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SPACECRAFT DYNAMICS EMPLOYING A GENERAL MULTI-TANK
AND MULTI-THRUSTER MASS DEPLETION FORMULATION

Paolo Panicucci∗, Cody Allard† and Hanspeter Schaub‡

Using thrusters for either orbital maneuvers or attitude control change the current spacecraft
mass properties and results in an associated reaction force and torque. To perform orbital and
attitude control using thrusters, or to obtain optimal trajectories, the impact of mass variation
and depletion of the spacecraft must be thoroughly understood. In contrast to earlier works
a general solution is developed which makes no assumptions on the body symmetry or tank
geometry. The fully coupled translational and rotational equations of motion are derived of
a spacecraft that is ejecting mass through the use of thrusters. The formulation considers a
general multi-tank and multi-thruster approach to account for both the depleting fuel mass
in the tanks and the mass exiting the thruster nozzles. General spacecraft configurations are
possible where thrusters can pull from a single tank or multiple tanks, and the tank being
drawn from can be switched via a valve. Numerical simulations validate the dynamical
model solution and show the impact of assumptions that are made for mass depletion in prior
developed models. The results underline the need of implementing a mass depletion model
in high-fidelity simulation comparing the developed model with an “Update-Only” model. It
results in a difference in the spacecraft’s angular velocity between the two models and in a
lack of precision in the simpler formulation, the “Update-Only” model.

INTRODUCTION

The aerospace industry has been steadily increasing the accuracy of spacecraft simulations using advanced
analytical development and computer numerical techniques. The prediction of satellite behaviors and their
orbits during the preliminary design phase and leading up to the operational period is an extremely useful
tool to develop and analyze missions. Moreover, high-fidelity models provide an efficient way to limit fuel
demanding maneuvers to preserve satellite orbital position. In this context, the need of a general formulation
to predict satellite orbital and attitude behaviors while considering mass depletion is crucial to model the
dynamical mass variation influence on the equations of motion (EOMs).

The simplest way to take into account the ejection of propellant is to use an “Update-Only” approach, thus
updating the center of mass position and the inertia during the simulation in the EOMs without considering
the dynamical influences of the mass depletion. This results in a easy-to-implement model whose limita-
tions consist in the lack of detailed attitude and translational motion prediction for high-fidelity purposes. A
more accurate approach considers the spacecraft as an open system whose mass changes in accord with the
fuel flows and, consequently, the dynamical variables are transported out of the system using the Reynolds
theorem.1, 2 Past works3, 4, 5, 6 present the derivation of a variable mass rocket with an axial-symmetric de-
sign with a single axial-symmetric burn chamber and a circular nozzle. These assumptions decouple the
rocket axial spin from the transverse angular velocity and results in a closed solution to the problem. Other
works7, 8 present the EOMs considering a system of coaxial bodies with different angular velocities. The
studies present an analysis of the nutation angle in the case of a two-body satellite, like a spacecraft with a
coaxial wheel. The equations must be specified accordingly with the number of interconnected bodies and
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Figure 1. Spacecraft with depleting mass and definition of frames and variables

this results in the need of re-derivation for a specific system of interconnected bodies and to take into account
how particles leave the system. A more recent work9 considers a body fixed reference origin and develops
the translational and rotational EOM for a reentry module but it lacks in a defined approach to connect the
dynamical properties variation with the ejected mass characteristics.

This research is focused on the formalization of a general multi-tank and multi-thruster approach to link
the mass depletion inside the tanks with the fuel ejected by the nozzles, and the resulting impact on the orbital
and attitude motion. The EOMs are gathered considering a system composed of a general number of tanks
and nozzles without making any hypothesis about their properties. Furthermore, the model is thought to
be as modular as possible to be easily implemented in flight dynamics software. In the remaining sections,
the problem description is outlined, and the fully coupled translational and rotational motion EOMs are
developed. Next, the mapping employed from the general multi-tank, multi-thruster model is explained and
the mathematical relations are established. Finally, results and conclusion are presented to underline the
importance of considering the previously ignored phenomena to obtain close-to-reality simulations and high-
accuracy model.

PROBLEM STATEMENT

To help define the problem, Figure 1 is displayed. This problem involves a spacecraft consisting of a hub
which is a rigid body and has a center of mass location labeled as point Bc. The hub has M number of tanks
and N number of thrusters attached to it. The figure only shows one tank and one thruster but the analytical
development is general. The ith tank has a center of mass location labeled as Fci and the jth thruster is located
at Ncj . The body fixed reference frame B: {b̂1 , b̂2 , b̂3} with origin B can be oriented in any direction and
point B can be located anywhere fixed to the hub. This means that point B and the center of mass location
of the spacecraft, C, are not necessarily coincident. As a result, the vector c defines the vector pointing from
the body frame origin to the center of mass fo the spacecraft. The inertial reference frame N : {n̂1 , n̂2 , n̂3}
is centered at N and is fixed in inertial space.

Throughout this paper, vector calculus is used and the notation to define certain quantities needs to be
introduced. A position vector, rC/N , is the vector pointing from N to C. ωB/N is the angular velocity of
the B frame with respect to theN frame. ṙ denotes an inertial time derivate of vector r and r′ defines a time
derivate of r with respect to the body frame. Using these definitions, the following describes the Reynolds
transport theorem used in this formulation.
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Figure 2. Division of the total system into the spacecraft and exhausted gas. The
control surface Asc represents the exchanging surface between the two subsystems.

EQUATIONS OF MOTION

Reynolds Transport Theorem and Continuity Equation

In this section the main tool used for the development of the governing equations is presented and ex-
plained. The Reynolds transport theorem provides a basic tool to pass from a Lagrangian formulation, based
on the analysis of particles moving in space, to an Eulerian one, which considers a fixed space volume where
physical quantities are exchanged through the boundaries.

In the present document, the Lagrangian system is labeled Body, the moving volume of the Eulerian ap-
proach is labeled Vsc and its surface Asc are represented in Figure 2. By using this notation, the Reynolds
transport theorem affirms:10, 11, 12, 1

Dd
dt

∫
Body

ρfdV =
Dd
d t

∫
Vsc

ρfdV +

∫
Asc

ρf (vrel · n̂) dA (1)

where f is a general vectorial quantity transported out from the control volume, ρ is the density of the
infinitesimal mass dm, n̂ the surface normal considered positive if exiting from the control volume, D is
a generic reference frame and vrel is the relative velocity of the particles flowing out from the surface with
respect to the control surface itself. This last quantity can be easily defined as

vrel(x, t) =
Dd
dt
rM/B(x, t)− vsurf(x, t) (2)

where
Dd
dt rM/B(x, t) is the particles’ velocity with respect to theD frame and vsurf(x, t) is the control surface

velocity with respect to the D reference frame.
An additional key equation that is used throughout the paper is the continuity equation. First, the continuity

equation is gathered:

Bd
dt

∫
Body

ρ dm =
Bd
dt

∫
Vsc

ρ dV +

∫
Asc

ρ r′M/B · n̂ dA = 0 (3)
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Thus, by defining ṁsc =
Bd
dt

∫
Vsc
ρ dV:

ṁsc = −
∫
Asc

ρ r′M/B · n̂ dA ⇒ dṁ = −ρ r′M/B · n̂ dA (4)

This definition will be used in the derivation of the EOMs. The translational EOM is developed in the
following section.

Translational Equation of Motion

The derivation of the translational EOM begins considering Newton’s law for a closed system in a non-
inertial reference frame:∫

Body

(
r̈B/N + ω̇B/N × rM/B + ωB/N ×

(
ωB/N × rM/B

))
dm+

+ 2ωB/N ×
∫

Body
r′M/Bdm+

∫
Body

r′′M/Bdm = Fext (5)

where rM/N is the position of the particle at theM point andFext is the sum of the external forces experienced
by the body. By using the Reynolds transport theorem, the two previous equations can be expressed in a space
fixed volume, shown in Figure 2. Performing this conversion results in the following equations:

Bd
dt

∫
Body

rM/B dm =
Bd
dt

∫
Vsc

ρ rM/B dV +

∫
Asc

ρ r′M/B · n̂ rM/BdA (6)

Bd2

dt2

∫
Body

rM/B dm =
Bd2

dt2

∫
Vsc

ρ rM/B dV+

+
Bd
dt

∫
Asc

ρ r′M/B · n̂ rM/B dA+

∫
Asc

ρ r′M/B · n̂ r
′
M/B dA (7)

where vrel = r
′
M/B because point B is fixed with respect to the spacecraft.

As explained in previous work,10 if all of the mass is contained in the control volume at the initial time, then
a particular relation results because no mass is outside the control volume at t = 0 and the dynamic quantities
will be transported out during the integration. This relationship is quantified in the following equation:

Fext −
∫

Body

(
r̈B/N + ω̇B/N × rM/B + ωB/N ×

(
ωB/N × rM/B

))
dm =

∫
Vsc

dFvol+

+

∫
Asc

dFsurf −
∫
Vsc

ρ
(
r̈B/N + ω̇B/N × rM/B + ωB/N ×

(
ωB/N × rM/B

))
dV (8)

where the forces are divided into volumetric forces and the forces applied on the spacecraft surface. Re-
arranging this result, replacing the definition of Fext, and isolating the forces to the right hand side of the
equation yields:∫

Vsc

ρ
(
r̈B/N + ω̇B/N × rM/B + ωB/N ×

(
ωB/N × rM/B

))
dV+

+ 2ωB/N ×
( Bd

dt

∫
Vsc

ρ rM/B dV +

∫
Asc

ρ r′M/B · n̂ rM/BdA
)

+
Bd2

dt2

∫
Vsc

ρ rM/B dV+

+
Bd
dt

∫
Asc

ρ r′M/B · n̂ rM/B dA+

∫
Asc

ρ r′M/B · n̂ r
′
M/B dA =

∫
Vsc

dFvol +

∫
Asc

dFsurf (9)
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One goal for this paper is to develop the EOMs of a spacecraft with depleting mass without the necessity
of continuing to track the depleted mass once it has left the spacecraft. One aspect of achieving this goal,
is to define the center of mass of the spacecraft with respect to point B, including the remaining fuel while
disregarding the spent fuel. This variable, c = rC/B , is defined as:

c =
mhub rBc/B +

∑M
i=1mfueli rFci/B

mhub +
∑M

i=1mfueli

(10)

where mhub is the mass of the hub, mfueli is the ith tank’s fuel mass and rFci/B is the position of the center
of mass of the ith tank’s. In order to infer the influence of the mass variation in the EOMs the first and second
time derivatives with respect to the body frame of c are computed from the definition of c.

Using this definition, the translational EOM can be simplified. Additionally, some assumptions need to
be defined to further simplify the translational EOM. The hub is assumed to be rigid, therefore deformations
are not considered. The mass flow within the tanks and the thrusters is assumed to be a second order effect
and ignored for this paper. The particles are assumed to be accelerated instantaneously from the spacecraft
velocity, ṙB/N , to the exhausted velocity vexh at the nozzle. And the exhausted velocity vexh is considered
constant and parallel to the nozzle’s normal.

The first integral in Eqn. (9) is computed using the fact that rM/B = c+ rM/C and the result is shown in
the following equation:∫

Vsc

ρ
(
r̈B/N + ω̇B/N × rM/B + ωB/N ×

(
ωB/N × rM/B

))
dV =

= msc r̈B/N +msc ω̇B/N × c+msc ωB/N ×
(
ωB/N × c

)
(11)

wheremsc = mhub+
∑M

i=1mfueli is the instantaneous mass of the spacecraft. The second and fourth integrals
are computed and yield:

Bd
dt

∫
Vsc

ρ rM/B dV =
Bd
dt

(msc c) = msc c
′ + ṁfuelc (12)

Bd2

dt2

∫
Vsc

ρ rM/B dV =
Bd2

dt2
(msc c) = msc c

′′ + 2 ṁfuel c
′ + m̈fuelc (13)

where ṁfuel =
∑M

i=1 ṁfueli and m̈fuel =
∑M

i=1 m̈fueli .
In order to find the term calculated on the reference surface seen in the third, fifth and sixth integrals, it

is convenient to separate the integrals on the surface of each nozzle. Moreover, as the fuel’s properties are
flowing out of a surface plane, it is convenient to consider that rM/B = rM/Ncj + rNcj/B where Ncj is the
area’s geometric center. Performing these calculations, the integrals result in:∫

Asc

ρ r′M/B · n̂ rM/B dA = −
N∑
j=1

∫
ṁnozj

(
rM/Ncj + rNcj/B

)
dṁ = −

N∑
j=1

ṁnozjrNcj/B (14)

Bd
dt

∫
Asc

ρ r′M/B · n̂ rM/B dA =
Bd
dt

− N∑
j=1

ṁnozjrNcj/B

 = −
N∑
j=1

m̈nozjrNcj/B (15)

∫
Asc

ρ r′M/B · n̂ r
′
M/B dA =

N∑
j=1

∫
Anozj

ρ r′M/B · nr
′
M/BdA = −

N∑
j=1

ṁnozj vexhj (16)

where vexhj is the exhausted velocity of a particle exiting from the jth nozzle.
The two integrals on the right-hand-side of Eq. (9) depends on the force model chosen. Therefore, to not
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lose generality, the resulting surface integral due to the pressure jump between the nozzle and the environment
is the only term that is analytically computed seen in the following equation:∫

Vsc

dFvol +

∫
Asc

dFsurf = Fext, vol + Fext, surf +

N∑
j=1

vexhj

vexhj
Anozj (pexhj − patm) (17)

where Fext, vol is the sum of the external forces acting on the control volume, Fext, surf is the sum of the external
forces accelerating the control surface, pexhj is the particles’ exhausted pressure at the jth nozzle and patm is
the atmospheric pressure at the flying altitude.

In Eq. (17), the term involving the pressure jump is defined as the well-known thrust force, Fthrj :

Fthrj = vexhj

(
Anozj

vexhj
(pexhj − patm) + ṁnozj

)
= Ispj g0 ṁnozj

vexhj

vexhj
(18)

Finally, Equation (9) is rewritten considering the nozzles’ geometry and fluid properties by using Equa-
tions (12)-(17). For further simplicity, the cross product is substituted with the associated skew symmetric
matrix, and the translational equation is written in a more compact form:

r̈B/N + [c̃]
T
ω̇B/N =

Fthr

msc
− 2

ṁfuel

msc

(
c′ +

[
ω̃B/N

]
× c
)
− c′′ + 2

[
ω̃B/N

]T
c′ +

1

msc

N∑
j=1

m̈nozjrFcj/B

− m̈fuel c+
[
ω̃B/N

]T [
ω̃B/N

]
c+

2

msc

N∑
j=1

ṁnozj

[
ω̃B/N

]
rNcj/B +

Fext, vol

msc
+
Fext, surf

msc
(19)

This EOM is the translational equation for an open system subjected to external forces Fext, vol and Fext, surf

and thrust Fthr =
∑N

j=1 Fthrj due to mass depletion of the spacecraft, represented in Fig. 1. From this
equation, it can be deduced that the variation of the mass inside the spacecraft directly impacts the position of
the satellite with respect to the origin as the body fixed point B changes its state of motion according to the
variation of the tanks’ linear inertia. In the next section, the rotational EOM for the spacecraft is developed.

Rotational Equation of Motion

The goal of this section is to develop the EOM associated with attitude dynamics of a spacecraft with
depleting mass due to thrusters pulling mass from fuel tanks. Beginning from the angular momentum equation
about point B for a closed system:∫

Body

ρ rM/B × r̈M/B dV +

∫
Body

ρ rM/B × r̈B/N dV = LB (20)

As the mass of the system is constant, the derivative of the angular momentum about point B is inferred from
the previously explained Reynold’s transport theorem:∫

Body

ρ rM/B × r̈M/B dV =
N d
dt

∫
Vsc

ρ rM/B × ṙM/B dV +
∫
Asc

ρ r′M/B · n̂
(
rM/B × ṙM/B

)
dA (21)

Moreover, similar to the translational equation, if all the mass of the system is assumed to be contained inside
the control volume at the initial time, the following relationship results:∫

Body
ρ rM/B × r̈B/N dV −LB = mscc× r̈B/N −LB, vol −LB, surf (22)

whereLB, vol and LB, surf are the torques caused by the volume and surface forces about pointB. The general
rotational equation for a control volume in a rotating reference frame is reorganized:

Ḣsc, B +

∫
Asc

ρ r′M/B · n̂
(
rM/B × ṙM/B

)
dA+mscc× r̈B/N = LB, vol +LB, surf (23)
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To perform the inertial derivative ofHsc, B , first the definition ofHsc, B is defined:

Hsc, B = [Ihub, Bc
]ωB/N + rBc/B ×mhub ṙBc/B+

+

M∑
i=1

(
[Ifueli, Fci ] ωB/N + rFci/B ×mfueli ṙFci/B

)
(24)

where [Ihub, Bc ] is the hub’s inertia about its center of mass, Bc, and [Ifueli, Fci ] is the ith tank’s inertia about
its center of mass, Fci.

Furthermore, by noticing that the inertial time derivatives of the vectors rBc/B and rFci/B are computed
using the transport theorem between the two reference frames and, considering that the point Bc is fixed in
the B frame, an analytical expression of mass depletion in the rotational motion is deduced:

Ḣsc, B = [Ihub, Bc] ω̇B/N + ωB/N ×
(
[Ihub, Bc]ωB/N

)
+ rBc/B ×mhub

(
ω̇B/N × rBc/B+

+ ωB/N ×
(
ωB/N × rBc/B

))
+

M∑
i=1

(
[Ifueli, Fci ] ω̇B/N + ωB/N ×

(
[Ifueli, Fci ]ωB/N

)
+

+ rFci/B ×mfueli

(
r′′Fci/B

+ 2ωB/N × r′Fci/B
+ ω̇B/N × rFci/B + ωB/N ×

(
ωB/N × rFci/B

))
+

+ rFci/B × ṁfueli

(
r′Fci/B

+ ωB/N × rFci/B

)
+ [Ifuel,i, Fci ]

′
ωB/N

)
(25)

It should be noted here that any relative motion of particles inside the fuel tanks of the spacecraft is neglected
and, as a consequence, the effects both of the Coriolis’ acceleration and of the whirling motion of the fuel on
the spacecraft dynamics have not been considered. A more detailed explanation of the impact of these effects
can be found in Reference.6

In order to simplify Eq. (25) the following inertia matrices are defined using the skew symmetric matrix to
replace the cross product:

[Ihub, B ] = [Ihub, Bc] +mhub
[
r̃Bc/B

] [
r̃Bc/B

]T
(26)

[Ifueli, B ] = [Ifueli, Fci ] +mfueli

[
r̃Fci/B

] [
r̃Fci/B

]T
(27)

[Isc, B ] = [Ihub, B ] +

M∑
i=1

[Ifueli, B ] (28)

Moreover, using the Jacobi identity for the cross product, a× (b× c) +b× (c× a) + c× (a×b) = 0, the
body relative time derivative of the fuel inertia in the B reference frame is introduced:

rFci/B ×
(
2ωB/N × r′Fci/B

)
=− rFci/B ×

(
r′Fci/B

× ωB/N

)
+

− r′Fci/B
×
(
rFci/B × ωB/N

)
+ ωB/N ×

(
rFci/B × r

′
Fci/B

) (29)

[Ifueli, B ]
′
= [Ifueli, Fci ] + ṁfueli

[
r̃Fci/B

] [
r̃Fci/B

]T
+mfueli

([
r̃Fci/B

] [
r̃′Fci/B

]T
+
[
r̃′Fci/B

] [
r̃Fci/B

]T) (30)

Considering that at the nozzles’s exit, ṙM/B = vexhj
+ ωB/N × rM/B and dṁ = −ρ r′M/B · n̂ dA, the

surface integral is expressed in terms of the nozzles’ surface:

∫
Aexh

ρ r′M/B · n
(
rM/B × ṙM/B

)
dA = −

N∑
j=1

∫
ṁnozj

rM/B × vexhj dṁ+

+

N∑
j=1

∫
ṁnozj

rM/B ×
(
rM/B × ωB/N

)
dṁ (31)
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The torque of each thruster nozzle is computed by the exhausting flow pressure distribution and by the
lever arm distance from point B and the application point of the force:

LBthrj
= LBsc, nozj

+

∫
ṁnozj

rM/B × vnozj dṁ (32)

Furthermore, a term taking into account the angular momentum variation caused by mass depletion is defined:

[K] =

M∑
i=1

[Ifueli, B ]
′
+

N∑
j=1

∫
ṁnozj

[
r̃M/B

] [
r̃M/B

]
dṁ (33)

The integral in Eq. (33) is computed evaluating the momentum exchanged due to the fuel exiting a circular
nozzle area, coincident with the interface surface between the spacecraft and the exhausted fuel:∫

ṁnozj

[
r̃M/B

] [
r̃M/B

]
dṁ = −ṁnozj

[r̃Ncj/B

] [
r̃Ncj/B

]T
+
Anozj

4π
[BMj ]

2 0 0
0 1 0
0 0 1

 [BMj ]
T


(34)

where Anozj is the exiting area of the jth nozzle and [BMj ] is the direction cosine matrix (DCM) from the
jth nozzle frameMj , defined to have its origin at the Ncj point and its first axis in the exhausting velocity
direction vexhj , to the B frame. Finally the rotational EOM in Eqn. (23) is written using Equations (24)-(34):

[Isc, B ] ω̇B/N +msc + [c̃] r̈B/N =
[
ω̃B/N

]T
[Isc, B ] ωB/N − [K] ωB/N+

+

M∑
i=1

(
mfueli

[
r̃Fci/B

]T
r′′Fci/B

+mfueli

[
ω̃B/N

]T [
r̃Fci/B

]
r′Fci/B

+

+ ṁfueli

[
r̃Fci/B

]T
r′Fci/B

)
+LB, vol +LB, surf +

N∑
j=1

LBthrj
(35)

This concludes the derivation of the EOMs needed to describe the translational and rotational motion of a
spacecraft with depleting mass due to thrusters. The following section describes a method used to implement
the relationship between thrusters and fuel tanks.

FUEL SUPPLY ARCHITECTURE AND IMPLEMENTATION

From a simulation implementation prospective, the tank mass flow rates and their associated derivatives
must be computed to evaluate the different terms in the EOMs. This approach assumes that the jth nozzle
mass flow is a known quantity and is computed using Eq. (18) and then the tanks’ mass variation ṁfueli is
computed. The ith tank’s mass variation is expressed as a linear combination of the fuel ejected by the nozzle
where the coefficient, Aij , linking the ith tank with the jth nozzle is the ratio of the mass released by the tank
flowing to that nozzle to the total mass released by that tank.

ṁfueli =

N∑
j=1

Aij ṁnozj ⇒ ṁfuel = [A] ṁnoz (36)

where [A] is a matrix linking the tanks’ and nozzles’ mass flow rates. A fundamental property of the matrix
[A] is established from the definition of ṁfuel:

M∑
i=1

ṁfueli =

M∑
i=1

N∑
j=1

Aijṁnozj =

N∑
j=1

ṁnozj ⇒
M∑
i=0

Aij = 1 ∀j ∈ (1, N) (37)

The previous relation is a direct consequence of the mass flow conservation between the tanks and the nozzles.
From the previous relation, the first derivative of mass flows is computed:

m̈fuel = [A] m̈noz + ˙[A]ṁnoz (38)
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CONTROL FEEDBACK LAW

In order to give a meaningful example using the EOMs developed, a control law is introduced in this
section for which the simulation results included in the next section utilize.

A Modified Rodrigues Parameters (MRP) feedback control law is chosen as it can always assure global
asymptotic stability avoiding singularities and using certain assumptions.13 If a reference frameR is defined,
the control is expressed as follows:

u = −K σB/R − P ωB/R (39)

where σB/R is the MRP defining the attitude of B with respect to R and ωB/R is the angular velocity of B
with respect to R. Moreover, to avoid singularities of the MRP set σB/R, the MRP can be switched to the
shadow set representation.13

The control torque can be applied to the spacecraft through various devices, but in the present work a
thruster-based control is implemented to underline the main features of mass depletion. The results from
simulations are included in the following section.

RESULTS

This section provides simulations to both validate the EOMs developed and to show the impact of mass
depletion on a specific scenario. In the first example, a simulation is developed to compare results to prior
developed models. Following this, an example is included that involves a fuel demanding maneuver that
highlights the importance of considering mass depletion for high-accuracy pointing, simulation and control
law design.

Validating simulations: Axial-symmetric Rocket

The following simulations are performed to reproduce the results outlined in Reference.3 The spacecraft
under study is an axial-symmetric rocket represented in Figure 3 where the geometrical features of the rocket
are shown. The numerical values used in the simulations are chosen accordingly with the NASA publication.3

Rnoz Rcyl

L1LtankL2

b̂2

b̂3

b̂1

Fc Bc

Figure 3. Geometrical properties of the axial-symmetrical rocket

In the publication, dimensionless variables are used and their primitive definitions can be found using the
following formulas:

β =
Rnoz

Rcyl
δ1,2 =

L1,2

Rcyl
δ =

L

Rcyl
ψ =

mhub

mfuel0
γ1 =

khub12

Rcyl
γ2 =

khub3

Rcyl
α =

ṁfuel

mfuel0
(40)

where khub12 is the hub’s gyration radius of the b̂1 or the b̂2 about the Bc point and khub3 is the hub’s gyration
radius of the b̂3 about the same point. The numerical dimensionless coefficients’ values are reported in
Table 1. The spin rate, ωB/Nz

= ωB/N · b̂3, is presented for the two tank’s cases given in Reference.3

Figure 4 shows that the behavior of the angular velocity for the entirety of the simulation match the previous
work from Reference.3 These results give validation of the model developed in this work. It is important to
point out, however, that the model presented in this paper does not constrain the analysis to axial-symmetric
bodies. It is developed in a general way that can apply to many spacecraft configurations.
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Table 1. Dimensionless parameters for the axial-symmetrical rocket simulation

δ1 δ2 γ1 γ2 α δ ψ

2 3 1.2 1 0.01 10 2

0 20 40 60 80 100

Dimentionless time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ω(t)B/Nz

ω(0)B/Nz

β=3.000

β=2.000

β=1.414

β=1.000

β=0.500

(a) Cetrifugal burn tank

0 20 40 60 80 100

Dimentionless time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

ω(t)B/Nz

ω(0)B/Nz

β=3.000

β=2.000

β=1.000

β=0.800

β=0.100

(b) Unifrom cylinder tank

Figure 4. Spinning rate ωB/N z
evolution in time.

On-orbit spacecraft simulations : LEO-to-GEO Transfer

In this section a geostationary transfer maneuver from LEO (Low Earth Orbit) to GEO (Geostationary Earth
Orbit) using a Hohmann transfer maneuver is implemented. To highlight the impacts of mass depletion, a
two-body-problem gravity field is considered and no gravity torque perturbation is included.

In this scenario, the satellite has a 12-ADC nozzle cluster in a symmetric configuration to control the
attitude of the spacecraft and it is equipped with two delta-velocity (DV) thrusters to perform the firing at
apogee and at perigee of the elliptic orbit. The geometrical features are presented in Table 2.

Three scenarios are simulated for this example to highlight the impact of mass depletion on the dynamics
of the spacecraft. An “Update-Only” simulation is the first scenario considered and is very commonly used
in industry. This involves only updating the current mass properties of the spacecraft but not considering
the influence of mass depletion on the system. Additionally, there is not a control law on the attitude of
the spacecraft implemented in this scenario. In contrast, the second scenario is named “No-Control” and is
a scenario in which the attitude of the satellite is not being controlled, however, this scenario does use the
full dynamical model developed in this paper. Lastly, the “Active-Control” scenario considers the developed
model along with the previously introduced attitude control law.

The initial conditions along with assumptions being made will constrict the satellite to only rotate about
the b̂1 axis. Therefore, the numerical results between the “Update-Only” and the “No-Control” scenarios

mhub [kg] Ihub, Bc1 1

[
kgm2

]
Ihub, Bc2 2

[
kgm2

]
Ihub, Bc3 3

[
kgm2

]
750.0 900.0 800.0 600.0

Ispj [s]

∀j ∈ [1, 14]

mtanki [kg]
∀i ∈ [1, 2]

Anozj

[
m2
]

∀j ∈ [3, 14]
Anozj

[
m2
]

∀j ∈ [1, 2]

Rtanki [m]
∀i ∈ [1, 2]

300.0 1060.0 0.07 0.2 0.5

Table 2. Geometrical characteristics of the satellite for the Hohmann transfer.
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Figure 5. Projection of ωB/N on the b̂3 axis.
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Figure 6. Mass variation during the Hohmann maneuver simulation.

will directly show the impact of mass depletion on the dynamics of the satellite. The numerical results of the
simulation are presented in Figures 5 and 6.

In Fig. 5(a), the complete 6 hr simulation is presented to compare the previously listed simulations. By
comparing the Update-Only scenario with the No-Control scenario, there is a noticeable difference in the
angular velocity of the system which is caused by the dynamical effects introduced by the mass depletion.
The fact that the angular velocity variation in the No-Control case is negative along with the magnitude of the
angular velocity variation are due to the DV thrusters’ configuration, both in term of position and geometry,
and the tanks’ location and dimension as seen in Eq. (33). Obviously changing the properties of either one
of the two features will lead to a different solution in terms of amplitude and sign. The results show that
the Update-Only scenario does not show any change to the angular velocity due to mass depletion, while the
No-Control case does. This difference can lead to a dramatic differences in results and gives importance to
the model developed in this paper. In this particular case, the error introduced by mass depletion is about 4%.

In Figure 5(a), a portion of the first DV burn is displayed to get a better view of the transient. This result is
important because it highlights the difference between the Update-Only and the Active-Control scenarios. As
discussed previously, this shows that the Update-Only approach indicates no change in the angular velocity.
However, with the dynamics developed in this paper, to keep the spacecraft with the desired angular velocity,
the Active-Control shows that control is required and the the transient due to the ACS thrusters controlling
the spacecraft can be seen in Fig. 5(a).
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CONCLUSIONS

A review of the previous work on the dynamics of spacecraft with mass depletion due to thrusters shows
that the rocket-geometry inspired assumptions being made limit the applicability of the dynamics models to
many spacecraft. This work develops the translational and rotational EOMs while keeping the formulation
as general as possible. This results in arriving at a complete solution that gets rid of the need to rederive
the EOMs for specific spacecraft. A novel and compact form of the EOMs is introduced in the case of a
realistic multi-tank and multi-thruster configuration that provides rapid and efficient formulation to perform
simulations. Additionally, the general derivation allows the model to be expanded quite easily to include
effects like panels’ deployment or flexible structures, without loss of generality.

The model is validated by comparing a simulation to prior models on mass depletion. The importance of
considering mass depletion is proven by comparing the full model developed in this paper with a solution
where the mass properties of the spacecraft are just updated each time step. This gives an error of 4% on
the spacecraft angular velocity with the chosen geometrical features. Depending on the scenario, this error
could be much worse and highlights the main desire to consider mass depletion using this model. Ignoring
these effects of mass depletion could lead to hastened de-saturation maneuvers or cause inaccurate pointing
and unpredicted errors in orientation and position of the spacecraft.

Some limiting assumptions are introduced to this model that do not allow the EOMs to consider the effect
of whirling motions or relative fuel motion in the distribution of the system. Future works could consider
the influence of whirling motion using a simple formulation or introduction of reaction wheels to simulate
complex de-saturation maneuvers.
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