
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-CSSWlsEst

WEIGHT LEAST-SQUARES MINIMUM-NORM COARSE SUN HEADING
ESTIMATOR

Prepared by S. Piggott

Status: Released

Scope/Contents

This is a report documenting the results of the unit test performed for the coarse sun sensor sun point
vector estimation algorithm. A weighted least-squares minimum-norm algorithm is used to estimate
the body-relative sun heading using a cluster of coarse sun sensors. Using two successive sun heading
evaluation the module also computes the inertial angular velocity vector. As rotations about the sun-
heading vector are not observable, this angular velocity vector only contains body rates orthogonal to
this sun heading vector.

Rev Change Description By Date

1.0 Initial Documentation S. Piggott 2016-10-01

1.1 Modified Format to BSK documentation H. Schaub 2018-04-29

1.2 Added User Guide Section H. Schaub 2018-04-29

1.3 Added discussion on the inertial angular velocity vector
evaluation

H. Schaub 2018-05-26

1.4 Added residuals and links for FSW Review T. Teil 2019-02-12

Doc. ID: Basilisk-CSSWlsEst Page 1 of 5

Contents

1 Introduction 1
1.1 Sun Heading Evaluation . 1
1.2 Partial Angular Velocity Evaluation . 1
1.3 Post-Fit residuals . 2

2 Test Design 2

3 Test Results 3

4 Test Coverage 4

5 Conclusions 5

6 User Guide 5
6.1 Module Parameters and States . 5

1 Introduction

When in safe mode, the spacecraft uses its coarse sun sensors (CSSs) in order to point the vehicle’s
solar arrays at the Sun. This is done in order to ensure that the vehicle gets to a power-positive state
with a minimum set of sensors in order to recover from whatever event triggered the transition to safe
mode. The nominal vehicle considered in this report has 8 coarse sun sensor (CSS) sensors available to
it which allows it to resolve the exact sun direction in almost all body axes as long as all sensors are
functional. With these cosine CSS a minimum of 3 sensor must provide a signal to determine a unique
answer.

1.1 Sun Heading Evaluation

If more than 3 CSS detect a sun signal, the algorithm needs to be able to obtain the sun pointing vector
that best fits the current outputs from all of the CSSs. This is done by a least squares estimation process
that provides the sun vector that best fits from a weighted least squares perspective. The weights are
simply set based on the current output of each sensor which ensures that the sensors that have the best
measurements are trusted the most. If 3 CCS see the sun, then a unique heading is computed. If 1-2
CSS see the sun then a minimum norm solution is evaluated. If no CSS sees the sun then a zero vector
is returned. The details of this algorithm are available in Steve O’Keefe’s PhD dissertation. ∗

The algorithm stores its internal variables in the CSSWLSConfig data structure with the input
message provides the CSS sensor values. The output is a NavAttIntMsg message that contains the
estimated sun-heading vector in body frame components. This sun-heading estimation algorithm does
not use any information stored from previous frames so it is a fresh computation every time it is called.
It can therefore be called at any rate needed by the system.

1.2 Partial Angular Velocity Evaluation

Using two successive sun-heading vector evaluations it is possible to evaluate a partial solution of
the spacecraft inertial angular velocity vector. Note that rate about the sun heading vector are not

∗ O’Keefe Public Dissertation Link

http://hanspeterschaub.info/Papers/grads/SteveOKeefe.pdf

Doc. ID: Basilisk-CSSWlsEst Page 2 of 5

obsdervable, but rates about the other two axes can be obtained.
Let dn be current sun heading vector from the above sun heading algorithm. The prior estimate is

denoted as dn´1, while ∆t is the time step between the two measurements. The angular velocity vector
is then evaluated using

ωB{N “
dn ˆ dn´1

|dn ˆ dn´1|
arccos

ˆ

dn ¨ dn´1

|dn||dn´1|

˙

1

∆t
(1)

These vector evaluations are performed using B frame vector components.
Note that iff both dn and dn´1 are nearly collinear a zero body rate vector is returned. Further,

during start-up and reset operations it is possible that ∆t might be zero for a single evaluation. In this
case also a zero rate vector is returned.

1.3 Post-Fit residuals

In order to get a measurement of filter performance, post-fit residuals are computed in the method
computeWlsResiduals.

This method takes in the current coarse-sun sensor measurements, as well as the best estimate and
compares the two. This is done by doting the estimate with all the normals of activated sensors, and
subtracting them to the actual measured value.

ri “ ni ¨ d´ ni ¨ d̂ (2)

Equations in 2 show the process for the i-th sensor, where d is the true value, and d̂ is the filter estimate.
These residuals are then output in the Sunline-FSW message.

2 Test Design
The unit test for the cssWlsEst module is located in:

fswAlgorithms/attDetermination/CSSEst/ UnitTest/CSSWlsEstUnitTest.py

Please see the python script for information on test setup and initial conditions.

This unit test is designed to functionally test the algorithm outputs as well as get complete code path
coverage. The test design is broken up into four main parts:

1. Main Body Axis Estimates: The principal body axes (b1, b2, b3) are tested with both positive
and negative values to ensure that all axes are correctly estimated.

2. Double Coverage Test: There are small regions of pointing where only two sun sensors provide
”good” values, which results in a case where only the minimum norm solution can be used instead
of a full least squares solution. One of these regions is tested here.

3. Single Coverage Test: One of the sensors used for the double coverage test is zeroed in order
to simulate a sensor failure and hit the single coverage code. The accuracy of this estimate is
severely compromised.

4. Zero Coverage Case: The case where no sensors provide an above-threshold value is tested here.

Doc. ID: Basilisk-CSSWlsEst Page 3 of 5

Fig. 1: Truth and Estimated Sun Pointing Vector

3 Test Results
The values obtained in the test over time are best visualized in Figure 1. That shows a comparison
between the Sun pointing vector input to the test and the estimate provided by the algorithm.

As this plot shows, the algorithm is very accurate up until 6.0 seconds, so both directions of the
three primary body axes are estimated precisely. Then the double coverage case is reasonably accurate,
but no longer precise as there isn’t sufficient information available to get a good pointing direction. The
single coverage test is not accurate at all (45 degrees of error), but that is simply the best that the
algorithm can do with that limited information.

Figure 2 shows the number of CSSs used by the algorithm to estimate the sun pointing vector over
the duration of the test. It continues for longer than Figure 1 because the algorithm stops setting its
output message once it gets to the zero valid sensors case as there is no good information to provide.

Fig. 2: Number of CSSs Used in Estimate

Doc. ID: Basilisk-CSSWlsEst Page 4 of 5

1. Main Body Axis Estimates: The sun pointing estimation algorithm is not required to provide a
precise estimate of the Sun direction. This algorithm is only intended to be used in safe mode
where the arrays only need to be approximately pointed at the Sun. For this reason, a pointing
vector was flagged as successful when it provided the Sun direction within 17.5 degrees which
corresponds to a cosine loss of approximately 5%. All body axes met this criteria with large
margins. A check was also performed that verified that the predicted number of CSSs matched up
with what the algorithm used and this check was also 100% successful. The UseWeights flag was
initially set to False, and then was changed to True after two cases to ensure that the algorithm
works correctly in both cases. Test successful.

2. Double Coverage Test: The same accuracy criteria was used for this test. This is mostly a function
of CSS geometry and it is also the main driving case for the success criteria used. It was correct to
within 14 degrees. The predicted number of CSSs used (2) also matched the algorithm’s selection.
Test successful.

3. Single Coverage Test: The single coverage case did not have its accuracy tested as there are no
accuracy requirements for this case. It simply must provide an estimate and exit. The predicted
number of CSSs used (1) did match the algorithm’s selection. Test successful.

4. Zero Coverage Test: The zero coverage test is only provided here to demonstrate that the algorithm
passivates its outputs without hitting any unacceptable event. It does correctly flag that no valid
CSSs were found during the test. Test successful.

5. Angular Velocity Test: The same 8 unit CSS configuration is used as in the earlier tests, but
the true sun heading is set equal to b̂1. A BSK sample time of 0.5 seconds is setup, and the
simulation is run 3 times to reach a simulation time of 1.0 seconds. It takes 2 steps for the module
to evaluate the update rate dt, thus the expected rate estimate is a zero vector for these steps.
As the sun heading is being evaluated in the 2nd step, with the 3rd step there is a non-zero dt
value, but the old and new sun-heading vectors are the same. The expected rate output is again
a zero vector. Next the true sun heading is changed to be b̂2, corresponding to a 90deg heading
change about b̂3. The simulation is run for two more steps. The expected inertial body rate with
step 4 would be ´π rad/sec about b̂3. The 5th step must yield again a zero rate vector as the sun
heading has not changed. Next, a reset function is called and a single simulation step is called.
The expected output is the zero rate vector again. Finally, the true sun heading vector is changed
back to b̂1 and another simulation step is performed to show a `π rad/sec rotation about b̂3.
The test results status is: PASSED

4 Test Coverage
The method coverage for all of the methods included in the cssWlsEst module are tabulated in Table 2

Table 2: ADCS Coarse Sun Sensor Estimation Coverage Results

Method Name Unit Test Coverage (%) Runtime Self (%) Runtime Children (%)
SelfInit cssWlsEst 100.0 0.0 0.0

computeWlsmn 100.0 0.01 0.64
Update cssWlsEst 100.0 0.04 0.88

For all of the code this test was designed for, the coverage percentage is 100%. For Safe Mode,
we do expect this algorithm to be the highest usage element from an ADCS perspective, so the CPU
usage is almost certainly fine as is. The main penalty comes from the use of matrix multiply in the
computeWlsmn function. The only issue of note here is that the matrix multiply algorithm(s) use in the
FSW should be optimized as much as possible as they are major sources of CPU spin.

Doc. ID: Basilisk-CSSWlsEst Page 5 of 5

5 Conclusions
The safe mode sun vector estimator described in this document is functionally ready from a PDR
perspective. It has no noted failure cases, all code is tested for statement coverage, and it successfully
meets its test criteria for all cases. The only area where there might be a question is the desired
behavior for zero-coverage cases. We may wish to change the outputs to something more obviously
in-error instead of just having the algorithm go silent.

6 User Guide

6.1 Module Parameters and States

The module has the following parameter that can be configured:

• useWeights – Flag indicating whether or not to use weights for least squares. Default value is 0,
indicating not to use the weights.

• sensorUseThresh – This double contains the minimum sensor signal to consider. The default
value is zero.

• CSSData – [REQUIRED] Array of CSSConfigFswMsg messages that contain the CSS sensor states.

REFERENCES

	Introduction
	Sun Heading Evaluation
	Partial Angular Velocity Evaluation
	Post-Fit residuals

	Test Design
	Test Results
	Test Coverage
	Conclusions
	User Guide
	Module Parameters and States

