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A Variable Speed Control Moment Gyroscope (VSCMG) null motion steering law is introduced
that continuously attempts to minimize the condition number of the control influence matrix. By
doing so the gimbal angles are rearranged to less singular configurations without exerting a torque
onto the spacecraft. By allowing the reaction wheel speeds to be variable in this steering law,
more general reconfigurations are possible than what are possible with conventional CMGs. No a
priori calculations of preferred sets of gimbal angles are necessary with this method. Numerical
studies show that superimposing this VSCMG null motion on the VSCMG steering law can result
in a drastic reduction in the required reaction wheel power consumption when operating near CMG
singular gimbal configurations. The reaction wheel torque required by this VSCMG steering law is
typically very small and achievable with existing CMG hardware.

Introduction
Single-axis Control Moment Gyroscopes (CMGs) are

commonly used to reorient large space structures. Their
largest asset is that for a small torque input, a relatively
large effective gyroscopic torque output is produced onto
the structure. However, the standard CMG steering laws
contain singular gimbal angle configurations at which the
required torque is only partially produced; in the worst case
only a zero torque component is feasible in the desired di-
rection.1,2,3 At times where the required torque is only
partially produced, the spacecraft would deviate from the
prescribed trajectory. These path deviations are highly un-
desirable in some applications.

Reaction wheels (RWs) are another common control de-
vice often employed with smaller spacecraft. They have
simpler control laws and are easier and cheaper to produce.
Their drawback is that there is no torque amplification ef-
fect which makes them consume more energy than CMGs
for a given rotation. Also, RWs steering laws need to be
concerned with RW saturation4,5 and not operating at the
structural resonant frequency of the spacecraft.

In Ref. 6 Ford and Hall introduce the equations of mo-
tion of a spacecraft which contains several Variable Speed
Control Moment Gyroscopes (VSCMGs). These control de-
vices are essentially single-gimbal CMGs with a variable
speed RW. However, in their paper the RW or CMG modes
are used exclusively, not simultaneously in the control laws.
Schaub et. al. developed a VSCMG steering law in Ref. 5
which makes the VSCMGs act like regular CMGs away from
classical CMG singularities and gradually adds the RW con-
trol authority when approaching a CMG singularity. Except
for cases where excess wheel speeds are encountered, the
resulting control law always generates the required torque
and does not produce any trajectory deviations. However,
depending on the size of the spacecraft and the proximity
to the classical CMG singularity, the required RW motor
torque could be rather large and require that the RW motor
be larger than its CMG counterparts. Note that conven-
tional CMGs already have a feedback loop present on the
RWs to maintain a constant rotation rate. The VSCMG
would have a different feedback control law and possibly a
stronger RW motor.

Naturally, the best scenario to deal with CMG singu-
larities is to avoid them altogether. For a large class of
maneuvers this can be done by initially reorienting the
gimbal angles to preferred sets from which the resulting tra-
jectory will be singularity free.7 Calculating these preferred
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sets of gimbal angles is done off-line prior to the maneuver.
Typically CMG null motion is used to reorient the internal
gimbals without exerting a torque on the spacecraft.8 How-
ever, this can only be performed for a limited set of angles.
For example, assume that all CMGs are of the same type
with equal RW spin speed. It is impossible to reconfigure a
symmetric set of gimbal angles to an asymmetric set, since
the internal momentum vector would change in the process.
As a result, this change in momentum, no matter what steer-
ing law is used en route, would produce a torque onto the
spacecraft. As is shown in Ref. 5, a much larger set of gim-
bal angle reconfigurations is possible by including variable
reaction wheel speeds. The internal momentum vector is
held constant during this VSCMG null motion by speeding
the RW up or down slightly. The RW motor torques re-
quired for these types of maneuvers was found to be of the
same order of magnitude as the torque required by the stan-
dard CMG reaction wheel feedback control law. Therefore,
in many cases, using the VSCMG null motion only requires
a change in the RW feedback control law and not a com-
plete redesign of the CMG device itself. In other words, a
sophistication of the control law, with negligible hardware
changes, can enable a dramatic performance improvement.

While previous work in Refs. 5 and 9 focused on recon-
figuring the gimbals while holding the spacecraft attitude
constant, in this paper we investigate the use of a VSCMG
null motion steering law during a maneuver itself to drive
the gimbal angles away from singular configurations. As
a singularity is approached, it is anticipated that a small
change early on in the gimbal configuration should result in
a potentially large drop in required RW torque.

Problem Statement
Assume a spacecraft with the inertia matrix [Is] has N

VSCMGs embedded in it. Each VSCMG control device is
constrained to gimbal about the spacecraft body fixed gim-
bal axis ĝgi where γi is the corresponding gimbal angle. The
RW spin speed Ωi is assumed to be time-varying. The RW
spin axis ĝsi and the transverse axis ĝti are shown in Fig-
ure 1. Let the VSCMG inertias about the spin, transverse
and gimbal axis be given by Jsi , Jti and Jgi respectively.
The equations of motion were derived in Ref. 5 to be

[I]ω̇ = −[ω̃][I]ω − [Gs]τs − [Gt]τt − [Gg]τg + L (1)

where L is an external torque vector and the influence ma-
trices [Gs], [Gt] and [Gg] contain the respective components
of the unit direction vectors of each VSCMG gimbal frame
expressed in body frame components.

[Gs] = [ĝs1 · · · ĝsN ] (2a)

[Gt] = [ĝt1 · · · ĝtN ] (2b)

[Gg] = [ĝg1 · · · ĝgN ] (2c)

1
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Fig. 1 Illustration of a Variable Speed Control Moment
Gyroscope

The total spacecraft inertia matrix is expressed as

[I] = [Is] +

NX
i=1

[Ji] = [Is] +

NX
i=1

Jsi ĝsi ĝ
T
si

+ Jti ĝti ĝ
T
ti

+ Jgi ĝgi ĝ
T
gi

(3)

The effective torques τsi , τti and τgi are related to gimbal
rates and wheel speeds by

τsi = Js1

“
Ω̇i + γ̇iωti

”
− (Jti − Jgi) ωti γ̇i (4a)

τti = Jsi(Ωi+ ωsi) γ̇i −(Jti +Jgi) ωsiγ̇i+JsiΩiωgi (4b)

τgi = Jgi γ̈i − JsiΩiωti (4c)

where i ranges from 1 to N and the shorthand notation

ωs = ĝT
s ω ωt = ĝT

t ω ωg = ĝT
g ω (5)

was used. Note that the effect of having a variable iner-
tial matrix is absorbed into the definition of the effective
torques. The spacecraft attitude vector measured relative
to the final attitude is given by the Modified Rodrigues Pa-
rameter (MRP) vector s.10,11,12,13,9 For the purpose of this
paper, the desired final attitude is adopted as the inertial
frame. Assuming K is a positive scalar and [P ] is a positive
definite matrix, using Lyapunov stability theory it can be
shown that the steering law constraint5,9

NX
i=1

“
ĝsiJsiΩ̇i + ĝgiJgi γ̈i + ĝti (Jsi (Ωi + ωsi) −Jtiωsi) γ̇i) = Ks + [P ]ω + L

(6)

leads to a globally, asymptotically stable feedback law for
rest to rest maneuvers. To express this constraint in a more
compact and useable form, let us define the following 3xN
matrices.

[D0] = [ĝs1Js1 · · · ĝsN JsN ] (7a)

[D1] = [ĝt1Js1(Ω1 + ωs1) · · · ĝtN JsN (ΩN + ωsN)] (7b)

[D2] = [ĝt1Jt1ωs1 · · · ĝtN JtN ωsN ] (7c)

[B] = [ĝg1Jg1 · · · ĝgN JgN ] (7d)

Let γ̇, γ̈ and Ω̇ be Nx1 vectors whose i-th element contains
the respective VSCMG angular velocity or acceleration or
RW spin rate. The stability condition in Eq. (6) then is
expressed compactly as

[D0]Ω̇ + [B]γ̈ + ([D1]− [D2]) γ̇ = Lr (8)

where Lr = Ks + [P ]ω + L is called the required control
torque. The standard CMG velocity based steering law as-
sumes that the [B] and [D2] matrices are small compared
to [D1] and are dropped. The resulting simplified stability
condition then becomes

[D0]Ω̇ + [D1]γ̇ = Lr (9)

For notational convenience, we introduce the 2Nx1 state
vector η

η =

»
Ω
γ

–
(10)

and the 3x2N matrix [Q]

[Q] =
h
D0

... D1

i
(11)

Eq. (9) is then conveniently written as

[Q]η̇ = Lr (12)

To solve this redundant set of equations for η̇, Ref. 5 uses
the weighted minimum norm inverse.14 Let [W ] be a 2Nx2N
diagonal matrix whose positive entries determine the instan-
taneous importance of the respective VSCMG mode. Then
the desired η̇ steering law is given by

η̇ =

»
Ω̇
γ̇

–
= [W ][Q]T

“
[Q][W ][Q]T

”−1

Lr (13)

Note that there is no need here to introduce a modified
pseudo-inverse as Nakamura and Hanafusa did in develop-
ing the singularity robustness steering law in Ref. 1. As long
as at least 2 or more VSCMGs are used with linearly inde-
pendent ĝgi vectors, the square matrix [Q][W ][Q]−1 will be
of full rank. Ideally the VSCMG are to perform like CMGs
away from classical CMG singularities, so the RW mode
weights Wsi are defined to be

Wsi = W 0
si

e(−µδ) (14)

where the non-dimensional singularity indicator δ is defined
as

δ = det

„
1

h̄2
[D1][D1]

T

«
(15)

with h̄ being a nominal CMG spin axis angular momentum
magnitude. The positive constant µ is a steering law pa-
rameter.

Assuming that Ωf and γf are preferred sets of VSCMG
states, the VSCMG null motion introduced in Ref. 5 is
shown to be globally stable and is given by

η̇ = ke

h
[Ŵ ][Q]T

“
[Q][Ŵ ][Q]T

”−1

[Q]− [I2N×2N ]
i
[A]

„
∆Ω
∆γ

«
(16)

where the state errors ∆Ω and ∆γ are defined as

∆Ω = Ω−Ωf (17)

∆γ = γ − γf (18)

and ke is a positive scalar. The notation [In×m] represents

a n × m identity matrix. The diagonal weight matrix [Ŵ ]
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controls how heavily the RW and CMG modes are using
during the VSCMG null motion. The diagonal matrix [A]
is of the form

[A] =

»
aRW [IN×N ] [0N×N ]

[0N×N ] aCMG[IN×N ]

–
(19)

where the parameters aRW and aCMG are either 1 or 0. If
one is set to zero, this means that the resulting null motion
will be performed with no preferred set of either Ωf or γf .
Note that this VSCMG null motion cannot reconfigure the
current γ and Ω states to arbitrary final states, since the
vector sum of the internal VSCMG cluster momentum must
remain constant. However, by setting either aRW or aCMG

to zero it is possible to either change the gimbal angles or
the RW spin speeds in a very general manner.

Singularity Avoidance
In order to drive the gimbal configuration towards a “less

singular” configuration, a measure of singularity proximity
is needed. A gradient type method is developed below that
provides the necessary state error vectors ∆Ω and ∆γ for
the VSCMG null motion in Eq. (16). Classical CMG steer-
ing laws are found by solving

[D1]γ̇ = Lr (20)

Whenever the rank of the control influence matrix [D1]
drops below 3 the required torque Lr may not be fully pro-
duced by γ̇. The non-dimensional singularity indicator δ
could be used here as the singularity measure of the VSCMG
null motion steering law. However, since using the gradient
method requires taking analytical partial derivatives of the
singularity measure with respect to the gimbal angles, this
would lead to very complex equations which have to be de-
rived specifically for each physical system.

Instead, the condition number κ of the matrix [D1] is used
as the singularity measure. Using a singular value decom-
position (SVD), the 3×N matrix [D1] is decomposed as

[D1] = [U ][Σ][V ]T =

"
u1 u2 u3

#"
σ1 0 0 0
0 σ2 0 · · · 0
0 0 σ3 0

#"
v1 · · · vN

#T

(21)

where [U ] is a 3×3, [Σ] is a 3×N and [V ] is a N×N matrix.
Assume that the singular values have been arranged such
that σ1 ≥ σ2 ≥ σ3. The non-dimensional condition number
κ is then defined as

κ =
σ1

σ3
(22)

As the gimbal angles approaches a singular CMG configu-
ration, the index κ would grow very large since σ3 → 0.
The theoretically best possible matrix conditioning would
be with σ1 = σ3 where κ = 1. The goal of the VSCMG null
motion would be to minimize the singularity index κ during
a maneuver. Let κ(t) be the singularity index at the current
time and let κ(t+) be the index after a discrete gimbal angle
adjustment has been made. Using a Taylor series expansion
of κ in terms of the gimbal angles γi yields

κ(t+) = κ(t) +
∂κ

∂γ

T

∆γ (23)

Since ideally κ(t+) = 1, using a minimum norm inverse, the
desired gimbal angle correction is given by

∆γ = α
(1− κ(t))

| ∂κ
∂γ
|2

∂κ

∂γ
(24)

where the positive scalar α scales the gradient step. As
will be shown with numerical examples, Eq. (24) works well

when the gimbal configuration is to be rearranged while the
spacecraft attitude is held stationary. However, if Eq. (24)
is used to drive the gimbal angles away from singular config-
urations during a maneuver, then the VSCMG null motion
corrections become too “soft” as a singular configuration is
rapidly approached. The |∂κ/∂γ|2 term in the denominator
drives ∆γ to zero as ∂κ/∂γ becomes very large in the neigh-
borhood of a singularity. To counter this softening effect,
the following stiffer gimbal correction algorithm is proposed.

∆γ = α(1− κ(t))
∂κ

∂γ
(25)

Numerical studies show that the VSCMG null motion driven
by this ∆γ during a maneuver is more successful in keeping
the gimbal angles away from singular configurations.

If [D1] is reasonably well conditioned, it is not desirable
to have the VSCMG be active at this point and drive the
gimbal angles to an even better conditioned configuration.
Doing so would only unnecessarily waste fuel and energy.
To stop the VSCMG null motion at some pre-determined
singularity index κdb, a deadband is introduced. Whenever
κ ≤ κdb > 1, then we set α = 0.

Using Eq. (22), the partial derivatives of κ with respect
to the gimbal angles are found to be

∂κ

∂γi
=

1

σ3

∂σ1

∂γi
− σ1

σ2
3

∂σ3

∂γi
(26)

The partial derivatives of the singular values with respect
to the gimbal angles are given by15

∂σj

∂γi
= uT

j
∂[D1]

∂γi
vj (27)

The result in Eq. (27) may have to be modified if σ1 = σ3.
However, this event will never be encountered if κdb > 1 is
adopted. Using Eq. (7b), the partial derivative of [D1] with
respect to γi is readily found to be

∂[D1]

∂γi
= [0 · · ·0 χi 0 · · ·0] (28)

where the i-th column vector χi is defined to be

χi =
∂ĝti

∂γi
Jsi (Ωi + ωsi) + ĝtiJsi

„
Ωi +

∂ĝsi

∂γi

T

ω

«
(29)

Since the partial derivatives of the gimbal frame axes are
given by

∂ĝsi

∂γi
= ĝti (30a)

∂ĝti

∂γi
= −ĝsi (30b)

the vector χi is expressed compactly as

χi = −ĝsiJsi (Ωi + ωsi) + ĝtiJsi(Ωi + ωti) (31)

Substituting Eqs. (28) and (31) into Eq. (27) and carrying
out the vector algebra, the partial derivatives of the singular
values with respect to the gimbal angles are given by

∂σj

∂γi
=

“
uT

j χi

”
[Vij ] (32)

Note that these singular value sensitivities can be computed
very quickly given the vectors ui and vi obtained from a
numerical SVD of the local matrix [D1]. Therefore the ∆γ
vector can be easily computed and fed to the VSCMG null
motion in Eq. (16).
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Numerical Simulations
To illustrate the use of the VSCMG null motion to drive

the gimbal angles away from singular configurations, the
following numerical simulation was performed. A rigid
spacecraft is reoriented from large initial displacements to
coincide with the target attitude through the use of four
VSCMGs. The VSCMGs are arranged in the standard CMG
pyramid configuration shown in Figure 2. The spacecraft
and VSCMG properties are given in Table 1.

θ

1

2

3

4

Fig. 2 VSCMG Pyramid Configuration

Table 1 Spacecraft and VSCMG Properties

Parameter Value Units
Is1 15053 kg-m2/sec
Is2 6510 kg-m2/sec
Is3 11122 kg-m2/sec
N 4
θ 54.75 degrees
Js 0.70 kg-m2

Jt 0.35 kg-m2

Jg 0.35 kg-m2

Two simulations are performed. One simulation uses only
the VSCMG steering law in Eq. (13). The second simula-
tion superimposes onto this steering law the VSCMG null
motion given Eq. (16) with the stiff gradient multiplier in
Eq. (25) to continuously reconfigure the gimbal angles away
from singular configurations. The numerical simulation pa-
rameters are given in Table 2. The vector Ωf is chosen to
be the same as the initial Ω(t0) vector, which results in the
null motion trying to keep the RW spin speeds as close to
their original values as possible. The values of the diago-
nal angular velocity feedback gain matrix [P ] were chosen
such that each mode of the linearized closed loop dynamics

is critically damped.9,5 The null motion weights Ŵsi and

Ŵgi are set equal in this simulation. Setting Ŵsi equal to
zero would have yielded a pure CMG null motion. This is

typically the preferred setting. By having Ŵsi = Ŵgi in
this simulation, the null motion utilizes the RW mode very

little. However, setting Ŵsi equal to zero would restrict the
types of null motion (therefore what types of gimbal angle
reconfigurations) are possible.5,9

The resulting numerical simulations are illustrated in Fig-
ure 3. Note that three figures have a different time scale of
0 to 150 seconds. This is done to magnify what occurs dur-
ing this time interval and since nothing interesting happens
for these parameters after 150 seconds. Results obtained

Table 2 Numerical Simulation Parameters

Parameter Value Units
s(t0) [0.4 0.3 − 0.3]
ω(t0) [0.4 0.3 − 0.3] rad/sec
γ(t0) [45 − 45 45 − 45] deg
γ̇(t0) [0 0 0 0] rad
Ωi(t0) 628 rad/sec

Ωf 628 rad/sec
[P ] [725 477 623] kg-m2/sec
K 35 kg-m2/sec2

Kγ̇ 1.0 sec−1

W 0
si

40
Wgi 1.0
µ 100

Ŵsi 1.0

Ŵgi 1.0
κdb 3

from the simulation that only utilized the steering law in
Eq. (13) are indicated by a dashed line, results obtained
from the simulation with VSCMG null motion added are
indicated with a solid line. Figures 3(a) and 3(b) are valid
for both simulations and show that the closed loop dynamics
is indeed asymptotically stable for both simulations.

Figures 3(c) and 3(d) shows the singularity indices κ and
δ for both simulations. Without the singularity-avoiding
null motion added, the gimbal angles approach a singular-
ity twice. During the second approach the non-dimensional
determinant δ actually reaches zero and remains zero for a
finite duration. Therefore it would be impossible to precisely
perform this maneuver with the conventional CMG steering
law. Some modifications would have to be used to produce
and approximate required torque in the neighborhood of this
singular configuration. However, the VSCMG steering law
is easily able to handle this singularity by temporarily using
its RW modes. During both periods where δ → 0, the con-
dition number κ grows very large as seen in Figure 3(c). If
the same maneuver is performed with the singularity avoid-
ing VSCMG null motion added, the condition number κ is
reduced from the outset and remains relatively low through-
out the maneuver. Note that this index could have been
reduced even more, but it remains essentially around the
given condition number deadband value of 3. The trade off
of lowering this deadband value is that the VSCMG null
motion ends up reconfiguring the gimbals more often (i.e.
using more energy).

One drawback of the VSCMG steering law as proposed
in Ref. 5 is that for it to be able to drive through singular
configurations, a change in Ω (i.e. large RW motor torque)
is required. For this maneuver the associated Ω changes are
illustrated in Figure 3(e). Note that the time scale in this
and some other Figures is changed to better illustrate the
“interesting” regions. The weights were better tuned than
in Ref. 5 resulting in the RW speeds having a relatively small
change percentage wise. Using the VSCMG null motion in
References 5 and 9 to reconfigure the gimbal angles a priori
it was found that the associated RW Ω changes were rather
small. The same is observed here where the null motion is
performed during the maneuver itself as seen in Figure 3(f).

The equivalent RW motor torque vector magnitudes |us|
are plotted in Figure 3(g). Note that classical CMGs already
have an active RW control motor that simply maintains a
constant wheel speed. The additional effort required by the
VSCMG null motion is visible as small “humps” of the solid
line at the beginning of the maneuver and before 100 sec-
onds. What is very encouraging is that the magnitude of
these humps is very small and still easily feasible with the
standard existing RW torque motors. Conversely, the stan-
dard VSCMG steering law requires periodically RW torques
that are much larger and would require some reengineering
of the RW control motors.
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Fig. 3 Comparison of Maneuvers With and Without VSCMG Null Motion
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Fig. 4 Comparison of “Soft” vs “Stiff” Gradient Step Multiplier

The associated gimbal rates for both simulations are
shown in Figure 3(h). While the added VSCMG null motion
does require periodically higher gimbal rates to reconfigure
the gimbals, the overall control effort for the CMG mode is
about the same. Again, the biggest difference in control ef-
fort between adding the VSCMG null motion or not to the
VSCMG steering law manifests itself in the required RW
control effort.

Had the softer gradient multiplier in Eq. (24) been used
instead of the stiffer one in Eq. (25), then the gimbals would
not reconfigure fast enough to avoid the singularity. As the
VSCMG null motion starts to reconfigure the gimbals with
the singularity approaching, the gradient multiplier starts to
go zero. This effectively turns off the VSCMG null motion
until the singularity passes by. However, this soft gradient
multiplier was found to be superior when trying to reconfig-
ure the gimbals while holding the spacecraft attitude steady.
Assume that a spacecraft is at rest, but the internal gimbal
configuration is close to a singularity. Since no maneuver
is being performed, the steering law won’t drive the gim-
bals closer to the singularity. However, the stiffer gradient
multiplier causes the VSCMG null motion to reduce the
singularity index extremely sharply at first, and then decay
slowly after this. The problem with this is that in order to
keep the gimbal rates within reasonable limits, the null mo-
tion gain ke had to be substantially reduced. The resulting
self-reconfiguration was very sluggish and inefficient. The
softer gradient multiplier in Eq. (24) throttles back the ini-
tial VSCMG null motion and decays the condition number
κ in a more useful manner. This behavior is illustrated in
Figure 4. The same spacecraft and simulation parameters
were used as in the previous simulations. The only difference
between both simulations is the use of the softer and stiffer
gradient multiplier. To compare both initial κ time histo-
ries, the time axis is shown in a logarithmic scale. Clearly
the stiffer multiplier causes κ to decay unacceptably fast ini-
tially. Therefore, if the VSCMG null motion is to be used
on a steady spacecraft to reduce the condition number of
the [D1] matrix, the softer gradient multiplier in Eq. (24)
provides better performance.

Conclusion
A variable speed CMG null motion steering law is in-

troduced that drives the gimbal angles away from singular
configurations. This is done by continuously using redun-
dant degrees of freedom to minimize the condition number κ
of the control influence matrix through a gradient method.
This null motion can be applied to a spacecraft perform-
ing a reorientation maneuver or to a stationary spacecraft.
Numerical studies show that adding this VSCMG null mo-
tion to the variable speed CMG steering law can drastically
reduce the reaction wheel power consumption, while main-

taining a singularity-free steering law. To reduce the condi-
tion number κ, two gradient multipliers are introduced. It is
found that the stiffer gradient multiplier provides superior
performance than the softer multiplier during a maneuver.
The softer multiplier is better suited when trying to reconfig-
ure the gimbals to a less singular configuration while holding
the spacecraft attitude steady.
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