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ADAPTIVE CONTROL OF NONLINEAR ATTITUDE MOTIONS
REALIZING LINEAR CLOSED LOOP DYNAMICS

Hanspeter Schaub∗, Maruthi R. Akella† and John L. Junkins‡

An adaptive attitude control law is presented to realize linear closed loop dynamics in the attitude
error vector. The Modified Rodrigues Parameters (MRPs) are used as the kinematic variables since
they are nonsingular for all possible rotations. The desired linear closed loop dynamics can be of
either PD or PID form. Only a crude estimate of the moment of inertia matrix is assumed to be
known. An open loop nonlinear control law is presented which yields linear closed loop dynamics
in terms of the MRPs. An adaptive control law is then developed which enforces these desired
linear closed loop dynamics in the presence of large inertia and external disturbance model errors.
Since the unforced closed loop dynamics are nominally linear, standard linear control methodologies,
such as pole placement, can be employed to satisfy design requirements such as control bandwidth.
The adaptive control law is shown to track the desired linear performance asymptotically without
requiring apriori knowledge of either the inertia matrix or external disturbance.

Introduction
While the traditional approach to attitude control is based

on linear control theory, recent efforts by several authors
indicate a shift towards nonlinear control methods. For
example, Wie et. al. in References 1 and 2 develop the
rotational equations of motion using the redundant set of
Euler parameters. In contrast, Dwyer outlines in Refer-
ences 3 and 4 an approach based on a minimal set of three
Euler parameters wherein a nonlinear transformation maps
the complete equations of motion into a locally valid linear
model which may encounter singular attitudes. The work
of Slotine and Li based on Euler angles also has the same
limitation.5

To overcome the problem of singular orientations while
using a minimal set of three rigid body attitude coordinates,
more recently the Modified Rodrigues parameters (MRPs)
have been proposed as an attractive set of coordinates for at-
titude motions which are nonsingular for all possible ±360◦

rotations.6–9 Any orientation can be described through two
numerically distinct sets of MRPs which abide by the same
differential kinematic equation. By switching between the
original and alternate set (also referred to as the shadow
set) of MRPs it is possible to achieve a globally nonsingular
attitude parameterization.6,8 Another very attractive prop-
erty of MRPs is in tracking rotations where we are virtually
assured of always remaining within the linear range with
these coordinates.10,11

Given all these advantages, there have been several recent
attitude control applications employing MRPs as the rota-
tional kinematic variables.12–15 In all these efforts and other
approaches by Meyer16,17 and Slotine and Li5 the control
law is based on a stability analysis driven by an associated
Lyapunov function. While such attitude feedback control
laws can be found by first defining a candidate Lyapunov
function and then extracting the corresponding stabilizing
nonlinear control, certain very important concepts from lin-
ear control theory, such as closed-loop damping and band-
width, are not very well defined, since the corresponding
closed loop dynamics are generally nonlinear. To achieve
a desired closed loop behavior, the closed loop dynamics
are linearized about a reference motion in order to use lin-
ear control theory techniques to pick the feedback gains.
Depending on the nonlinearity of the exact closed loop equa-
tions of motion, the desired closed loop performance will
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only be achieved in a local neighborhood and not globally.
Instead of first finding a feedback control law and then

analyzing the closed loop dynamics stability, it is possi-
ble to start out instead with a desired (or prescribed) set
of stable closed-loop dynamics and then extract the cor-
responding nonlinear control law using a variation of the
“inverse dynamics” approach common in robotics path plan-
ning problems. For example, the closed loop dynamics could
be a stable linear differential equation. This technique is
very general and can be applied to a multitude of systems.
However, depending on the nonlinearity of the dynamical
system, the such extracted nonlinear control laws can be
potentially very complex. Paielli and Bach18 present such
an attitude control law derived in terms of the Euler param-
eter components which is remarkably simple. Compared to
standard Lyapunov function derived attitude control laws,
their control law expression is only slightly more complex.
Further, Paielli and Bach illustrate that this type of control
law is rather robust for attitude control problems. However,
this control law feeds back the Gibbs vector7 as an attitude
measure which is singular at ±180 degree rotations about
any axis. To alleviate this problem, we develop a control
law based on the MRP vector which achieves the desired
set of stable closed-loop trajectories without encountering
singular orientations. This paper also addresses the issue
of uncertainty in the moment of inertia matrix. While the
open loop attitude control law is robust with respect to in-
ertia uncertainties, the closed loop dynamics will no longer
exhibit the desired performance if the incorrect inertia ma-
trix is used in the feedback control law. The inertia matrix
is assumed to be essentially unknown in this development,
yet the feedback control law should still produce the desired
closed loop dynamics. To accomplish this task, time-varying
update laws for the feedback gain matrices are developed
that learn the dynamics of the system adaptively. While
classical adaptive control theory due to Narendra (Ref. 19)
and Sastry (Ref. 20) has also been employed in attitude
control problems previously,1,13,21,22 the present approach
is unique in that sense that it explicitly enables linear closed-
loop dynamics to be chosen and motivated by useful physical
concepts such as damping ratio and loop bandwidth.

The paper first develops all the theory necessary to de-
velop the inverse dynamics approach to obtaining stable
closed-loop rigid body dynamics. In particular, the MRPs
are chosen as the attitude parameters. An adaptive control
law is presented which includes an integral feedback term
in the desired closed loop dynamics and achieves asymp-
totic stability even in the presence of unmodeled external
disturbances. These results are illustrated through various
numerical simulations.

Linear Closed-Loop Dynamics
The modified Rodrigues Parameter vector σ is adopted as

a rigid body attitude measure relative to the target attitude.
Note that the vector σ contains information about both
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the principal rotation axis ê and principal rotation angle Φ,
since they are related through

σ = ê tan
Φ

4
(1)

Therefore, if σ → 0, then the orientation has returned back
to the origin. As a complete revolution is performed (i.e.
Φ →360 degrees), this particular MRP set goes singular.
As is shown in References 6 and 8, it is possible to map the
original MRP vector σ to its corresponding shadow coun-
terpart σS through

σS = − 1

σ2
σ (2)

where the notation σ2 = σT σ is used. By choosing to
switch the MRPs whenever σ2 > 1, the MRP vector re-
mains bounded within a unit sphere. Switching when the
σ2 = 1 surface is penetrated also results in the correspond-
ing MRPs always indicating the shortest rotational distance
back to the origin.6,11

Let’s assume that we desire the closed loop dynamics to
have the following prescribed linear form

σ̈ + P σ̇ + Kσ = 0 (3)

where P and K are the positive scalar velocity and position
feedback gains. Observe that both P and K could be chosen
to be symmetric, positive definite matrices. However, do-
ing so greatly complicates the resulting algebra. Note that
this differential equation only contains kinematic quantities
and no system properties such as inertia terms are present.
Linear control theory states that, for any initial σ and σ̇
vectors, the resulting motion is asymptotically stable. If de-
sired, one could also easily add an integral feedback term to
the desired closed loop equations and still retain asymptotic
stability.

σ̈ + P σ̇ + Kσ + Ki

Z t

0

σdt = 0 (4)

Note that instead of the MRP vector σ, any attitude or
position vector could have been used. In particular, in Ref-
erence 18, Paielli and Bach chose to express their linear
closed loop equations in terms of the vector components of
the Euler parameters.

Let the vector u be an external control torque vector
which is applied to a rigid body with the inertia matrix [I].
The vector Fe is the unmodeled torque vector due to such
influences as atmospheric or solar drag or bearing friction.
The vector ω is the body angular velocity vector. Euler’s
rotational equations of motion state that

[I]ω̇ + [ω̃][I]ω = u + Fe (5)

where the tilde matrix [ω̃] is the vector cross product oper-
ator defined as

[ω̃] =

"
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

#
(6)

It is desired to find a nonlinear control law u that will ren-
der the closed loop dynamics to be of the stable form in
Eq. (3) or (4), assuming the system inertia matrix is per-
fectly known. To achieve this, we treat the body angular
acceleration vector ω̇ as the control variable in the follow-
ing development. Once the necessary vector ω̇ is found,
then the physical control torque is found through Eq. (5).
To extract ω̇ from either Eq. (3) or (4), all velocities and ac-
celerations in these closed loop equations must be expressed
in terms of the body angular velocity vector. Assume the

target attitude is stationary, the MRP kinematic differential
equations are6–9

σ̇ =
1

4
[B(σ)]ω (7)

where the matrix [B] = [B(σ)] is conveniently expressed
as6,7

[B] =
h“

1− σT σ
”

I3×3 + 2 [σ̃] + 2σσT
i

(8)

with the skew-symmetric matrix operator being defined in
Eq. (6). Differentiating the MRP kinematic differential
equation in Eq. (7) we find

σ̈ =
1

4
[B]ω̇ +

1

4
[Ḃ]ω (9)

Substituting Eqs. (7) and (9) into the desired linear closed
loop dynamics in Eq. (3), the following constraint condition
is found.

σ̈ + P σ̇ + Kσ = 0 =

1

4
[B]
h
ω̇ + Pω + [B]−1

“
[Ḃ]ω + 4Kσ

”i
(10)

The following algebra is greatly simplified by making use
of the explicit expression of the matrix inverse of [B] given
by11

[B]−1 =
1

(1 + σ2)2
[B]T (11)

This expression is readily verified by using it to confirm that
[B]−1[B] = I3×3. Since for |σ| ≤ 1 the matrix [B] is always
invertible, from Eq. (10), the following expression must be
true.

ω̇ + Pω + [B]−1
“
[Ḃ]ω + 4Kσ

”
= 0 (12)

Eq. (12) yields the necessary ω̇ term to calculate the actual
torque vector u in Eq. (5). The vector ω̇ is written as

ω̇ = −Pω − [B]−1
“
[Ḃ]ω + 4Kσ

”
= φ (13)

where the expression of the right hand side of Eq. (13) is set
equal to the new state vector φ. Using the vector product
definition of the [B] matrix in Eq. (8), the product [Ḃ]ω is
expressed as

[Ḃ]ω = σT ω
`
1− σ2´ω −

`
1 + σ2´ ω2

2
σ

−2σT ω[ω̃]σ + 2
“
σT ω

”2
σ (14)

where the shorthand notation ω2 = ωT ω is used. The ex-
pression in Eq. (14) is obtained after considerable algebraic
manipulations using the identities [ã]a = 0 and

[ã][ã] = aaT − aT aI3×3, any a ∈ R3 (15)

Using this [Ḃ]ω expression and Eq. (11) together, we obtain
the following

[B]−1
“
[Ḃ]ω + 4Kσ

”
=»

ωωT +

„
4K

1 + σ2
− ω2

2

«
I3×3

–
σ (16)

Making use of this result in Eq. (13), the vector φ is finally
given by the elegantly simple expression

φ = −Pω −
»
ωωT +

„
4K

1 + σ2
− ω2

2

«
I3×3

–
σ (17)
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Therefore the desired Linear Closed Loop Dynamics
(LCLD) in Eq. (3) can be rewritten as

σ̈ + P σ̇ + Kσ =
1

4
[B] (ω̇ − φ) = 0 (18)

Substituting ω̇ = φ into Euler’s rotational equations of mo-
tion in Eq. (5) yields the required nonlinear feedback control
law vector u.

u = [ω̃][I]ω + [I]φ− Fe (19)

We remark that these developments are parallel to those in
Reference 18 where the three vector components of the Euler
parameters are used instead of the MRP vector used in this
paper. However, it can easily be seen that the singularity at
±180 degrees is removed by using the MRP vector. It will
also be recognized that this control law contains the inertia
matrix [I] linearly. When the inertia matrix is unknown, we
cannot directly implement Eq. (19). In the following section,
we develop an adaptive controller for such situations.

An attractive component of this methodology when deal-
ing with known system parameters is that the structure of
the closed loop equations can easily be modified using stan-
dard linear control theory techniques by appropriate choice
of the constants P and K. If it is necessary that the feedback
control reject external disturbances, an integral measure of
the attitude error is added to the closed loop equations as
shown in Eq. (4). Following similar steps as were done
previously in this section, the linearizing body angular ac-
celeration vector ω̇ = φ for closed loop dynamics with an
attitude integral measure are written as

φ = −Pω −
»
ωωT +

„
4K

1 + σ2
− ω2

2

«
I3×3

–
σ

−4Ki [B]−1

Z t

0

σdt (20)

For this choice of φ, the corresponding physical control vec-
tor u is of the same form as shown in Eq. (19).

Adaptive Control Formulation
While the vector φ is a kinematic quantity depending

only on the state vectors σ and ω, to compute the proper
linearizing control vector u, the system inertia matrix [I]
and the external torque vector Fe must be known precisely.
In the following development it is assumed that only very
crude estimates of the inertia matrix and external torque
vector are known. In this case the vector φ is no longer
equal to ω̇ and the actual closed loop dynamics will not be
linear.

The following adaptive control law requires that the un-
known states appear linearly in the control formulation.
Therefore we rewrite Eq. (19) as

u = [L∗]g + [M∗]φ− F ∗
e (21)

where the matrices [L∗] and [M∗] are defined as

[L1] =

"
0 I23 −I23

−I13 0 I13

I12 −I12 0

#
(22)

[L2] =

"
I13 I33 − I22 −I12

−I23 I12 I11 − I33

I22 − I11 −I13 I23

#
(23)

[L∗] ≡

"
L1

... L2

#
, [M∗] ≡ [I] (24)

the vector F ∗
e is the true external torque vector and the 6×1

vector g is defined as

g ≡
ˆ
ω2

1 ω2
2 ω2

3 ω1ω2 ω2ω3 ω3ω1

˜T
(25)

The control vector expression in Eq. (21) is rewritten by
introducing the 3× 10 matrix [Q∗]

[Q∗] = [L∗
... M∗ ... F ∗

e ] (26)

and the 10× 1 state vector x

x =

"
g
φ
−1

#
(27)

into the compact form

u = [Q∗]x (28)

Note that Eq. (28) still assumes that all plant parameters
are perfectly known. From here on we assume that the in-
ertia matrix and the external torque vector are not known
precisely. The actual control vector u which is implemented
is then given by

u = [Q(t)]x (29)

where [Q(t)] = [L(t)
... M(t)

... Fe(t)] contains the time vary-
ing adaptive estimates of the unknown system parameters.
The difference between the adaptive estimates and true sys-
tem parameters is expressed through the matrix [Q̃] as

[Q̃] ≡ [Q(t)]− [Q∗] (30)

Assume that the desired LCLD are to be of the linear PID
form given in Eq. (4), then the actual closed loop dynamics,
due to the imperfect control vector u in Eq. (29), are found
to be

σ̈ + P σ̇ + Kσ + Ki

Z t

0

σdt =
1

4
[B] (ω̇ − φ)

=
1

4
[B][I]−1 (−[L∗]g + u + F ∗

e − [M∗]φ)

=
1

4
[B][I]−1 ([Q(t)]x− [Q∗]x)

=
1

4
[B][I]−1[Q̃]x (31)

A key feature of this method is that the desired LCLD do
not depend on the unknown inertia matrix. This makes it
possible to design a desired performance without any knowl-
edge of the actual system parameters.

The goal of the following adaptive control law is to find
learning laws for the inertia matrix quantities [L] and [M ],
and if necessary for the external torque vector Fe, such that
the actual closed loop dynamics asymptotically approaches
the desired linear form. The main advantage of this control
law is that standard linear feedback gain techniques can be
employed to find appropriate feedback gains P , K and Ki

that meet system requirements such as control bandwidth
and performance. These quantities are typically difficult
to enforce with general nonlinear control laws. With the
adaptation superimposed on the linearizing control law, we
will be guaranteed that the desired closed loop performance
is achieved asymptotically, even in the presence of severe
system parameter ignorance.

Let the vector σr be the solution of the differential equa-
tion

σ̈r + P σ̇r + Kσr + Ki

Z t

0

σrdt = 0 (32)

where σr(t0) = σ(t0) and σ̇r(t0) = σ̇(t0). Thus the trajec-
tory σr(t) represents the desired closed loop performance.
Any deviations from this performance are assumed to be
due system model errors [Q̃]. Let the augmented 9×1 state
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vector ε express the difference between the actual states and
the reference states.

ε =

0@R t

0
(σ − σr)dt
σ − σr

σ̇ − σ̇r

1A (33)

Using Eq. (31) and (32), note that ε̇ is given by

ε̇ =

"
0 I3×3 0
0 0 I3×3

−KiI3×3 −KI3×3 −PI3×3

#
| {z }

[A]

ε +

 
0
0
ξ

!
| {z }

b

(34)

with the vector ξ being defined as

ξ =
1

4
[B][I]−1[Q̃]x (35)

We then define the following positive definite Lyapunov
function V around the desired reference performance.

V = εT [S]ε + tr
“
[Q̃]T [Γ][Q̃][γ]−1

”
(36)

where [S] and [Γ] are yet to be determined positive definite
gain matrices and [γ] is a diagonal matrix containing the
various learning rates γi. Note that the trace operator in
Eq. (36) can be written as

tr
“
[Q̃]T [Γ][Q̃][γ]−1

”
=

10X
i=1

1

γi

0@Q̃1i

Q̃2i

Q̃3i

1AT[Γ]

0@Q̃1i

Q̃2i

Q̃3i

1A (37)

which is clearly a positive definite function in [Q̃]. Taking
the derivative of Eq. (36) and using Eq. (34) we find

V̇ = εT
“
[S][A] + [A]T [S]

”
ε + 2εT [S]b

+ 2tr
“
[Q̃]T [Γ][ ˙̃Q][γ]−1

”
(38)

By partitioning the 9 × 9 matrix [S] into three 9 × 3 sub-
matrices [Si]

[S] =

"
S1

... S2

... S3

#
(39)

the Lyapunov rate V̇ is rewritten as

V̇ = εT
“
[S][A] + [A]T [S]

”
ε + 2εT [S3]ξ

+ 2tr
“
[Q̃]T [Γ][ ˙̃Q][γ]−1

”
(40)

Since [A] is a stable matrix, Lyapunov’s stability theorem
for linear systems states that for any symmetric, positive
definite matrix [R], we are guaranteed that there exists a
corresponding symmetric, positive definite matrix [S] such
that23

[S][A] + [A]T [S] = −[R] (41)

Therefore, we can pick [R] and numerically solve for a cor-
responding positive definite matrix [S] for a given stable

matrix [A]. Using Eqs. (35) and (41), the Lyapunov rate V̇
is reduced to

V̇ = −εT [R]ε + 2εT [S3]
1

4
[B][I]−1[Q̃]x

+ 2tr
“
[Q̃]T [Γ][ ˙̃Q][γ]−1

”
(42)

Using several matrix identities listed in Ref. 24, it can be
shown that

1

4
εT [S3][B][I]−1[Q̃]x

=
1

4
tr
“
xT [Q̃]T [I]−1[B]T [S3]

T ε
”

=
1

4
tr
“
[Q̃]T [I]−1[B]T [S3]

T εxT
”

(43)

Using Eq. (43), the Lyapunov rate is expressed as

V̇ = −εT [R]ε +

2tr

„
[Q̃]T

„
1

4
[I]−1[B]T [S3]εx + [Γ][ ˙̃Q][γ]−1

««
(44)

Assuming that the true external torque vector F ∗
e is con-

stant, then

[ ˙̃Q] = [Q̇]− [Q̇∗] = [Q̇] (45)

Studying Eq. (44), it is evident that if we set the system

parameter learning rate [Q̇] to be

[Q̇] = −1

4
[Γ]−1[I]−1[B]T [S3]εx

T [γ] (46)

the Lyapunov rate function is guaranteed to be of the neg-
ative definite form

V̇ = −εT [R]ε (47)

Since V̇ in Eq. (47) is negative definite in the state vector
ε, this performance error vector will decay to zero asymp-
totically. The adaptive system parameter estimate errors
[L̃], [M̃ ] and F̃e are stable. Since the reference motion
σr(t) is globally, asymptotically stable, having ε → 0 im-
plies that the actual closed loop dynamics are also globally,
asymptotically stable. Note however that Eq. (46) cannot
be implemented directly, since it explicitly depends on the
unknown true inertia matrix [I]. This problem is circum-
vented by setting [Γ] = [I]−1. Using this specific [Γ] matrix
in the analysis, the final system parameter learning law is
given by the compact expression

[Q̇] = −1

4
[B]T [S3]εx

T [γ] (48)

While the inertia matrix adaptive estimate errors [L̃] and

[M̃ ] won’t necessary go to zero, the adaptive external dis-

turbance estimate F̃e will go to zero if the true external
disturbance F ∗

e is constant. Since the overall system is sta-
ble, it will come to rest at some steady-state values. At
steady-state, the control vector uss would need to precisely
cancel the true, constant external disturbance F ∗

e .

uss = [Lss]gss + [Mss]φss − Fess = −F ∗
e (49)

This can be rewritten as

[Lss]gss + [Mss]φss = F̃ess (50)

Both σ and σ̇ are zero at steady state, which implies that
gss is also zero. Since σr and its derivatives go to zero,
then according to Eq. (32) so does the term

R t

0
σrdt. Since

ε → 0, this implies that
R t

0
σdt → 0. Studying Eq. (20) it

is then clear that φss is also zero. Therefore, according to
Eq. (50), the adaptive external disturbance estimate error is
guaranteed to go to zero. It is quite remarkable that the rela-
tively simple adaptive learning law in Eq. (48) results in the
desired LCLD and the external disturbance being tracked
asymptotically without any apriori knowledge of either the
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system inertia matrix or the disturbances themselves. One
reason for this is that the desired LCLD is written as a kine-
matic expression which does not explicitly depend on any
system parameters.

As a practical matter, of course F ∗
e need not be constant

to obtain good tracking performance. If F ∗
e is large and

rapidly varying, some tuning may be required to find prac-
tical values for [γ], P , K and Ki.

Numerical Simulations
A rigid spacecraft with an initial non-zero attitude and

body angular velocity vector is to be brought to rest at a
zero attitude vector. The desired LCLD are to be of the
PID form shown in Eq. (4) in the presence of large igno-
rance in the inertia matrix and external disturbance model.
The simulation parameters are given in Table 1. The ini-
tial [L(t0)] matrix is constructed out of the corresponding
[M(t0)] matrix elements using Eqs. (22) through (24).

Table 1 Numerical Simulation Parameters

Parameter Value Units
σ(t0) [−0.3 − 0.4 0.2]
ω(t0) [0.2 0.2 0.2] rad/s

[I]

"
30 10 5
10 20 3
5 3 15

#
kg-m2

[M(t0)]

"
5 0 0
0 5 0
0 0 5

#
kg-m2

Ki 0.090 sec−3

K 1.0 sec−2

P 3.0 sec−1

γi 100
γFe = γ10 5

F ∗
e [2 1 − 1] N-m

Fe(t0) [0 0 0] N-m

The scalar learning rates γi are all equal with the excep-
tion of γFe = γ10, which is set to demand a slower external
disturbance learning rate than the other γi. The positive
definite [R] matrix is chosen to be a block-diagonal matrix
of the form

[R] =

"
I3×3 03×3 03×3

03×3 100 I3×3 03×3

03×3 03×3 100 I3×3

#
(51)

Solving the algebraic Lyapunov equation in Eq. (41) and
extracting the third block column matrix, the matrix [S3] is
found to be

[S3] =

"
0.055555 I3×3

0.702749 I3×3

0.400916 I3×3

#
(52)

The resulting simulation is illustrated in Figure 1. The
MRP attitude vector components σi are shown in Fig-
ure 1(a). Without any adaptation, the open loop control
is still asymptotically stable. However, the transient atti-
tude errors don’t match those of the desired LCLD well at
all. With adaptation turned on, the performance matches
that of the ideal LCLD very closely.

Figure 1(b) shows the magnitude of the MRP attitude
Error vector σ on a logarithmic scale. Again the large tran-
sient errors of the open loop, adaptation-free control law
are visible during the first 20 seconds of the maneuver along
with the good final convergence characteristics. The ideal
LCLD performance is indicated again through the dotted
line. Two versions of the adaptive control law are compared
here which differ only by whether or not the external dis-
turbance is adaptively estimated too. On this figure both
adaptive laws appear to enforce the desired LCLD very well

for the first 40 seconds of the maneuver. After this the adap-
tive law without disturbance learning starts to decay at a
slower rate, slower even than the open loop solution. Includ-
ing the external disturbance adaptation clearly improves the
final convergence rate. Note however that neither adap-
tive case starts to deviate from the ideal LCLD case until
the MRP attitude error magnitude has decayed to roughly
10−3. Using Eq. (1), this corresponds to having a principal
rotation error of roughly 0.23 degrees. With external dis-
turbance adaptation, the tracking error at which the LCLD
deviations appear is about two orders of magnitude smaller.

The performance of the adaptive control law can be
greatly varied by choosing different learning rates. However,
since large initial inertia matrix and external disturbance
model errors are present, the adaptive learning rates were
reduced to avoid radical transient torques. The control
torque vector components ui for various cases are shown
in Figure 1(c). The open loop torques don’t approach the
ideal LCLD torque during the transient part of the maneu-
ver. The torques required by either adaptive case are very
similar. The difference is that the case with external dis-
turbance learning is causing some extra oscillation of the
control about the LCLD case. However, note that with the
chosen adaptive learning rates neither control law exhibits
any radical transient torques about the ideal LCLD torque
profile. Figure 1(d) illustrates that the adaptive external
disturbance estimate Fe indeed asymptotically approaches
the true external disturbance F ∗

e . By reducing the external
disturbance adaptive learning rate γFe the transient adap-
tive estimate errors are kept within a reasonable range.

The purpose of the adaptive control is to enforce the
desired LCLD. The previous figures illustrate that the re-
sulting overall system remains asymptotically stable. Fig-
ure 1(e) illustrates the absolute performance error between
the actual motion σ(t) and the desired linear reference mo-
tion σr(t). This figure demonstrates again the large perfor-
mance error that results from using the open loop control
law with the incorrect system model. Adding adaptation
improves the transient performance tracking by up to two
orders of magnitude. Without including the external dis-
turbance learning, the final performance error decay rate
flattens out. This error will decay to zero. However, with
the given learning gains, it does so at a slower rate than if
no adaptation is taking place. Adding the external distur-
bance learning greatly improves the final performance error
decay since the system is obtaining an accurate model of
the actual constant disturbance. If the initial model esti-
mates were more accurate, then more aggressive adaptive
learning rates could be used, resulting in even better LCLD
performance tracking. This simulation illustrates though
that even in the presence of large system uncertainty it is
possible to track the desired LCLD very well.

Figure 1(f) shows the absolute performance error in at-
titude rates. Both cases with adaptation added show large
reductions in attitude rate errors compared to the the non-
adaptive case.

Conclusion
The open loop control laws presented in terms of the MRP

vector σ allows for the closed loop dynamics to achieve any
desired linear form. Choosing the MRPs as attitude param-
eters results in a formulation which is globally non-singular.
This greatly simplifies the process of finding proper feedback
gains P and K which match various performance require-
ments. To achieve a desired LCLD if modeling errors are
present, the open loop law is augmented with an adaptive
learning law. For the regulator problem discussed in this
paper, this adaptive control tracks the desired LCLD asymp-
totically and is able to learn a constant external disturbance
perfectly. A key feature of this adaptive control law is that
it does not require any previous knowledge of the rigid body
inertias or the external disturbance. This is direct result of
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0 20 40 60 80 100

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

time [s]

 No Adaptation

 Adaptation without

.              Disturbance Learning

 Adaptation with

.              Disturbance Learning

f) Performance Error |σ̇ − σ̇r|

Fig. 1 Rigid Body Stabilization While Enforcing LCLD in the Presence of Large Inertia and External Disturbance
Ignorance

using a kinematic differential equation as the desired closed
loop dynamics.
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