

ASGSR Ken Souza Program 2020: Post-PDR Design Update

Álvaro Romero-Calvo Ph.D. Candidate La Caixa & Rafael del Pino Fellow **University of Colorado Boulder**

Connor Nogales Ph.D. Student **Electrical Engineering Department University of Colorado Boulder**

Will West **Electrochemical Research**, **Technology, & Engineering Group NASA Jet Propulsion Laboratory**

Ann and H. J. Smead Aerospace **Engineering Sciences Department** University of Colorado, Boulder

ASGSR Meeting 2021

Keith Billings Electrochemical Research, Technology, & Engineering Group NASA Jet Propulsion Laboratory

Hanspeter Schaub Professor Glenn L. Murphy Chair in Engineering University of Colorado Boulder

Flight plan

- 1. Introduction & Motivation
- 2. Blue Origin's New Shepard
- 3. Scientific Objectives & Payload Requirements
- 4. Experimental Setup
- 5. (Some) tests
- 6. Conclusions

Introduction & Motivation

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Mass transport issues in low-gravity electrolysis

H. Matsushima et al., Water electrolysis under microgravity. Part 1. Experimental technique, Electrochimica Acta (48), 4119-4125, 2003

https://youtu.be/KIJsVqc0ywM

Magnetically enhanced electrolysis

Diamagnetic approach

Romero-Calvo Á, Cano-Gómez G, Schaub H., "Diamagnetically Enhanced Electrolysis and Phase Separation in Low Gravity", Journal of Spacecraft and Rockets, 2021, in press

Blue Origin's New Shepard

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Blue Origin's New Shepard

New Shepard Payload User's Guide, Sept 2019

Mission profile

New Shepard Payload User's Guide, Sept 2019

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Scientific Objectives

Payload Requirements

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Technology demonstrator: ASGSR Ken Souza 2020

Objectives:

- 1. Assess the capability of N52 neodymium magnets to induce liquid/gas phase separation in low-gravity and to passively detach H_2 or O_2 bubbles from the electrode of an electrolytic cell.
- 2. Study the impact of magnetic buoyancy on the performance of an electrolytic cell in microgravity (voltage & current).
- 3. Analyze the dynamics of bubbles in lowgravity in the presence of inhomogeneous magnetic fields.

Payload Requirements

- May contain up to 150 ml of approved non-hazardous liquids –OR– Blue Origin Mini Payload approved batteries without fluids with **2 containment layers**
- Contains no significant hazards (chemical, biological, stored energy, or RF transmitters).
- Hardware dimensions shall not exceed **10x10x20 cm**
- Total mass shall not to exceed **0.5 kg**.
- Blue Origin provides **5V and 0.9 A of power** and **mission data via USB** connector from ~**5m** before launch to ~5m after landing
- Standard operations: Payload shipment to be received no later than L-2 weeks; integration by Blue Origin into the vehicle on L-4 days • Removal from vehicle estimated at L+8 hours o In the event of a launch scrub, payload will remain on the vehicle • No support services at Launch Site • Blue Origin to return Mini/Nanolab via ground shipment back to the research team

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Experiment setup

Units in mm

Experiment:

- 3 electrolytic cells in 2 cell assemblies
- Top cell is **magnetic**
- Bottom cell is **non-magnetic**
- Non-hazardous K_2SO_4 electrolyte

Measured variables:

- General visualization of bubbles
- Current (constant) and voltage through each cell
- Characteristic I-V curves of each cell

Magnetic assembly

Bubble Collector

Rationale behind magnetic design

Ζ

Goal: Maximize magnetic force with minimum mass & EMI

• Terminal velocities between 0.1 and 1 mm/s and maximum gas flow rate between 0.6 and 6 cm³/min at the surface of the electrodes (max production $\sim 2 \text{ cm}^3/\text{min}$)

• Mass of 61.4 g (12% total weight)

• 2 modes of operation: normal traction (upper cell) and shear force (lower cell)

• Phase separators: magnetic buoyancy reinforces conduit geometry

Non-magnetic assembly

Magnetic acceleration contours (log)

Visualization system

Cell implementation

Current control system

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Pressure tests (10 PSI)

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Conclusions

- 1. Phase separation accounts for significant mass and power penalties in low-gravity electrolysis, a problem that may be addressed using diamagnetic buoyancy
- 2. The ASGSR Ken Souza 2020 experiment is a technology demonstrator aimed at studying this new approach
- 3. At the time of writing, the **design is completed**, pending minor adjustments
- 4. Current efforts are focused on ensuring proper sealing at 10 PSI while satisfying the mass budget and maximizing the capabilities of the PCB controller

Acknowledgements

UNIVERSITY OF COLORADO BOULDER

Questions...?

alvaro.romerocalvo@colorado.edu www.linkedin.com/in/alvaroromerocalvo/ www.researchgate.net/profile/Alvaro_Romero-Calvo

independent of the local division of the loc

ASGSR Meeting 2021, Baltimore, MD, November 2-6, 2021

Backup Slides

28

Previous works

A. 0.00sec

B. 0.03sec

C. 0.06sec

D. 0.10sec

E. 0.20sec

N. I. Wakayama, Magnetic buoyancy force acting on bubbles in nonconducting and diamagnetic fluids under microgravity, Journal of Applied Physics 81, 2980 (1997)

How strong is the diamagnetic force?

https://youtu.be/BxyfiBGCwhQ

- 1.25 cm radius sphere rotating at ~3.5 rad/s \rightarrow Maximum buyoyancy accelerations of ~5 \cdot 10^{-4} m/s^2 (increases with r^2)
- Magnetic acceleration of $10^{-3} 10^{-2}$ m/s²
- Should work!

Phase separation technologies

Membranes

M. Sakurai, and T. Terao, Study of Water Electrolysis Under Microgravity Conditions for Oxygen Generation – Applied to a Ground Demonstration system and Development of New Systems, 46th Int. Conf. on Env. Sys., 10-14 July 2016, Vienna Austria

Architecture, IEEE ASE Systems Magazine (34) 9, 4-19, 2019

F. Jenson et al. "Passive phase separation of microgravity bubbly flows using conduit geometry", International Journal of Multiphase Flow 65 (2014), 68-81

Diamagnetic approach in Lunar environment

• 1 mm O₂ bubble in deionized water at 25° C and 1 atm

Magnet with residual magnetic flux density of 1430 mT

• Lunar conditions ($g \approx 1.62 \ m/s^2$)

Diamagnetism does not determine mass lacksquaretransport in a lunar setting*.

However, micro-MHD enhancements may be induced with suitable electrodes**

* Discarding superconducting electromagnets (30-60 times stronger) ** Farmani and Nasirpouri, "Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic force", J. Mater. Chem. A 8, 24782, 2020

Architecture selection

0

Optical design

Anti-vaporization valves

36

Cell design 2

Cell design 2

38

Cell design 3

Problems with cell design 3

