

Touchless potential sensing model for active spacecraft charging scenarios

<u>Álvaro Romero-Calvo</u> Ph.D. Candidate *La Caixa & Rafael del Pino* Fellow alvaro.romerocalvo@colorado.edu

Kaylee Champion Ph.D. Student *NSF GRFP Fellow* kach7227@colorado.edu

Applied Space Environments Conference November 1-5, 2021

Hanspeter Schaub Professor Glenn L. Murphy Chair in Engineering

Introduction & Motivation

Applied Space Environments Conference, November 1-5, 2021

Introduction

Bengtson, "Electron Method for Touchless Electrostatic Potential Sensing of Neighboring Spacecraft", PhD thesis, 2020

Applied Space Environments Conference, November 1-5, 2021

Motivation

Bengtson, "Electron Method for Touchless Electrostatic Potential Sensing of Neighboring Spacecraft", PhD thesis, 2020

Applied Space Environments Conference, November 1-5, 2021

Problem statement

Experimental setup

Applied Space Environments Conference, November 1-5, 2021

Numerical model

SIMION-based particle tracing model

- Built-in tools simplify analysis of complex shapes

Applied Space Environments Conference, November 1-5, 2021

Particle tracing based on Newton's 2nd law

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \frac{q}{m}\boldsymbol{E}$$

Electrostatic environment

$$\nabla^2 V = 0 \quad \longrightarrow \quad \boldsymbol{E} = \nabla V$$

Relativistic Correction: $\gamma = \sqrt{1 - v^2/c^2} < 10^{-10}$?

Numerical aspects:

- Cartesian grid → Surface jags
- Space-charge is neglected (no Poisson)
- Dirichlet & Neumann boundary conditions on
- Superposition of electrode fields

SIMION's examples

Modeling of Secondary Electrons (custom LUA library)

Secondary electron yield – Sanders and Inouye model

$$\delta(E,0) = c \left[e^{-E/a} - e^{-E/b} \right] \qquad a = 4.3E_{\max}, b = 0.367$$

- Incident primary angle effect Darlington and Cosslett model $\delta(E, \phi) = \delta(E, 0)e^{\beta_s(E)(1 - \cos\phi)} \beta_s$ from Laframboise and Kamitsuma
- Angular distribution Lambertian

$$\theta = \frac{1}{2}a\cos(1-2x)$$
 x is uniform random variable

• Energy distribution – Chung-Everhart model

$$f(E_s) = \frac{6\varphi^2 E_s}{(E_s + \varphi)^4} \longrightarrow g(E_s) = \frac{\varphi}{3(E_s + \varphi)^3} - \frac{1}{2(E_s + \varphi)^2} + \frac{1}{6}$$

Inversion method with Newton
solver Applied Space Environm

Aluminum

Applied Space Environments Conference, November 1-5, 2021

Implementation & Calibration

Validation & Analysis

Equipotential surfaces

- Same potential at bus and panel
- Excellent agreement in distribution and magnitude
- Peaks are normal and shifted in the experiment
 - **Resistive layers** at the surface
 - RPA-related effects (plasma heating) & efficiency of ~20%

Heterogeneous potential

- Unexpected features in panel population → Why?

• Constant shift of ~3° between experiments and model attributed to geometrical errors

Heterogeneous potential

Green: Secondaries from hub (-800 V), Red: Secondaries from panel

Equipotential

Electron trap

Source regions

Applied Space Environments Conference, November 1-5, 2021

16

Ongoing work

Photoemission experiments and model

- Complicated reflection dynamics

Active photoemission sensing strategy

- Concept: Induce the photo-generation of secondaries using UV lasers
 - Current density function of laser wavelength, power, and divergence angle
 - Narrow beams with wavelength < 300 nm and high-power output desirable for active photoemission
- Different commercial lasers are ranked depending on their induced current density:

	1				
	-		r.		1
			ŀ		1
Y	٦		Ŀ		1
I	I		Ŀ		
			E		
			Ŀ		
					1
			E		
			Ŀ		
-	÷	-	۰.		
	ç				
	3				1
	1				
					1
	1				
	ŝ				
	ŝ		1		1
	ì				
					1
					ł
	ŝ				
	ŝ				1
	ŝ				1
	ŝ				J
	Ĩ				
-	-				
	t				ł
	É				
	-				
	ŝ				
	3				
	ŝ				
	÷				ł
	ź		-	÷	
	1				
	í				
	t				1
	ĉ				
	9			-	
	1		1	1	
					,
				1	ſ
				L	۱

Conclusions

Conclusions

- of a target spacecraft
- 2. The complex geometry of a spacecraft focuses the secondaries on specific paths and complicates detectability in realistic scenarios
- 3. An advanced particle-tracing framework is introduced and validated to study those scenarios
- 4. The model enables high-fidelity analyses of the spacecraft charging problem
- 5. Ongoing work involves studying passive (solar) and active (UV laser) photoemission

1. Electron-beam-induced secondary electrons may be used to touchlessly sense the potential

Applied Space Environments Conference, November 1-5, 2021

Questions'?

alvaro.romerocalvo@colorado.edu kach7227@colorado.edu

https://www.linkedin.com/in/alvaroromerocalvo/ www.linkedin.com/in/kaylee-champion-500179150 www.researchgate.net/profile/Alvaro_Romero-Calvo

More information available at hanspeterschaub.info

Applied Space Environments Conference, November 1-5, 2021