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STABILIZATION OF SATELLITE MOTION RELATIVE TO A COULOMB
SPACECRAFT FORMATION

Hanspeter Schaub∗

Coulomb spacecraft are satellites which can actively control their electrostatic charge, and thus exploit inter-vehicle electrostatic
forces to control tight relative motion. The stabilization problem of a cluster of unequal Coulomb spacecraft is studied. Previous
research has developed a nonlinear control law to stabilize the relative motion of one satellite relative to another. With only two
spacecraft present, with equal mass and charging limits, Newton’s second law greatly simplified the control development. This control
strategy is generalized here to stabilize the relative motion of a satellite relative to a larger cluster of Coulomb spacecraft with unequal
satellite masses and individual charge saturation limits. The chief cluster motion can be either circular or elliptic. The nonlinear
control methodology exploits an orbit element difference description of the satellite relative motion. While the control is shown to
stabilize the relative motion of a Coulomb satellite about any set of desired orbit element differences, convergence is shown thus far
only when controlling exclusively the semi-major axis differences. Thus, this control is able to achieve bounded relative motion of the
Coulomb satellite, even in the presence of saturation constraints. A simple structured control approach is numerically investigated to
control the entire cluster. Numerical simulations illustrate the relative motion control behavior with the cluster chief or center of mass
being on an elliptic high Earth orbit.

Introduction
A geosynchronous (GEO) satellite is exposed to a space plasma

environment that contains positively charged ions and negatively
charged electrons. The faster electrons will accumulate more
rapidly on the craft than the slower positively charged ions. This
causes a negative electric charge build-up to occur within the space-
craft. At steady-state charging conditions, the negative electric
field about the spacecraft will repel a sufficiently large number of
electrons such that a zero net current to the craft will result. De-
pending on the space plasma density, the steady-state charges can
vary from near-zero to several kilovolts. In 1979 the SCATHA
satellite1 was launched. One of its goals was to measure the build-
up and breakdown of electrostatic charge on various spacecraft
components, as well as to actively control the spacecraft charge
using an electron beam. This mission was able to flight verify that
it is possible to actively control the spacecraft charge. If another
spacecraft had been present with a separation distance of about
20 meters, the natural uncontrolled SCATHA voltage levels would
have been enough to impose inter-spacecraft forces in the milli-
Newton level.2 The amount of electrical power required to generate
these active electrical fields is less than 1 Watt. An ion engine op-
erates by expelling charged particles (ions) at a very high velocity.
The force generated is due to the momentum exchange between the
particle and the spacecraft. To control the spacecraft charge, a com-
parable device to an ion engine would be used. Here the ion exit
velocity would have to be large enough for the particle to escape
the local electrical potential field. To achieve a certain thrust level,
a traditional ion engine will expel a larger amount of ions, to pro-
duce the needed change in momentum, than a Coulomb ion engine,
which only has to expel enough ions to generate a specific electric
field.2 This leads to the Coulomb force production having a drasti-
cally lower electrical power requirement than ion thrust production.
The force exerted onto the Coulomb spacecraft due to momentum
exchange with the expelled particle is negligible. The Coulomb
satellite will only experience a force if additional charged space-
craft are in the vicinity. Similarly, the amount of mass expelled
(charged ion particles) is so small that this mode of navigation con-
trol is referred to as being “essentially propellantless.”3 A recent
example of active spacecraft electric potential control using an ion
source is found in Reference 4. Here the first results of the CLUS-
TER mission are discussed where the spacecraft charge is held near
zero in a low-density space plasma environment.

Note that such Coulomb forces will only control the relative mo-
tion of the satellite cluster, not the inertial motion of the cluster
center of mass. For example, it would be impossible to use such
Coulomb forces to boost the spacecraft cluster overall orbit alti-
tude. However, it is possible to control the relative motion between
the Coulomb satellites by changing the satellite charges. Thus, the
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Coulomb Formation Flying (CFF) concept allows for very fuel-
efficient relative navigation with a very high control bandwidth.
For example, in Reference 2 a 1 meter spacecraft was found to
be able to charge to 6 kV in as little as 8 ms using only 200 mW
of power. The CFF concept could be used for general proxim-
ity flying (fly a sensor about a larger craft) or for controlling the
relative motion of swarms or clusters of satellites. Since the mag-
nitude of the Coulomb electrostatic force diminishes with 1/r2 of
the separation distance, it is only effective for relatively tight for-
mation/proximity flying scenarios of 10-100 meters. For minimum
separation distances larger than that, the required spacecraft charg-
ing levels simply become impractical. Further, the Coulomb force
effectiveness is diminished in a high density space plasma envi-
ronment. This is typically measured through the Debye length λd

which indicates the exponential decay e−r/λd of the electrostatic
field strength in a plasma environment.5, 6 This decay is in addi-
tion to the natural point charge 1/r2 field strength reduction. For
example, at LEO the Debye length is on the order of centimeters,
thus preventing electrostatic forces from being an effective relative
motion control method. At GEO, in comparison, the Debye length
is of the order of 100 and 1000 meters, depending on the current
plasma density conditions. Formation flying missions with such
small relative orbits are useful to perform high accuracy, very wide
field of view missions, or to measure local gradients in the space
environment.

Developing control laws for such CFF concepts are challenging
in that the charge dynamics are highly nonlinear and coupled. By
changing the charge of a single satellite, the net resulting electro-
static force experienced by all other charged craft in the cluster will
be changed as well. In Reference 3, 7 static equilibrium solutions
are presented of the CFF concept where the formation center of
mass is assumed to be in a circular orbit. Interesting in-plane two
dimensional solutions, as well general three-dimensional solutions
are found. However, none of the equilibrium solutions found so
far are stable and would require an active charge control law to
be developed. A control solution for a simplified two-spacecraft
formation with equal satellite mass is presented in Reference 7.
The control law is based on an orbit element difference description
of the relative motion and applies to both circular and elliptical
cluster center of mass motion. While this control was shown to
globally stabilize the motion of one satellite relative to a single ad-
ditional satellite, it was not asymptotically stabilizing for all initial
conditions. For example, if the initial formation has only in-plane
satellite motion, and the final formation is to have out-of-plane mo-
tion, then such a relative orbit correction cannot be achieved with
only inter-satellite forces. However, for the case of controlling only
the semi-major axis differences δa of the satellites, it was shown
that the control was indeed asymptotically stabilizing. As a result,
the two-spacecraft control law was able to balance the semi-major
axis of both satellites and achieve bounded relative motion.

This paper explores controlling the relative motion of a Coulomb
Spacecraft Formation (CSF) containing more than two satellites.
The satellites are also no longer assumed to have equal masses, and
may also have individual charging limits. An orbit element differ-
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ence approach is used to describe the relative motion and relative
motion errors. A centralized nonlinear control strategy is investi-
gated where the relative motion error of a single satellite versus the
formation chief is corrected one at a time. The stability and conver-
gence of the single craft control is discussed. A simple structured
control approach is investigated to stabilize the relative motion of
the entire cluster. The resulting control is applicable to controlling
both circular and elliptical cluster center of mass orbits. Numeri-
cal simulations are shown to illustrate the control performance and
behavior.

CSF Equations of Motion
Consider a formation or cluster of N Coulomb satellites each

with mass mi. The inertial equations of motion of the i-th space-
craft are given by

r̈i = − µ

r3
i

ri + αi + ai (1)

where ri is the inertial position vector, r = |ri| is the current iner-
tial orbit radius, αi is the acceleration due the the electrical charges
of the other spacecraft, and ai is the non-Keplerian acceleration
(for example, due to J2 or atmospheric drag). For the purpose of
the control analysis, the acceleration vector ai is set to zero. How-
ever, when running numerical simulations, the J2–J5 gravitational
accelerations are included. Let Ei be the electrostatic field vector
experienced by the i-th spacecraft. If the craft has a charge qi, then
the electrostatic force Fi applied to the craft is

Fi = qiEi (2)

and the corresponding acceleration αi is expressed as

αi =
1

mi
Fi (3)

If N satellites are present in a CSF, then the electric field Ei that
satellite i will experience due to the other satellites is given by

Ei = kc

NX
j=1

qj
rji

|rji|3
e
−

|rji|
λd for i 6= j (4)

where rji = ri − rj is the relative position vector, and kc =
8.99 · 109Nm2/C2 is Coulomb’s constant. Note that we have not
assigned any coordinate frame to this potential field expression.
As such, the given expression is valid for both an inertial and Hill
frame specific equations of motion description. The parameter λd

is the Debye length. For analysis purposes, this parameter is as-
sumed to be infinitely large and the exponential term in Eq. (4)
is thus ignored. During numerical simulations, it is set to a finite
value to illustrate robustness of the control to this effect.

Besides using inertial Cartesian coordinate position vectors r,
the spacecraft motion can also be described through orbit ele-
ments. Let oei be a six dimensional orbit element vector of the
i-th spacecraft. These elements are invariants of the non-perturbed
motion, just as the initial conditions r(t0) and ṙ(t0) are invariants
of the Cartesian motion description. From Gauss’ variational equa-
tions,8, 9 given an external acceleration vector ui, the orbit element
vector oei(t) will evolve according to

ȯei = [B(oei, fi)]ui (5)

where [B(oei, fi)] is a 6 × 3 control influence matrix. This ma-
trix depends on both the current satellite orbit element set oei and
the associated time-dependent true anomaly angle fi. Note that
no specific choice of orbit elements is being performed at this
point in the development. The spacecraft charge control law pre-
sented is independent of the type of chosen orbit elements. The
control development will utilize the equations of motion shown in
Eq. (5), while numerical illustrations will use the equations of mo-
tion shown in Eq. (1).

Control Law Strategy
Assume that the desired relative motion is expressed through the

fixed orbit element difference vector ∆oei relative to the formation
chief or center of mass motion. The formation internal electrostatic
forces will have an influence on the center of mass motion. This
is comparable to the classical attitude and orbital motion coupling
of a rigid body in space. However, the center of mass motion de-
parture from Keplerian orbital motion is very small given the very
small relative orbit dimension of 10-100 meters, and is thus ne-
glected here. Thus, the chief or formation center of mass orbit
elements oec will be a constant vector in this development. In Ref-
erences 9–12 the control law

ui = −[B(oec, fc)]
T [K]δoei (6)

has been shown to be asymptotically stabilizing for Keplerian satel-
lite motion if arbitrary control accelerations ui can be implemented
through the propulsion system. Here the gain matrix [K] must be
a 6 × 6 symmetric, positive definite matrix, while [B(oec, fc)] is
the chief orbit 6× 3 control influence matrix of Gauss’ variational
equation.8, 9 While oec is assumed to be a constant vector, the chief
true anomaly angle fc is time dependent. Note that this control
law is applicable to both circular and elliptic chief orbits. Further,
the tracking errors can be expressed using differences of various
types of orbit elements such as the classical orbit element set, or
equinoctial orbit elements.13

In Reference 7 a nonlinear control strategy is developed for
a CSF of two equal satellites which exploits the control law in
Eq. (6). Because two spacecraft can only exert an electrostatic
force onto each other along their relative position vector rij , we
cannot generate arbitrary control accelerations ui. Instead, the
control solution ui is projected along the relative position vector
direction of the two satellite system to develop a stabilizing charg-
ing control law qi(t) for each craft. The control development and
stability analysis used a vector dot product to perform the projec-
tion and is only applicable to a two-satellite formation of equal
mass. The following development will generalize and expand this
control idea to attempt to control a satellite relative to a larger for-
mation of Coulomb satellites.

Unsaturated Control
Let εi be a vector of dimension M ≤ 6 containing the orbit

elements which are to be controlled. This formulation allows us to
control as few as a single orbit element difference, or several orbit
element differences up to a total of six. Assume that the desired
relative orbit motion is prescribed through a constant orbit element
difference vector ∆εi. The tracking error dynamics are given by

δε̇i = ε̇i − ε̇c −∆ε̇ = ε̇i = [B(oei, fi)]αi (7)

where αi is the actual control acceleration vector being applied
to the i-th spacecraft (with vector components taken in the local
LVLH frame), and the M × 3 matrix [B(oei, fi)] is the con-
trol influence matrix of ε. Note that the tracking error is written
here relative to the formation center of mass, while with the two-
satellite formations in Reference 7 the tracking error was written
as the error of one satellite relative to the other. Further, note that
[B(oei, fi)] is a subset of the full [B(oei, fi)] matrix from Gauss’
variational equations in Eq. (5). Let the orbit element difference
vector δoei = oei−oec describe the actual spacecraft relative mo-
tion with respect to the formation barycenter, and δfi = fi − fc

be the associated true anomaly difference. Because the relative or-
bits radii considered in CSFs are very small, of the order of 10’s to
100’s of meters, and δoei � oec and δfi � fc, the [B] matrix is
modeled through the approximation:9–12

[B(oei(t), fi(t))] = [B(oec + δoei(t), fc + δfi(t))]

≈ [B(oec, fc(t))] = [B(t)] (8)

The tracking error dynamics are then written as

δε̇i = [B(t)]αi (9)
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Note that the explicit dependencies of the [B] matrix have been
dropped here for notational convenience and readability. This ma-
trix [B(t)], as well as the shown tracking error dynamics, are time
dependent because fc is time dependent. Thus the dynamical sys-
tem is non-autonomous.

Let us assume that we are only going to control the tracking error
of a single satellite. Without loss of generality, assume that the N -
th satellite has the worst tracking error δεi. The acceleration αN

experienced by this N -th satellite due the the Coulomb charge of
the other L = N − 1 satellites is

αN =
qN

mN
kc

„
q1

r̂1N

r2
1N

+ · · ·+ qL
r̂LN

r2
LN

«
(10)

where r̂ij = rij/rij is a unit relative position vector. Let the L-
dimensional vector Q be defined as a vector of charge products
through

Q =

0B@Q1N

...
QLN

1CA =

0B@q1qN

...
qLqN

1CA (11)

while the 3× L dimensioned, time-dependent matrix [A(t)] is de-
fined as

[A(t)] =
h

r̂1N (t)

r2
1N

(t)
· · · r̂LN (t)

r2
LN

(t)

i
(12)

The acceleration vector αN can now be written as

αN =
kc

mN
[A(t)]Q (13)

Next the actual acceleration is set equal to a stabilizing control ac-
celeration uN .

αN =
kc

mN
[A(t)]Q = uN (14)

Note that this control acceleration is the control law shown in
Eq. (6), but it could be any stabilizing control law. If the matrix
[A] has a rank less than 3, then the condition αN = uN cannot
be achieved exactly. Instead, an approximate least squares solu-
tion will be used. If the L × 3 matrix [A] is full rank, then there
are an infinity of charge solutions that will satisfy αN = uN . In
this case, a minimum-norm inverse solution will be used. Using
the pseudo-inverse of the matrix [A], we can solve Eq. (14) for the
charge product vector Q for all rank cases of [A] as

Q =
mN

kc
[A(t)]†uN (15)

where L× 3 dimensioned matrix [A]† is the pseudo-inverse of the
matrix [A]. If L = 1, as is the case with the two-satellite forma-
tion in Reference 7, then [A]† = r2

1N r̂T
1N and the control law of

Reference 7 is regained. Please note that while the ideal stabilizing
control law uN = uN (δεN ) depends only on orbit element differ-
ences, the charging control law for Q in Eq. (15) depends both on
orbit element tracking errors δεi and the Cartesian relative position
vectors riN through the [A] definition in Eq. (12). Thus, the charge
control solution is a hybrid Cartesian and orbit element difference
based formulation.

Note that the charging control law in Eq. (15) only defines
what the charge products qiqN should be, not what the individ-
ual charges actually are. There are many methods to extract the
individual charges. The following method was adopted in this pa-
per. After computing the Q vector, the QiN term is found which
has the largest magnitude Qmax. The charge of the N -th spacecraft
is then set to

qN =
p

Qmax (16)

The other L charges are then computed using

qi =
QiN

qN
for i = 1, · · · , L (17)

Note that with this charging law, the qN charge is always positive,
while the other charges can be either positive or negative, depend-
ing on the sign of the QiN term.

Substituting the pseudo-inverse charging law in Eq. (15) into
the acceleration vector computation in Eq. (14), we find the actual
spacecraft acceleration vector to be

αN =
kc

mN
[A]

mN

kc
[A]†uN = [A][A]†uN (18)

Only if the rank of [A] is 3, then [A][A]† = [I3×3] and the con-
dition αN = uN is satisfied. If the rank of [A] is 3 and L > 3,
then this Q computation provides a minimum norm solution. If the
rank of [A] is less than 3, then this Q computation provides a least-
squares solution. Where for the two-satellite control solution in
Reference 7 the charging always corresponded to a least-squares
solution, the use of the pseudo-inverse here allows this control
strategy to be scaled to all available matrix rankings and dimen-
sions.

The typical spacecraft charge values can be as large as 10’s of
µC. However, when computing the Qij terms, note that numeri-
cal issues may arise if the average spacecraft charge falls below
0.01 µC. In this case the product of the charges is 10−16 C or less,
which causes problems with the typical 16 digits of computer accu-
racy. To avoid this issue when numerically computing the charging
product vector Q in Eq. (15), the charges are non-dimensionalized
by the individual maximum allowable spacecraft charges. In non-
dimensional charge units, a value of 1 for a craft means that the
maximum craft charging limit has been reached. When comput-
ing the actual charges using Eq. (17), the non-dimensional charge
product value QiN would have to be dimensionalized first.

This control will only stabilize the motion of a single satellite
relative to the remaining CSF. To attempt to stabilize the relative
motion of the entire cluster, a simple structured control strategy is
investigated. During the first step, we find the satellite with the
worst tracking error δε and give it the label N . Next the remaining
L satellites electric charges qi are exploited to reduce this track-
ing error. While controlling the N -th satellite, the tracking errors
of the other satellites is monitored. If another satellite is found to
have the worst tracking error of the formation, then the structured
control will relabel this satellite to be the N -th satellite, and use
the remaining formation to reduce it’s tracking error. The math-
ematical formulation is general enough such that the cluster can
consist of N ≥ 2 satellites. Alternatively, another switching logic
approach would drive the tracking errors of one satellite to nearly
zero, and only then switch to control another satellite. However,
please note that no performance or stability claims are made while
the switching occurs. Only the tracking errors of the N th satellite
are guaranteed to be stable while the remaining formation is used
to control the N th satellite position. Numerical examples will il-
lustrate that this simple switching strategy does appear to stabilize
the semi-major axis tracking errors of a three satellite formation,
not just a single satellite. However, for larger formation, a more
sophisticated switching structure will be required.

Un-Saturated Control Stability Analysis
Assuming that the craft can achieve unlimited amounts of charge

qi, we would like to study the stability of the charging control law
outlined in Eqs. (15)–(17). To do so, we define the Lyapunov func-
tion V in terms of the relative orbit tracking error δε.

V (δε) =
1

2
δεT [K]δε (19)

where [K] is a M × M symmetric, positive definite gain matrix.
The charging control law Q in Eq. (15) is stabilizing for the non-
autonomous dynamical system δε̇ = δε̇(δε, t) if it can be shown
that the function V is positive definite, decrescent, and V̇ ≤ 0.14, 15

Because the chosen V (δε) function does not depend explicitly on
time, by inspection it is found to be both positive definite and de-
crescent. Taking the derivative of V (δε) and using the tracking
error dynamics δε̇N = [B(t)]αN in Eq. (7) leads to

V̇ = δεT [K]δε̇ = δεT [K][B(t)]αN (20)
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Using the spacecraft acceleration expression in Eq. (18) and the
ideal control expression in Eq. (6), V̇ is written as

V̇ = −δεT [K][B(t)][A(t)][A(t)]†[B(t)]T [K]δε

= −uT
N [A(t)][A(t)]†uN = −uT

NαN ≤ 0 (21)

If it can be shown that [A][A]† is a positive semi-definite matrix,
then Eq. (21) shows that V̇ ≤ 0 and the charging control is uni-
formly stabilizing.

To show that [A][A]† is positive semi-definite, the singular value
decomposition (SVD) is applied to the [A] matrix.

[A(t)] = [U(t)][D(t)][V (t)]T (22)

where [U ] is a 3×3 orthonormal matrix, [V ] is a L×L orthonormal
matrix, and the 3×L matrix [D] contains the singular values of [A]
in a diagonal form.

[D(t)] =

"
σ1(t) 0 0 · · · 0

0 σ2(t) 0 · · · 0
0 0 σ3(t) · · · 0

#
(23)

The typical convention is assumed here where σ1 ≥ σ2 ≥ σ3.
For notational convenience, the explicit time dependence notation
is dropped from here on. If [A] has rank 1, then σ2 = σ3 = 0.
If [A] has rank 2, then only σ3 = 0. If [A] has full rank, then all
three σi values will be non-zero. The pseudo-inverse of a matrix is
defined using the SVD as

[A]† = [V ][D]†[U ]T (24)

The pseudo-inverse of [D] is defined as

[D]† =

266664
1/σ1 0 0

0 1/σ2 0
0 0 1/σ3

...
...

...
0 0 0

377775 (25)

where the 1/σi entries are set to zero if σi = 0.
Since a matrix is positive semi-definite if all its eigenvalues are

greater than or equal to zero, the eigenvalue/eigenvector problem
of the 3 × 3 matrix [A][A]† is investigated. Let [V] be a matrix
of eigenvectors of [A][A]† and [Λ] be the corresponding diagonal
eigenvalue matrix.

[A][A]† = [V][Λ][V]T or [A][A]†[V] = [V][Λ] (26)

must be true. Let’s assume that [V] = [U ]. Then

[A][A]†[U ] = [U ][D][V ]T [V ][D]†[U ]T [U ] = [U ][D][D]† (27)

must be true. This shows that [U ] is indeed the eigenvector matrix
of [A][A]† and that the matrix [Λ] = [D][D]† is the corresponding
diagonal eigenvalue matrix. Using Eqs. (23) and (25), we find that

[D][D]† =

"
1 0 0
0 i 0
0 0 j

#
with i, j = 0, 1 (28)

If the rank of [A] is 2, then j = 0. If the rank of [A] is 1, then
i = j = 0. Since [D][D]† is the eigenvalue matrix of [A][A]†, it
has been shown that the eigenvalues of [A][A]† are either 1 or zero,
depending on the rank of the [A] matrix. Thus, the matrix [A][A]†

is positive semi-definite and the Lyapunov rate function expression
in Eq. (21) is indeed non-positive with V̇ ≤ 0. This shows that the
projection used to compute the charging products QiN will yield
a globally stabilizing feedback control law for the tracking errors
of the N -th satellite. Note that the issue of convergence will be
addressed later on. Another useful property of [A][A]† is that

[A][A]† =
“
[A][A]†

”T

(29)

Also, note that the self-similarity property yields

([A][A]†)([A][A]†) = [U ][D][D]†[U ]T [U ][D][D]†[U ]T

= [U ][D][D]†[U ]T = ([A][A]†) (30)

since ([D][D]†)([D][D]†) = [D][D]†.
The proof shown only guarantees stability for controlling the

tracking error of the N -th satellite (the one with the worst track-
ing error). If this orbit correction causes another satellite to have a
worse tracking error, then the structured control law will switch to
use the remaining satellites to control this new “worst” satellite. If
the spacecraft charging ability is unlimited, then this control tech-
nique will attempt to iteratively stabilize all the satellite tracking
errors.

Saturated Control Stability Analysis
In any practical application of CSF, the craft charge qi will be

limited to finite values. Large electrostatic potential could lead to a
differential discharge that could damage on board electronics and
sensors. Let

|qi| ≤ qi,max (31)

Then the charge products QiN are limited to

|QiN | ≤ qi,max qN,max = QiN,max (32)

The saturated charge product term Q̃iN is then defined to be

Q̃iN =

8<:
−QiN,max if QiN < −QiN,max

QiN if −QiN,max ≤ QiN ≤ QiN,max

QiN,max if QiN > QiN,max

(33)

Note that

QT Q̃ = Q1N Q̃iN + · · ·+ QLN Q̃LN ≥ 0 (34)

Next, let’s investigate how applying saturated spacecraft charges
will affect the previous stability proof. Note that the saturation
function in Eq. (33) allows for each craft to have a different elec-
trical charge saturation limit. The acceleration vector αN due to
saturated spacecraft charges is

αN =
kc

mN
[A]Q̃ (35)

Using Eqs. (14) and (18), we can express the ideal control acceler-
ation vector uN in terms of the unsaturated charge vector Q.

uN =
kc

mN

“
[A][A]†

”†
[A]Q (36)

Note that the pseudo-inverse of the 3× 3 matrix
`
[A][A]†

´
is sim-

ply
`
[A][A]†

´
. This can be shown by using Eq. (30) to find that`

[A][A]†
´

= [U ]([D][D]†)[U ]T , and thus“
[A][A]†

”†
= [U ]([D][D]†)†[U ]T

= [U ]([D][D]†)[U ]T =
“
[A][A]†

”
(37)

since ([D][D]†)† = ([D][D]†). Using Eqs. (35)–(37), the Lya-
punov rate function in Eq. (21) is expressed as

V̇ = −uT
NαN = − k2

c

m2
N

QT [A]T
“
[A][A]†

”
[A]Q̃ (38)

Using Eq. (22) and the orthogonality properties of the matrices [U ]
and [V ], the term [A]T

`
[A][A]†

´
[A] can be written as

[A]T
“
[A][A]†

”
[A]

= [V ][D]T [U ]T [U ][D][V ]T [V ][D]†[U ]T [U ][D][V ]T

= [V ][D]T
“
[D][D]†

”
[D][V ]T (39)
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Using Eqs. (23) and (28) we find that the diagonal L×L matrix is

[D]T
“
[D][D]†

”
[D] =

2666664
σ2

1 0 0 · · · 0
0 σ2

2 0 · · · 0
0 0 σ2

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

3777775 (40)

where σ3 = 0 if rank([A]) = 2 and σ2 = σ3 = 0 if rank([A]) =
1. With this convention, the following development is applicable
regardless of the rank of the matrix [A]. Next, the L×L orthogonal
matrix [V ] is written as

[V ] = [v1 v2 v3 · · · vL] (41)

where vi is the L-dimensional column vector of [V ]. Using
Eqs. (39) – (41), the Lyapunov rate function in Eq. (38) is expressed
as

V̇ = − k2
c

m2
N

QT
“
σ2

1v1v
T
1 + σ2

2v2v
T
2 + σ2

3v3v
T
3

”
Q̃ (42)

Rearranging this equation, the Lyapunov rate function with satu-
rated spacecraft charging is finally expressed as

V̇ = − k2
c

m2
N

“
σ2

1vT
1 QQ̃T v1 + σ2

2vT
2 QQ̃T v2 + σ2

3vT
3 QQ̃T v3

”
(43)

If it can be shown that the L × L matrix QQ̃T is positive semi-
definite, then V̇ ≤ 0 and the saturated charging control law is
globally, uniformly stabilizing. Note that this stability statement
is valid regardless of the rank of the [A] matrix. If [A] is not full
rank, then σ3 and/or σ2 will be zero, but the V̇ function will remain
non-positive through-out these cases.

The matrix QQ̃T is positive semi-definite if its eigenvalues are
non-negative. Since QQ̃T will only have rank 1, there will be a
single non-zero eigenvalue λ. Let v be the associated eigenvector.
Then the eigenvalue problem is solved by studying the equation“

QQ̃T
”

v = λv (44)

Note that “
QQ̃T

”
Q = Q(Q̃T Q) = (Q̃T Q)Q (45)

Thus the non-zero eigenvalue of QQ̃T and associated eigenvector
must be

λ = QT Q̃ (46)
v = Q (47)

Due to the saturation function property in Eq. (34), we find that
the eigenvalue λ > 0 and thus the matrix QQ̃T is positive semi-
definite. In return, this guarantees that V̇ ≤ 0 in Eq. (43), and
the saturated charging control law is globally, uniformly stabiliz-
ing. Note that convergence issues have not been addressed here.
Further, this control law only guarantees that the tracking error
dynamics of the N -th satellite will be stable. If two neighboring
satellites repel each other while correcting this N -th satellite, then
it is possible that they could receive enough energy such that the
saturated charging control law would not be able to stabilize their
tracking error. Currently the structured control law will simply at-
tempt to correct the satellite with the worst tracking errors, and
use the remaining satellite charges to do so. Future work on these
charging control laws will investigate this issue as well when com-
puting the spacecraft charge product vector Q in Eq. (15).

Convergence of Semi-Major Axis Only Control
Up to this point the spacecraft charging control law is written to

stabilize any set of orbit element tracking errors. From here on, the
focus is to control only the semi-major axis tracking errors. If Ke-
plerian orbital motion is assumed, then the semi-major axes of all
spacecraft must be equal in order to obtain bounded relative motion
between the satellites. Asymptotic stability of a semi-major axis
specific control law has already been shown for the two-satellite
special case in the previous development in Reference 7. Conver-
gence of the semi-major axes tracking errors is crucial to keep the
CSF relative motion bounded. For example, if the spacecraft form
a swarm, rather than a precise formation, it could be sufficient to
keep the cluster of spacecraft on bounded relative orbits. Note that
collision avoidance is not being addressed here and is a topic of
future work.

If only the semi-major axis tracking error is controlled with δε ≈
δa, then the tracking error dynamics in Eq. (7) reduces to

δȧN = [B(t)]αN =
2a2

h
[e sinf(t) (1 + e cosf(t)) 0]| {z }

[B]

αN

(48)

where a is the semi-major axis, h is the angular momentum, e is
the eccentricity, p is the semi-latus rectum, f is the true anomaly
angle and r is the orbit radius of the chief orbit (barycenter position
of the formation). Note that charge saturation is not modeled in
this convergence analysis. The ideal control acceleration vector is
written as

uN = −[B(t)]T Kδa (49)

where the gain matrix [K] has been replaced with a scalar positive
parameter K. The corresponding unsaturated charging control law
is

Q = −mN

kc
[A(t)]†[B(t)]T Kδa (50)

The Lyapunov function simplifies for the semi-major axis only con-
trol case to

V (δaN ) =
K

2
δa2

N (51)

Using the error dynamics in Eq. (48), the unsaturated Lyapunov
rate expression in Eq. (21) simplifies to

V̇ = −δa2
NK2

“
[B(t)][A(t)][A(t)]†[B(t)]T

”
(52)

This expression can be further simplified using the 3 × L matrix
[C] and L× L matrix [S] by defining

[A] = [C][S] (53)

[C] = [r̂1N · · · r̂LN ] (54)

[S] =

2664
1

r2
1N

· · · 0

...
. . .

...
0 · · · 1

r2
LN

3775 (55)

Note that the pseudo-inverse of [A] can now be written as

[A]† = [S]†[C]† = [S]−1[C]† (56)

which allows the Lyapunov rate to be expressed as

V̇ = −δa2
NK2

“
[B(t)][C(t)][C(t)]†[B(t)]T

”
(57)

Note that if rank([A]) = rank([C]) = 3, then [C][C]† = [I3×3] and
the Lyapunov rate function is

V̇ = −δa2
NK2

“
[B][B]T

”
(58)
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This function has already been shown to be negative definite in the
tracking errors δa in Reference 9–12, and thus the full rank [A] ma-
trix case is asymptotically stabilizing. The following development
will show that Q in Eq (50) is asymptotically stabilizing, regardless
of the rank of [A(t)].

Proving asymptotic converge for an non-autonomous system is
more involved than for autonomous systems. For example, if it
could be shown that14, 15

−V̇ (δaN , t) ≥ W3(δaN ) (59)

where W3(δaN ) is a positive definite function, then the system
would be asymptotically stabilizing. This was attempted by ex-
pressing the [C] matrix using a linearized orbital relative motion
solution16 for the rank([A]) = 1 case. However, this analysis
showed that such a W3 function cannot exist for the given V̇ ex-
pression in Eq. (57). Instead, let us investigate V̇ as t → ∞. If V
has a finite limit, and V̇ is uniformly continuous, then Barbalat’s
lemma14, 15 states that V̇ → 0. Because the control has already
been shown to be stabilizing, the Lyapunov function V will have
a finite limit. To show that V̇ is uniformly continuous, it is suffi-
cient to show that V̈ is bounded.14 Taking the derivative of the V̇
expression in Eq. (57) and using Eq. (48), we find

V̈ = −2δa2
NK3

“
[B][C][C]†[B]T

”2

− δa2
NK

“
[Ḃ][C][C]†[B]T + [B][Ċ][C]†[B]T

+ [B][C][Ċ]†[B]T + [B][C][C]†[Ḃ]T
”

(60)

Because the charge control in Eq. (50) is stabilizing, we find that
δaN will be finite. The matrix [B] formulation in Eq. (48) is clearly
bounded for all f(t), and will have continuous, finite derivatives
[Ḃ] because orbital dynamics dictates that ḟ = h

p2 (1 + e cosf)2.
The [C] matrix is constructed using unit direction vectors of the
relative position vectors riN , and thus is always bounded. The
[Ċ] matrix will depend on the ṙiN vectors. These are also a finite
quantities, even if the charges have discrete jumps in their values.
Thus V̇ is found to be uniformly continuous, and V̇ → 0. Look-
ing at Eq. (57), V̇ = 0 is only possible if either δaN = 0, or
[B][C][C]†[B]T is zero.

Let us rewrite the Lyapunov rate expression V̇ into a more con-
venient form. Taking the SVD of [C] we find

[C] = [Uc][Dc][Vc]
T (61)

where [Uc] is a 3 × 3 orthogonal matrix, [Dc] is a 3 × L diagonal
matrix, and [Vc] is a L× L orthogonal matrix. The matrix product
[C][C]† is written as

[C][C]† = [Uc][Dc][Vc]
T [Vc][Dc]

†[Uc]

= [Uc][Dc][Dc]
†[Uc]

= [Uc]

"
δ1 0 0
0 δ2 0
0 0 δ3

#
[Uc]

T

(62)

where

δi =


1 if i ≤ rank([C])

0 else
(63)

Let the 3 × 3 matrix [Uc] be partitioned into three column vectors
uci .

[Uc] = [uc1 uc2 uc3 ] (64)

Eq. (62) can now be written as

[C][C]† = δ1uc1uT
c1 + δ2uc2uT

c2 + δ3uc3uT
c3 (65)

Substituting Eq. (65) into Eq. (57) and rearranging the terms, the
Lyapunov rate function is expressed for the semi-major axis only
control law as

V̇ =−δa2
NK 2̀ δ1([B]uc1)

2+ δ2([B]uc2)
2+ δ3([B]uc3)

2´
(66)

If it can be shown that the [B]uci terms cannot remain zero for
non-zero δa terms, then asymptotic convergence of the semi-major
axis only CSF charging control law has been shown. Let’s write
[B]T = b as a column vector. Using the [B] definition in Eq. (48),
it is clear that b cannot be a zero vector. Then Eq. (66) is written as

V̇ =−δa2
NK2 `

δ1(b · uc1)
2+ δ2(b · uc2)

2+ δ3(b · uc3)
2´

(67)

Let us re-write the charging vector expression in Eq. (50) using
Eqs. (53), (61) and (64).

Q = −mN

kc
[A]†[B]T KδaN

= −mN

kc
KδaN [S]−1[C]†[B]T

= −mN

kc
KδaN [S]−1[Vc][Dc]

†[Uc]
T [B]T

= −mN

kc
KδaN [S]−1[Vc][diag(1/σci)][Uc]

T [B]T

= −mN

kc
KδaN [S]−1[Vc][diag(1/σcib · uci)]

(68)

The positive scalars σci are the singular values of [C] and the
diagonal entries of [Dc]. The L × 3 matrix [diag(1/σci)] has di-
agonal matrix on the upper 3× 3 partition, and zeros on the lower
(L−3)×3 partition. Note that if the Lyapunov rate V̇ in Eq. (67) is
zero due to b ·uci terms being zero, then the charge product vector
Q will also be zero. From this observation it can be concluded that
if V̇ goes to zero with δaN 6= 0, then all spacecraft charges will
also have gone to zero and the relative motion will be determined
purely through the orbital mechanics. Thus, to discuss convergence
of δaN → 0, it must be investigated if it is possible for b · uci to
be zero with the uncontrolled relative orbit motion.

First, assume that rank([C]) = 3 and δ1 = δ2 = δ3 = 1. In
this case it is impossible for V̇ in Eq. (67) to be zero for a non-zero
δaN . If b is perpendicular to both uc1 and uc2 , then due to the
orthogonality of the uci vectors, the b vector cannot be orthogonal
to uc3 . Thus, for the full rank case of either [C] or [A], the semi-
major axis only charging control law is shown to be asymptotically
stabilizing. Note that for this full rank case the formation chief
orbit can be either circular or elliptic in nature.

To prove asymptotic convergence for a matrix [A] without full
rank is more challenging. Let’s first investigate the case where
rank([A]) = rank([C]) = 1. This could be a situation where only
two satellites are in a cluster, or all satellite relative position vectors
happen to be collinear. Here δ1 = 1 and δ2 = δ3 = 0, and thus

V̇ = −δa2
NK2(b · uc1)

2 (69)

Without loss of generality, assume that N = 2 here and [C] =
[r̂1N ]. Here the SVD of [C] is

[C] = [r̂1N uc2 uc3 ]| {z }
[Uc]

"
1
0
0

#
|{z}
[Dc]

[1]T|{z}
[Vc]T

(70)

and uc1 = r̂1N = (ρ̂1, ρ̂2, ρ̂3)
T . For the term b · uc1 to be zero,

the condition

b · uc1 ' ρ̂1e sin f + ρ̂2
p

r
= 0 (71)

must be true. Note that proportionality factors have been dropped
in this expression for convenience. If b · uc1 = 0, then Q = 0.
Thus, a natural orbital motion must be found that could satisfy the
constraint in Eq. (71) for b · uc1 = 0 to be true. Reference 16
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provides a convenient relative orbit description in terms of classical
orbit element differences:

ρ̂1 '
r

a
δa +

ae sin f

η
δM − a cos fδe (72)

ρ̂2 '
r

η3
(1 + e cos f)2δM + rδω

+
r sin f

η2
(2 + e cos f)δe + r cos iδΩ

(73)

where ω is the argument of periapses, Ω is the ascending node,
η =

√
1− e2 being an eccentricity measure, and M is the mean

anomaly angle of the formation chief orbit. For small relative or-
bits, the linearized mean anomaly difference will evolve according
to16

δM(f) = δM0 −
3

2
(M(f)−M0)

δa

a
(74)

For the condition in Eq. (71) to be true for all time, it is necessary
that the secular terms must vanish independently. If δa 6= 0, then
we can treat the mean anomaly differences δM as secularly grow-
ing terms in Eqs. (72) and (73) without loss of generality. Ignoring
the constant and cyclic terms in ρ̂1 and ρ̂2, we focus on studying
the effect of the secular δM terms on the constraint in Eq. (71).

(e sin f)

„
ae sin f

η
δM

«
+

p

r

„
r

η3
(1 + e cos f)2δM

«
' 0

(75)

Using the orbit radius equation r = p/(1 + e cos f) and p = aη2,
the constraint is written as`

1 + e2 + 2e cos f
´
δM ' 0 (76)

For this expression to be zero, the true anomaly angle f would have
to satisfy

cos f = −1 + e2

2e
(77)

Note that this equation will only yield a real answer for f if e = 1.
Thus, for circular orbits where e = 0 and non-rectilinear elliptic
orbits where e < 1, the constraint in Eq. (71) can never be satisfied
with a non-zero δa and thus b ·uc1 cannot remain zero. If fact, this
shows that b cannot remain orthogonal to the relative position vec-
tors riN . Having shown this for the secular terms in Eq. (71), there
is no need to investigate the periodic terms. The semi-major axis
only charging control law is thus asymptotically stabilizing for the
case where rank([A]) = 1. Note that with the two-spacecraft case
studied in Reference 7, asymptotic convergence was only analyt-
ically shown for the circular chief orbit case. The above analysis
extends this analytic proof to elliptic orbits and a larger number of
spacecraft.

If the matrix [A] has a rank of 2 (all relative position vectors lie
in a common plane), then δ1 = δ2 = 1 and δ3 = 0. The Lyapunov
rate expression in Eq. (67) is now given by

V̇ = −δa2
NK2 `

(b · uc1)
2 + (b · uc2)

2´
(78)

If the vector b = [B]T is in the plane described by the vector pair
uc1 and uc2 , then the orthogonality of the uci vectors guarantees
that the Lyapunov rate function in Eq. (78) cannot be zero for a
non-zero δa. The only possibility for

`
(b · uc1)

2 + (b · uc2)
2
´

to
be zero is for b to be perpendicular to the plane described by the
vector pair uc1 and uc2 . Recall the rank([A]) = 1 case, where
we found that uc1 = ρ̂1N . This is generally not the case when
rank([A]) = 2. However, the orthogonal uc1 and uc2 vectors will
span the plane described by the relative position vectors riN . For
V̇ in Eq. (78) to not be zero with δaN 6= 0, the vector b cannot
remain orthogonal to both uc1 and uc2 . This implies that b cannot
remain orthogonal to the orbit plane described through uc1 and
uc2 , and thus b cannot remain orthogonal to any of the relative

position vectors riN which lie in this relative orbit plane. However,
while studying the rank([A]) = 1 case, it was shown that b cannot
remain orthogonal to the relative position vectors. Thus, we can
conclude that V̇ in Eq. (78) cannot remain zero unless δaN = 0.
Combining all rank cases of the matrix [A], we find that the charge
control law in Eq. (50) will indeed asymptotically stabilize the δaN

tracking errors for all rank cases of [A].

Numerical Simulation
A numerical simulation is used to illustrate the performance of

the saturated spacecraft charging control law in Eqs. (15) and (33).
The only orbit element being controlled here is the semi-major
axis. The control attempts to set all osculating semi-major axes to
equal values. The structured control strategy is to find the satellite
with the worst semi-major axis tracking error (controlled satellite
labeled N ) and use the remaining satellites to correct this error
(non-controlled satellites). If the tracking error of another satellite
increases enough to become the largest tracking error of the forma-
tion, then this satellite becomes the controlled satellite. Note that
no stability guarantees have been provided for this simple switch-
ing strategy. However, the following numerical illustration does
illustrate that it can be used to control the semi-major axis errors
of a 3 spacecraft formation, and not just control the tracking error
of a single satellite within this formation. To avoid excessive chat-
tering through switching between two satellites with nearly equal
tracking errors, a minimum wait time of 60 seconds is introduced
before the controlled satellite label is switched.

The CSF consists of three satellites. The initial Keplerian ele-
ments and the masses of the satellites are shown in Table 1. The
highly elliptic orbits have an apoapses radius of about 10 Earth
radii, while the periapses radius is about 3.3 Earth radii. Highly
elliptical missions are envisioned to study the tail of Earth’s mag-
netosphere. A cluster of Coulomb spacecraft could provide local
gradient measurements. Note that while typical cluster or forma-
tion concepts contain craft of similar build, this simulation assumes
the craft have widely differing masses to illustrate the stability of
the control in this situation. Note the different semi-major axes of
each satellite. Even these small differences would cause the un-
controlled satellites to drift apart by 100’s of meters per orbit.

The numerical simulation integrates the inertial differential
equations motion (Eq. (1)) of each craft including the J2–J5 grav-
itational effects. A Debye length value of λd = 1000 meters is
modeled. The satellite electrical charging is limited to magnitudes
less than qmax = 1µC. This is a rather small, conservative charge
limit. Because the current control strategy doesn’t avoid charg-
ing two non-controlled craft in close proximity, which could result
in these two craft strongly attracting or repelling each other, hav-
ing this lower saturation limit helps in avoiding the non-controlled
spacecraft bursting apart.

Figure 1 illustrates the resulting spacecraft charge time histories
and the semi-major axis tracking errors relative to the formation
center of mass motion (chief motion). The saturated charging con-
trol law is able to stabilize the semi-major axis tracking errors and
drives them to zero. Due to the J2–J5 perturbations, small track-
ing errors do occur and are periodically corrected by the spacecraft
charges. Numerical studies show that the space plasma Debye
length can have an effect on the convergence rate of the control
law, because the effectiveness of the Coulomb charge is reduced.
However, stability is still retained in the cases studied.

The three-dimensional relative motion of the various satellites
about the orbit position (formation barycenter position) is illus-
trated in Figure 2. In particular, Figure 2(a) shows how the relative
orbit will pull apart in the along-track direction due to the initial
semi-major axis differences if no control is applied. Within the
three orbit periods shown, the along-track relative motion has al-
ready grown to nearly 400 meters. In contrast, Figure 2(b) shows
the relative motion if the charging control is applied. Here the
semi-major axes become equal, which results in all orbits hav-
ing the same period, and the relative motions remain bounded over
time.

The stability proofs in this paper address the situation where
the tracking errors of a single satellite are controlled through
the Coulomb charges of the remaining satellites. The simulation
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Table 1 Satellite Simulation Data

Satellite 1 Satellite 2 Satellite 3 Units
semi-major axis a 42241.075 42241.089 42241.088 km
eccentricity e 0.500000 0.5000007 0.5000009
inclination i 48.00000 48.00000 48.00010 deg
ascending node Ω 20.00000 20.00005 19.99995 deg
argument of perigee ω 0.00000 0.00002 0.00000 deg
initial mean anomaly M0 20.00000 20.00000 20.00005 deg
mass m 150.000 50.000 110.000 kg
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Fig. 1 Control Charge and Tracking Error Results of the Numerical Simulation.

shown extends this control strategy to stabilize the semi-major
axis of all formation satellites through a switching structure. This
strategy appears to work reasonably with three satellites, but not
without issues as discussed earlier. Numerical simulations of for-
mations with more than 3 satellites often showed convergence
issues where the formation size grows so large that the electrical
charges no longer are effective in controlling the relative motion.
Refined structured control methods will need to be developed to
more robustly be able to stabilize the relative motion of larger satel-
lite clusters using only Coulomb forces.

Conclusions
A stabilizing spacecraft charging control law is investigated.

While previous work looked at correcting the orbit of one satellite
by electrically pushing and pulling on another satellite (2-satellite
formation with equal mass), this paper studies the more general
N -body formation with unequal masses and individual electrical
charging limits. Using an orbit element difference formulation
to describe and control the relative motion, global stability of the
charging control law is shown for both unsaturated and saturated
charging cases. The general version of the control can be applied
to controlling any set of orbit element differences relative to the
formation chief or center of mass motion. However, a special
case of this control is investigated further for convergence prop-
erties, where only the semi-major axes of the Coulomb satellites
are controlled. This control is able to bound the relative motion of

a satellite relative to the chief motion and cancel secular drift. To
control the semi-major axes of all the satellites in the formation, a
simple structured control approach is investigated. Here only the
satellite with the worst tracking error is corrected, and the remain-
ing satellites are used to achieve this. All stability claims shown are
only valid for controlling the relative motion of the satellite with
the worst tracking errors. No stability claims are provided for the
other satellites. Numerical simulations show that this strategy can
function to bound the relative motion of a three-satellite formation
using only Coulomb charges as the control mechanism. However,
to control a larger formation, a more sophisticated structured con-
trol approach would be needed.
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