
Adaptive Realization of Linear Closed
Loop Tracking Dynamics in the

Presence of Large System Model
Errors

Hanspeter Schaub , Maruthi R. Akella and John L. Junkins

Simulated Reprint from

Journal of the Astronautical Sciences
Vol. 48, No. 4, Oct.–Dec., 2000, Pages 537–551

A publication of the
American Astronautical Society
AAS Publications Office
P.O. Box 28130
San Diego, CA 92198



Journal of the Astronautical Sciences Vol. 48, No. 4, Oct.–Dec., 2000, Pages 537–551

Adaptive Realization of Linear Closed
Loop Tracking Dynamics in the

Presence of Large System Model
Errors

Hanspeter Schaub∗, Maruthi R. Akella† and John L. Junkins‡

Abstract

A novel adaptive feedback control approach for nonlinear mechanical systems is presented. The
approach applies to nonlinear trajectory tracking and has the remarkable property that the tracking
error dynamics asymptotically approach a specified linear PID response for the case where the
external disturbances are constant. The methodology applies to a large class of nonlinear mechanical
systems, however, it is illustrated for the case of nonlinear rigid body maneuvers subject to actuator
saturation constraints and large uncertainty of the system mass and inertia properties. While the
system mass or inertias are not identified in this approach, the external disturbances are accurately
estimated if they are constant or slowly varying with respect to the adaptation rate. A benefit of
this method is that it requires no apriori knowledge of the unknown system parameters or bounds
thereof.

Introduction

Linear control theory has been studied extensively. One of its major advantages is that
it provides several methods to design feedback gains that satisfy system requirements such
as overall performance and control bandwidth are satisfied. However, since most dynamical
systems are nonlinear in the large, the linear closed loop performance is only valid for finite
neighborhoods about which the states were linearized. For large, nonlinear motions this
linear control often looses its performance and stability characteristics.

Nonlinear control theory ideally allows for global stability claims to be made for a class
of systems including the actual nonlinear system, not only the locally valid linear model.
However, enforcing requirements such as system performance and control bandwidth are
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typically difficult to achieve, especially during the entire nonlinear motion. Also, modeling
errors and disturbances require compensation and complicate the discussion of actual closed-
loop performance.

This paper presents an adaptive parameter update law which is superimposed on a non-
linear, feedback linearizing control law. The goal is to guarantee asymptotic stability of
the overall system while forcing the actual closed-loop dynamics to be of a desired PID
form. This allows for standard linear design techniques to be employed when selecting
the feedback gains, while actually asymptotically approaching the desired closed-loop error
dynamics even in the presence of large system parameter uncertainty.

Several adaptive methods have been developed to control systems with unknown parame-
ters.1–7 However, many of these adaptive update laws require some a priori knowledge of the
unknown parameters. The adaptive control law in this paper requires no such knowledge.
The reason for this is that the desired closed-loop dynamics are chosen to be of a kinematic
form devoid of any system parameters such as mass or inertias. Also, while many tradi-
tional adaptive laws guarantee overall stability, they do not guarantee a specific closed-loop
performance. The underlying nonlinear feedback control law used in this study is inherently
very robust with regards to parameter uncertainties as has been shown in Ref. 8 and 9. It
achieves asymptotic tracking of a reference motion even with very crudely known mass and
inertia matrix. The presented adaptive law builds on this robust feedback law to enforce
the desired closed-loop performance without losing overall stability claims.

Schaub et. al. presented the first version of this update law in Ref. 9 where a simple
attitude regulator problem is studied. This paper expands that study to encompass the tra-
jectory tracking problem and the translational-rotational coupling effects. The translation
and rotation of a rigid body is controlled to follow a prescribed trajectory. The first section
develops the feedback linearizing control laws for the translational and rotational motion.
The rigid body rotation is described through the Modified Rodrigues Parameters (MRPs)
which allows for remarkable simplifications of the nonlinear feedback law while avoiding
the typical singularities associated with three-parameter attitude descriptions. The second
section outlines an adaptive update law which guarantees that the desired linear closed-loop
trajectory is tracked asymptotically. A Lypapunov function is used to guarantee that the
desired closed-loop motion is achieved.

Linear Closed-Loop Dynamics

This section presents feedback linearizing control laws which achieve the desired lin-
ear closed-loop dynamics if no modeling errors are present. In this ideal case, both the
translational and rotational control laws are determined that force a rigid body to track a
commanded reference trajectory asymptotically.

Translational Motion

Let the translational position of a body relative to an inertial reference frame be given
by the vector R. The commanded trajectory which the body is to follow is given by Rc(t)
for which the derivative Ṙc and R̈c are assumed to be given or obtained through direct
differentiation. The position tracking error r is then defined as

r = R−Rc (1)
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The translational equations of motion are given through Newton’s second law as

m∗R̈ = uT + F ∗
e (2)

where uT is the net control force vector acting on the body and m∗ and F ∗
e are the true

system mass and external disturbance force respectively. A general notation adopted here
is that all variables with a superscript “∗” are the true values of the unknown quantities,
while the corresponding variables without the asterix are the current adaptive estimates of
these quantities.

We desire the translational closed loop dynamics to be of the linear PID form

r̈ + PT ṙ + KT r + KTi

∫ t

0
rdt = 0 (3)

Notice that the scalar constants in Eq. (3) are simply control gains, no system parame-
ters appear in this equation. If this exact closed-loop response is achieved, then we are
able to employ linear control techniques to find appropriate gains that satisfy other system
constraints such as control bandwidth limitations. We will find, however, that the desired
dynamics of Eq. (3) can be asymptotically approached even in the presence of model un-
certainties. Using the r definition in Eq. (1), the translational PID condition in Eq. (3) is
rewritten as the following inertial acceleration constraint

R̈− (R̈c − PT ṙ −KT r −KTi

∫ t

0
rdt) = 0 (4)

Defining the commanded translational acceleration vector φT to be

φT = R̈c − PT ṙ −KT r −KTi

∫ t

0
rdt (5)

a sufficient condition for Eq. (3) to be satisfied is that

R̈ = φT (6)

Substituting Eqs. (5) and (6) into the translational equations of motion in Eq. (2), we
express the translational, feedback linearizing control vector u∗

T as

u∗
T = m∗φT − F ∗

e (7)

Note however that for the control law in Eq. (7) to be implemented exactly, perfect knowl-
edge of the system states m∗ and F ∗

e are required.

Rotational Motion

Let ω be the body angular velocity vector, then Euler’s rotational equations of motion
of a rigid body are given by

[I]ω̇ = −[ω̃][I]ω + uR + τ ∗
e +

N∑
i=1

[ρ̃i]Fi (8)
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where [I] is the inertia matrix, uR is the control torque vector and τ ∗
e is the true external

torque vector. The tilde matrix operator acts like the vector cross product and is defined
for any vector a ∈ <3 as

[ã] =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (9)

The vectors Fi are the individual force vectors produced by the various translation control
actuators. The vectors ρi are the corresponding moment arms between where Fi is applied
to the body and the body Center of Mass (CM). All the forces Fi must satisfy

N∑
i=1

Fi = uT (10)

The Modified Rodrigues Parameter (MRP) vector σ is adopted as a rigid body attitude
coordinate vector. To avoid singularities, a MRP vector σ is mapped to the corresponding
shadow vector σS through the transformation10,11

σS = − 1
σ2

σ (11)

where the notation σ2 = σT σ is used. By choosing to switch the MRPs whenever σ2 > 1,
the MRP vector remains bounded within a unit sphere. Switching, using Eq. (11), when
the σ2 = 1 surface is penetrated also results in the corresponding MRPs always measuring
the shortest rotational distance (less than π) back to the origin.11,12 The MRP kinematic
differential equations are10,11,13,14

σ̇ =
1
4
[B(σ)]ω (12)

where the matrix [B] = [B(σ)] is conveniently expressed as10,11

[B] =
[(

1− σT σ
)
I3×3 + 2 [σ̃] + 2σσT

]
(13)

with the skew-symmetric matrix [σ̃] being defined in the sense of Eq. (9). Note that the
inverse of [B] has the convenient and elegant algebraic expression12

[B]−1 =
1

(1 + σ2)2
[B]T (14)

To track a commanded rotation, various reference frames must be introduced. Let N be
the inertial frame and B be the body frame. The reference frame of the commanded rotation
is denoted by C. The MRP vectors σ, σc and s describe parametrically the following relative
frame orientations.

N σ−→ B ⇒ {b̂} = [BN(σ)]{n̂} (15a)

N σc−→ C ⇒ {ĉ} = [BN(σc)]{n̂} (15b)

C s−→ B ⇒ {b̂} = [BN(s)]{ĉ} (15c)
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The error vector δω between actual and commanded body angular velocities is given by
the vector expression

δω = ω − ωc (16)

Since angular velocity vectors typically have their components taken in their different ref-
erence frames, to compute the column matrix δω with B frame components, the direction
cosine matrix [BC] is used to map the C frame components of ωc into B frame components
with the following matrix equation.

δω = ω − [BC]ωc (17)

The kinematic differential equations of σc and s are then given by

σ̇c =
1
4
[B(σc)]ωc (18)

ṡ =
1
4
[B(s)]δω (19)

Let’s assume that we desire the closed loop dynamics to have the following prescribed
linear PID form

s̈ + PRṡ + KRs + KRi

∫ t

0
sdt = 0 (20)

where PR, KR and KRi are the positive scalar velocity, position and integral feedback
gains. Again, this differential equation only contains kinematic quantities and no system
properties such as inertias or external torques are present. Linear control theory states
that for any initial s and ṡ error vectors, the resulting motion is asymptotically stable
and the rigid body will track the commanded rotation asymptotically. The process of
finding the corresponding feedback control law that will yield closed loop dynamics of the
form in Eq. (20) has been shown by Schaub et. al. in Ref. 9 for the regulator case where
ωc = 0. The result in Ref. 9 is expanded here to incorporate the tracking problem and the
translational/rotational coupling. Eq. (20) is thus written as

s̈ + PRṡ + KRs + KRi

∫ t

0
sdt =

1
4
[B](ω̇ − φR) (21)

where the commanded rotational acceleration vector φR is expressed as

φR = [BC]ω̇c − [ω̃][BC]ωc − PRδω −
[
δωδωT +

(
4KR

1 + s2
− δω2

2

)
I3×3

]
s

− 4KRi[B]−1

∫ t

0
sdt (22)

To obtain Eq. (21), the MRP kinematic differential equation in Eq. (19) and its derivative
are substituted into Eq. (20). After performing some lengthy algebra and making use of
the identities in Eqs. (14) and (17), the right hand side of Eq. (21) is found.
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For Eq. (20) to be true, we must set ω̇ = φR. Using the rotational equations of motion
in Eq. (8) we find the true feedback linearizing control law u∗

R to be

u∗
R = [ω̃][I]ω + [I]φR − τ ∗

e −
N∑

i=1

[ρ̃i]Fi (23)

Since the inertia matrix, external torque vector and CM moment arms are later assumed
to be unknown quantities, we rewrite Eq. (23) so that these terms appear linearly as

u∗
R = [L∗]g + [M∗]φR − τ ∗

e −
N∑

i=1

[Ψ∗
i ]Fi (24)

where the matrices [L∗], [M∗] and [Ψ∗
i ] are defined as

[L1] =

 0 I23 −I23

−I13 0 I13

I12 −I12 0

 (25)

[L2] =

 I13 I33 − I22 −I12

−I23 I12 I11 − I33

I22 − I11 −I13 I23

 (26)

[L∗] ≡
[
L1

... L2

]
, [M∗] ≡ [I] (27)

[Ψ∗
i ] ≡ [ρ̃i] (28)

and the 6× 1 vector g is defined as

g ≡
[
ω2

1 ω2
2 ω2

3 ω1ω2 ω2ω3 ω3ω1

]T (29)

For the development of the adaptive update laws, it is convenient to write the control
torque expression in (24) in a more compact form as in Ref. 9. For this purpose, we introduce
the 3× (10 + 3N) matrix [Q∗]

[Q∗] = [L∗ ... M∗ ... τ ∗
e

... Ψ∗
1

... · · ·
... Ψ∗

N ] (30)

and the (10 + 3N)× 1 vector x

x =



g
φR

−1
−F1

...
−F2


(31)

The true feedback linearizing control torque u∗
R is now written compactly in the form

u∗
R = [Q∗]x (32)

Note that x is computed only from parameters which are assumed to be known, such as ω,
σ, Fi and the commanded trajectories.
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Adaptive Model Update Laws

While the commanded acceleration vectors φT and φR are kinematic quantities depending
only on the tracking error state vectors (s, δω) and (r, ṙ) respectively, to compute the proper
linearizing control vectors uT and uR exactly, the system parameters must be known exactly.
References 8 and 9 have shown that this type of feedback linearizing control is very robust
with respect to system parameter modeling errors. However, the transient closed loop
dynamics can differ drastically from what is prescribed.

The following development for adaptive control laws is split up again into translational
and rotational sections. Note that for this dynamical system, the rotational motion does
not affect the translational motion. However, the CM is assumed to be unknown and
translational motion may produce moments that affect the rotational motion.

Translational Parameter Update Laws

Since the true system mass and external force vector are unknown, we replace the trans-
lational control law in Eq. (7) with

uT = mφT − Fe (33)

where m(t) and Fe(t) are the respective adaptive estimates of the system mass and external
force vector. The next step is to derive adaptive update laws for m and Fe while guar-
anteeing that uT in Eq. (7) causes the rigid body to track the commanded motion Rc(t)
asymptotically and ensure that the actual closed-loop dynamics are of the linear PID form
shown in Eq. (3). The actual closed-loop dynamics will not satisfy exactly the desired form
in Eq. (3) since uT 6= u∗

T . Using Eqs. (2) and (33), the true closed-loop dynamics due to
the adaptive control law uT are given by

r̈ + PT ṙ + KT r + KTi

∫ t

0
rdt =

1
m∗

(
m̃φT − F̃e

)
(34)

where the estimation errors m̃ and F̃e are defined as

m̃ = m−m∗ (35)

F̃e = Fe − F ∗
e (36)

Let the reference vector rR(t) have the same initial conditions as r (i.e. rR(t0) = r(t0)
and ṙR(t0) = ṙ(t0)) and satisfy the differential equation

r̈R + PT ṙR + KT rR + KTi

∫ t

0
rRdt = 0 (37)

This vector rR(t) indicates what the actual position error vector r(t) should be at time t
if these errors were indeed decaying according to the PID equation in Eq. (3). To obtain
a measure of error of achieving this desired closed-loop performance, we define the 9 × 1
vector εT to be

εT =

∫ t
0 (r − rR)dt

r − rR

ṙ − ṙR

 (38)
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Using Eqs. (3), (34), (37) and (38), the differential equation of εT is expressed as

ε̇T =

 0 I3×3 0
0 0 I3×3

−KTiI3×3 −KT I3×3 −PT I3×3


︸ ︷︷ ︸

[AT ]

εT +

 0
0
ξT


︸ ︷︷ ︸

bT

(39)

with ξT defined as the closed-loop performance disturbance due to estimation errors.

ξT =
1

m∗ (m̃φT − F̃e) (40)

We use a Lyapunov function VT to derive the system update laws and guarantee overall
asymptotic stability. Let VT be defined as

VT = εT
T [T ]εT + ΓT

(
m̃2

γm
+

1
γFe

F̃ T
e F̃e

)
(41)

where the 9× 9 matrix [T ] is a symmetric, positive definite matrix and ΓT , γm and γFe are
positive scalar learning rates. Taking the derivative of VT we find

V̇T = εT
T ([AT ]T [T ] + [T ][AT ])εT + 2bT

T [T ]T εT + 2ΓT

(
m̃

γm

˙̃m +
1

γFe

F̃ T
e

˙̃F e

)
(42)

Assuming both the system mass m∗ and external force F ∗
e are constant, then ˙̃m = ṁ and

˙̃F e = Ḟe. More generally, if Fe is variable, then less tight stability results can be derived.
Furthermore, since [AT ] is a stable matrix, Lyapunov’s stability theorem for linear systems
states that for any symmetric, positive definite matrix [RT ], there exists a corresponding
symmetric, positive definite matrix [T ] such that the following algebraic Lyapunov function
is satisfied:15

[AT ]T [T ] + [T ][AT ] = −[RT ] (43)

Using these identities and by partitioning the 9× 9 matrix [T ] into three 9× 3 submatrices
[Ti]

[T ] =
[
T1

... T2
... T3

]
(44)

the Lyapunov rate V̇T is written as

V̇T = −εT
T [RT ]εT + 2

[
m̃

(
φT [T3]T εT

1
m∗ +

ΓT

γm
ṁ

)
+ F̃ T

e

(
ΓT

γFe

Ḟe − [T3]T εT
1

m∗

)]
(45)

By choosing ΓT = 1/m∗, we are able to obtain the following update laws which are inde-
pendent of the unknown true system mass m∗.

ṁ = −γmφT
T [T3]T εT (46)

Ḟe = γFe [T3]T εT (47)
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Using Eqs. (46) and (47), the Lyapunov rate is expressed simply as

V̇T = −εT
T [RT ]εT

T (48)

which is a negative definite quantity in terms of εT . Therefore the adaptive control law uT

given in Eq. (33) is asymptotically stabilizing with regards to εT and will force the true
closed-loop dynamics to asymptotically approach the desired PID form.

However, we note that the errors m̃ and F̃e are not present in V̇T . While the mass model
error m̃ will not necessarily go to zero, if R̈c → 0 and the external force F ∗

e is constant as
seen in the body frame, then the external force model error F̃e will go to zero. Since the
system is asymptotically stable, we know that εT → 0 and that some steady-state condition
will be achieved. At this steady-state, the control uTss must satisfy

uTss = mssφTss − Fess = −F ∗
e (49)

Since R̈c → 0, Eq. (5) shows that φTss → 0. This implies that Fess → F ∗
e and that the

external force vector is learned perfectly for this case. For slowly varying F ∗
e , as compared

to Ḟe in Eq. (47), we can expect the external disturbance model errors to remain small.

Rotational Parameter Update Laws

The goal of the following adaptive control law is to find learning laws for the inertia
matrix quantities [L] and [M ], and if necessary, for the external torque vector Fe and CM
moment arm [Ψi], such that the actual closed loop dynamics asymptotically approaches
the desired linear PID form. Since the true inertia matrix, external torque vector and CM
moment arms are unknown, we write the adaptive control torque vector uR as

uR = [Q]x (50)

where the adaptive system estimates [Q] are defined in Eq. (30). The following development
parallels the study done in Ref. 9 for the simpler regulator case without the coupling to
the translational motion. For the current case, the [Q] matrix is augmented by the various
[Ψi] submatrices. Since each [Ψi] actually only has to model a three-parameter vector ρi,
this method introduces a highly redundant set of parameter to model the CM moment
arms vectors. It is possible to reverse the CM moment arm cross product order in Eq. (23)
to read [F̃e]ρi and obtain a minimal parameterization of the CM moment arm. However,
having this matrix product order reversed prohibits the unknown true inertia matrix to be
canceled out of the adaptive update laws. Therefore this developed is performed with the
more redundant [Ψi] notation.

Defining the model error [Q̃] to be

[Q̃] = [Q]− [Q∗] (51)

the true closed-loop dynamics are given by9

s̈ + PRṡ + KRs + KRi

∫ t

0
sdt =

1
4
[B][I]−1[Q̃]x (52)

Let the vector sr be the solution of the differential equation

s̈r + PRṡr + KRsr + KRi

∫ t

0
srdt = 0 (53)
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where sr(t0) = s(t0) and ṡr(t0) = ṡ(t0). Thus the trajectory sr(t) represents the desired
PID closed loop performance. Any deviations from this performance are only due to system
model errors [Q̃]. Analogous to the translational case, let the augmented 9 × 1 vector εR

express the difference between the actual tracking errors and the reference tracking errors.

εR =

∫ t
0 (s− sr)dt

s− sr

ṡ− ṡr

 (54)

Using Eq. (52) and (53), note that the differential equation of εR is given by

ε̇R =

 0 I3×3 0
0 0 I3×3

−KRiI3×3 −KRI3×3 −PRI3×3


︸ ︷︷ ︸

[AR]

εR +

 0
0
ξR


︸ ︷︷ ︸

bR

(55)

with the vector ξR defined as

ξR =
1
4
[B][I]−1[Q̃]x (56)

Let us define the following positive definite Lyapunov function VR around the desired
reference performance sr(t).

VR = εT
R[S]εR + tr

(
[Q̃]T [ΓR][Q̃][γ]−1

)
(57)

where [S] and [ΓR] are positive definite learning rate matrices and [γ] is a diagonal matrix
containing the various learning rates γi. Taking the derivative of VR and using Eq. (55) we
find

V̇R = εT
R

(
[S][AR] + [AR]T [S]

)
εR + 2εT

R[S]bR + 2tr
(
[Q̃]T [Γ][ ˙̃Q][γ]−1

)
(58)

Since [AR] is a stable matrix, there exists a positive definite matrix [RR] such that

[S][AR] + [AR]T [S] = −[RR] (59)

By partitioning the 9× 9 matrix [S] into three 9× 3 sub-matrices [Si]

[S] =
[
S1

... S2
... S3

]
(60)

the Lyapunov rate V̇R is shown in Ref. 9 to be of the form

V̇R = −εT
R[RR]εR + 2tr

(
[Q̃]T

(
1
4
[I]−1[B]T [S3]εRx + [ΓR][ ˙̃Q][γ]−1

))
(61)

Assuming that the body frame components of the true external torque vector F ∗
e and the

CM moment arms [Ψ∗
i ] are constant, then

[ ˙̃Q] = [Q̇]− [Q̇∗] = [Q̇] (62)
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Choosing [ΓR] = [I]−1, Eq. (61) leads to the simple adaptive update law

[Q̇] = −1
4
[B]T [S3]T εxT [γ] (63)

Enforcing Eq. (63), the corresponding Lyapunov rate function V̇R reduces to

V̇R = −εT
R[RR]εR (64)

Since V̇ is Eq. (64) is negative definite in the tracking error vector εR, this closed-loop per-
formance error will decay to zero asymptotically. The adaptive system parameter estimate
errors [Q̃] are stable. Since the reference motion sr(t) is globally, asymptotically stable,
having ε → 0 implies that the actual closed loop dynamics are also globally, asymptotically
stable.

The inertia matrix adaptive estimate errors [L̃] and [M̃ ] won’t necessary go to zero. For
the simpler uncoupled regulator case in Ref. 9, the external torque vector τ ∗

e is learned
perfectly if it is a constant vector. This is no longer the case for this coupled tracking
problem.

Numerical Simulations

A rigid spacecraft with initial attitude, angular velocity and position errors is to track a
command translation Rc(t) and rotation σc(t). The desired closed-loop translational and
rotational dynamics are to be of the linear PID forms shown in Eqs. (3) and (20).

Since the transient adaptive controls may grow relatively large, the methodology devel-
oped in Ref. 16 is employed here to obtain an admissible control. Given a generic control
vector u and a corresponding vector of control saturation limits umax, the saturated control
torque vector is found through

usi =

{
ui for |ui| ≤ umaxi

umaxi · sign(ui) for |ui| > umaxi

(65)

To guarantee that the control vector errors remain within a bounded region, the control
error vector δmax is introduced. If |ui| − umaxi > δmaxi during periods of saturation, then
the corresponding i-th row of the control vector parameters are reset to zero. For example,
for the rotational control torque vector uR, this corresponds to zeroing the i-th row of the
[Q] matrix. For the translational torque this process cannot be directly implemented since
the scalar parameter m affects all three torque axis. In this case only the Fei components
are zeroed unless all three axis are saturated.

The numerical simulation parameters are given in Table 1. The initial [L(t0)] matrix is
constructed out of the corresponding [M(t0)] matrix elements using Eqs. (25) through (27).
The uT control vector is decomposed into three individual Fi vectors such that each Fi

contained the i-th body axis component of uT .
The positive definite matrices [RT ] and [RR] are both chosen to be 9×9 identity matrices.

Solving the algebraic Lyapunov equations in Eq. (43) and (59) and extracting the third block
column submatrices, the matrices [T3] and [S3] are found to be

[T3] = [S3] =

25.00000 I3×3

155.6914 I3×3

259.5690 I3×3

 (66)
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Table 1: Numerical Simulation Data

Parameter Value Units
R(t0) [2.0 − 2.0 1.0] m
Ṙ(t0) [0.5 0.5 − 1.0] m/s
Rc(t0) [0.0 0.0 0.0] m
Ṙc(t) [0.1 0.0 0.0] m/s
m∗ 30 kg

m(t0) 5 kg
KTi 0.002 sec−3

KT 0.1 sec−2

PT 0.6 sec−1

γm 0.5
γFe 0.03
F ∗

e [0.75 − 0.75 − 0.5] N
Fe(t0) [0.0 0.0 0.0] N
uTmax [2.0 2.0 2.0] N
δuT [15 15 15] N

σ(t0) [−0.3 − 0.4 0.2]
ω(t0) [0.2 0.2 0.2] rad/s
σc(t0) [0.0 0.0 0.0]
ωc(t) [0.20 0.01 0.03] rad/s

[I]

30 10 5
10 20 3
5 3 15

 kg-m2

[M(t0)]

5 0 0
0 5 0
0 0 5

 kg-m2

KRi 0.002 sec−3

KR 0.1 sec−2

PR 0.6 sec−1

γi 1000
γτe 0.05
γΨi 0.1
τ ∗

e [0.6 0.3 − 0.3] N-m
τe(t0) [0.0 0.0 0.0] N-m

ρ∗1 [0.5 0.1 − 0.1] m
ρ∗2 [−0.1 0.3 0.1] m
ρ∗3 [0.1 0.1 0.2] m

ρi(t0) [0.0 0.0 0.0] m
uRmax [1.5 1.5 1.5] N-m
δuR [30 30 30] N-m
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Figure 1: Translation Tracking Errors

The resulting simulation is illustrated in Figures 1 and 2. Figure 1 shows the relevant
translational states. The tracking error vector magnitudes for various cases are shown in
Figure 1(a). The ideal linear PID response is shown as a grey line. If the translational
feedback control law is used without any adaptive updates to the system models, then
the tracking error still decay to zero. This supports the inherent robustness of this type
of nonlinear feedback control law as was demonstrated in Ref. 8 and 9. However, the
more general performance doesn’t always resemble the desired PID system due to model
errors and disturbances. Activating the adaptive updates causes the performance to rapidly
approach the desired closed-loop dynamics. With the control bounds active the closed-loop
performance tracking degrades somewhat, but still provides very good asymptotic results.
This behavior is also illustrated in Figure 1(b) where the difference between r and rR is
plotted on a logarithmic scale. As expected, the performance error clearly degrades when
control saturation is added. However, it remains substantially better then the non-adaptive
case.

Figure 1(c) permits the comparison of the ideal control vector u∗
T and uT without adap-

tation active. The ideal control actually requires a rather large initial torque due to the
initial errors and feedback gains chosen. Due to the small initial system parameter esti-
mates, the translational control vector without adaptation appears smaller and smoother.
Figure 1(d) compares active adaptation cases where the control saturation bound is either
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Figure 2: Rotational Tracking Errors
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imposed or not. Without saturation bounds the control vector components grow rather
large for short periods of time before asymptotically approaching the ideal torques. With
saturation active, various control vector components become saturated for during the first
30 seconds of the simulation and then approach the ideal torques. Note that with the chosen
δuT that control chattering is not an issue, although some tuning maybe required in a given
application.

The rotational motion is illustrated in Figure 2. In Figure 2(a),it is very evident that
while the feedback control law without adaptation is successful in tracking the commanded
rotation σc(t), the transient errors grow very large. Figure 2(b) shows the tracking error
magnitudes for various cases. Without adaptation, the tracking errors are one to two orders
of magnitude larger than the reference attitude σr(t). With adaptation turned on, they
remain very close to the ideal errors σr. With control saturation active, the tracking is
only slightly degraded relative to the unsaturated case. Note that the cases where the CM
moment arm learning is turned off the resulting performance is still very good for the first
portion of the simulation. As the tracking errors become small (less than 10−2 for this case)
they start to decay at a slower rate than the reference σr. The reason for this is the highly
redundant parameterization of the inertia matrix through the matrices [L] and [M ]. This
provides the adaptive control law with sufficient freedom to adjust these inertia estimate
matrices to partially compensate for the unknown CM terms. Depending on the problem, a
good bit of numerical computation can be saved by not updating on the CM moment arms.
Similar conclusions are made in Figure 2(c) where the performance difference between s and
sr is shown. At one point the adaptation free case has a performance error vector magnitude
close to 1, which indicates the rigid body being close to 180 degrees off the desired attitude.
The control torque vector components for the adaptation free case are shown in Figure 2(d).
Note that here the controls never reaches the saturation limit, but they take a long time
to converge. For the adaptive cases the controls are shown in Figure 2(e). With saturation
active, some control vector components are saturated at times. But in both the saturated
and unsaturated cases the control torque rapidly approaches the ideal control.

These simulations support the validity of the theoretical developments and the practicality
of this approach.

Conclusions

An adaptive method is presented to enforce linear closed-loop dynamics while tracking
a commanded translational and rotational trajectory. The general methodology used is
applicable to a large class of nonlinear dynamical systems. If the external disturbances are
constant in the body frame, the adaptive law is shown to be globally asymptotically sta-
bilizing. By having a prescribed nominal linear closed-loop tracking error dynamics, even
for large nonlinear motions, the process of designing feedback gains that match other sys-
tem requirements such as overall performance and control bandwidth, is greatly simplified.
Choosing the MRPs as attitude coordinates, a nonsingular, minimal attitude description is
achieved. Numerical studies show that switching between the two sets of MRPs to avoid
singularities has minimal impact on the performance. The numerical study illustrates that
excellent trajectory tracking is possible with this adaptive control law, even though the
system parameters are essentially unknown. For the attitude control problem, the learn-
ing/adaptation rate is shown to be fast enough for a large number of applications. Further,
the numerical simulations also illustrate the theoretical developments to impose control
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saturation with this adaptive control law. The adaptive control law with saturation limits
active is still able to achieve good tracking. Finally, this study further reiterates the good
general robustness properties of the non-adaptive nonlinear feedback control law which
underlies the presented adaptive control law. In all but extreme cases, the non-adaptive
feedback law is still able to achieve asymptotic trajectory tracking. However, it’s closed-loop
dynamics differ substantionally from the desired linear PID form for large initial parameter
errors.
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