROE:

- Linear dynamics \rightarrow unobservable
- Non-linear dynamics \rightarrow weakly observable •

Unscented Kalman filter

Dynamics: LPE for J2

Measurements: azimuth-elevation

 \rightarrow Mean to osculating transformation

Perfect bearing angles measurement \rightarrow errors / divergence?

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Relative Orbit Estimation: Case 1

Angles-only ROE:

- Linear dynamics \rightarrow unobservable
- Non-linear dynamics \rightarrow weakly observable

Unscented Kalman filter

Dynamics: LPE for J2

Measurements: azimuth-elevation

 \rightarrow Mean to osculating transformation

→ Brouwer-Lyddane transformation (order J2 ~1e-6)

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Relative Orbit Estimation: Case 2

1e-6 0.002 *ða* error error 0.000 δ -0.002 1e-6 1e-6 *õe_x* error δe_{y} 1e-6 1e-6 δi_{χ} error δi_y -5 time [orbit] time [orbit] 1e-5 2.5 error 0.0000 e 0.0 бa δλ -0.0025 -2.5 1e-5 2.5 error 0.0 0.0 δe_{χ} -2.5 1e-5 1e-5 2.5 2.5 erro eri 0.0 0.0 δi_x 51 -2.5 -2.5 time [orbit] time [orbit]

Angles-only ROE:

- Linear dynamics \rightarrow unobservable
- Non-linear dynamics \rightarrow weakly observable

Unscented Kalman filter

Dynamics: LPE for J2

Perfect bearing angles Estimated bearing angles

Measurements: azimuth-elevation

 \rightarrow Mean to osculating transformation

→ Brouwer-Lyddane transformation (order J2 ~1e-6)

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Relative Orbit Estimation: Residuals Case 1

Perfect bearing angles

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Estimated bearing angles

B-L structure \rightarrow Repeatability with orbit period

Conclusions

- Setup
 - Assembly of off-the-shelf x-ray sensors
 - On/off signals
 - Rotating platform
 - Moving target \rightarrow relative orbit
- Relative Orbit Estimation
 - Pre-processing: Batch least-squares \rightarrow "angles-only"
 - Unscented Kalman filter
- Future work
 - Estimation problem: observability study, process noise model
 - SNR analysis for different plasma environments in regions of interest

Electrostatic Charging Laboratory for Interactions between Plasma and Spacecraft (ECLIPS) research vacuum chamber

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Questions?

andrea.lopez@colorado.edu

AVS Lab website: http://hanspeterschaub.info/main.html

Acknowledgements:

grant FA9550-23-1-0570.

This work was supported by the U.S. Air Force Office of Scientific Research under

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Backup slides

Electron plasma parameters in Cislunar

Region	Altitude [km]	Mean Electron Temperature [eV]	Max. Electron Temperature [eV]
Magnetotail lobes	>100	48	980
Plasma Sheet	>100	150	3700
Magnetosheath Dayside	>100	18	1400
Magnetosheath Wake	100-2000	50	840
	2000-12000	19	920
	>12000	17	710
Solar Wind Dayside	>100	11	126
Solar Wind Wake	100-500	60	430
	500-2000	50	350
	2000-12000	29	220
	>12000	19	64

NASA Cross-Program Design Specifications for Natural Environments (DSNE), Rev I

Credit: Kaylee Champion

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Electron plasma parameters in Cislunar

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Hill frame estimation errors: Case 1

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023

Hill frame estimation errors: Case 2

2023 Applied Space Environments Conference, Huntsville, AL, 9-13 October 2023