

Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

Basilisk Technical Memorandum

Document ID: Basilisk-sunlineEphem

SUNLINE EPHEMERIS HEADING

Prepared by	J. Martin			
Status: Initial Document				
Scope/Contents				
Module to compute an ephemeris-based sunline heading				

Rev	Change Description	Ву	Date
1.0	Initial Version	J. Martin	20181203
1.1	Small documentation tweaks	H. Schaub	2019-04-24

Contents

1	Model Description	1
2	Module Functions	1
3	Module Assumptions and Limitations	1
4	Test Description and Success Criteria	1
5	Test Parameters	1
6	User Guide	2

Fig. 1: Sample Figure Inclusion.

1 Model Description

The sunline ephemeris module is responsible for calculating a sunline heading based exclusively on ephemeris data. This provides a estimate for the sun heading without relying of filtering results from the course sun sensors.

The math is straightforward; subtract the position of the sun from the position of the spacecraft, and divide it by its norm, to compute the sun heading in the inertial frame \hat{r}_{h_N} .

$$^{\mathcal{N}}\hat{\boldsymbol{r}}_{S/B} = rac{\boldsymbol{r}_{\mathsf{sun}} - \boldsymbol{r}_{sc}}{|\boldsymbol{r}_{\mathsf{sun}} - \boldsymbol{r}_{sc}|}$$
 (1)

Rotate the unit vector into the body frame by multiplying it by the appropriate direction cosine matrix defined by the spacecraft's attitude properties, σ .

$$^{\mathcal{N}}\hat{\boldsymbol{r}}_{S/B} = [BN(\boldsymbol{\sigma})] * ^{\mathcal{N}}\hat{\boldsymbol{r}}_{S/B}$$
⁽²⁾

2 Module Functions

- Calculates Sunline Heading Vector in Body Frame
- **Outputs NavAttIntMsg**: This module sends out a NavAttIntMsg to be used for initial attitude determination.

3 Module Assumptions and Limitations

This module is exclusively based on ephemeris data. Should the ephemeris data be incorrect, so too will the sunline heading.

4 Test Description and Success Criteria

The unit test configures the sun to sit at the origin, and a spacecraft to be located along each of the coordinate axes, with an orientation 90 degree rotate about the z-axis. The body-frame sun-heading is then computed to confirm that the vectors produced from the module do reflect the unit vector in the body frame pointing to the sun.

5 Test Parameters

The sun was placed at [0,0,0] and the spacecraft is tested at each of the unit coordinate axes [1,0,0], [0,1,0], [-1,0,0], etc.

The unit test verify that the module output guidance message vectors match expected values.

Table 2: Error tolerance for each test.				
Output Value Tested	Tolerated Error			
estVector	see script			

6 User Guide