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NEW ATTITUDE PENALTY FUNCTIONS FOR
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Hanspeter Schaub’ and John L. Junkins?
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Rush D. Robinett?
Sandia National Laboratories, Albuquerque, NM 87185

A universal attitude penalty function g() is presented which renders space-
craft optimal control problem solutions independent of attitude coordi-
nate choices. This function will return the same scalar penalty for a
given attitude regardless of the choice of attitude coordinates used to de-
scribe this attitude. The only singularities the g() function might en-
counter are solely due to the choice of attitude coordinates. A second
attitude penalty function (G() is considered which depends specifically on
the modified Rodrigues parameter (MRP) vector &. The function G()
is also globally nonsingular and of simpler form than g¢(). A theorem is
presented which allows MRPs, along with a switching condition to their
“image or shadow” trajectory, to be used in optimal control problems.

I. Introduction

OLUTIONS of spacecraft optimal control prob-

lems, whose cost function rely on an attitude de-
scription, usually depend on the choice of attitude
coordinates used. Coordinate choices are often con-
sidered a matter of taste, but the question of coor-
dinate “optimality” arises. For example, a problem
could be solved using 3-2-1 Euler angles or using
classical Rodrigues parameters and yield two differ-
ent “optimal” solutions, unless the performance in-
dex is invariant with respect to the attitude coor-
dinate choice. Another problem arising with many
attitude coordinates is that the resulting control for-
mulation has no intrinsic sense of when a body has
tumbled beyond £180° from the reference attitude.
In many such cases it would be simpler and cheaper
to let the body complete the revolution rather than
force it to reverse the rotation and return to the de-
sired attitude.

This paper develops a universal attitude penalty
function g() whose value is independent of the at-
titude coordinates chosen to represent it. Further-
more, this function achieves its maximum value for
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any principal rotation of £180° from the target
state. This will implicitly permit the ¢() function
to sense the shortest rotational distance back to the
reference state.

An attitude penalty function G() which de-
pends on the Modified Rodrigues Parameters (MRP)
will also be presented. These recently discovered
MRPs!'™® are a non-singular three-parameter set
which can describe any three dimensional attitude.
This MRP penalty function is simpler than the at-
titude coordinate independent g() function, but re-
tains the useful property of avoiding lengthy prin-
cipal rotations of more than +180° and being non-
singular. A theorem is presented which allows dis-
continuous MRPs to be used in optimal control prob-
lems.

II. Problem Statement
A. Optimal Control Problem

Most spacecraft optimal control problems have a
cost function J which depends on the control effort,
the body angular velocity and the attitude. Let @
be the control torque vector, & be the body angular
velocity vector and i be a generic attitude coordi-
nate vector in the following general optimal control
formulation with fixed maneuver time ¢y

ty
min J = h(ty) —|—/ p(7,&,1,t)dt
0
subject to

(7,0)" = F(77,3,1,t)

(1)
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where typical penalty functions are

hts) = (2)

L. Lo .
5[&19 (T]tf) + 5&}th&2th
and

p(.G,,t) = % (Ksg(if) + 3TK,5 + @"Ra)  (3)

The weights K; and K3 are scalars, the weights
K, K, and R are 3x3 matrices. The function g(7)
is a general, non-negative attitude penalty function.
For spacecraft optimal control problems, the equa-
tions of motion are usually imposed as an equality
constraint. They are given in Eq. (4) and (5) below,
where the function f(7), obtained from kinematic
analysis, returns a matrix dependent on the choice
of attitude coordinates. The equations of motion are

ii= 1) @)
30 = — (@)@ + @ (5)

The matrix S is the spacecraft inertia matrix. The
tilde matrix is the cross-product operator

0 —Ws W9
@] = | ws 0 —-w (6)
—W2 W1 0

The Hamiltonian H for this system is

1 1 1
H=-Ks9(i) + -3"K,& + ~@" R
5 (39(17) + 5% 10 + 54 R ™)
+ AT ()& + AT H(—[2]SE + 0)
The costate equations are given by”®

R OH 1__9g 0 -

__od 1,09 O o aT
fi=-Z =t Limath ®
0@ 9)

= — K. — (77K — (306] - [S]) 97K,

For unbounded control torque i, the optimality con-
dition OH/du = 0 leads to the following optimal
control torque”®

o —le—17
i=—-—R"3 Ay

(10)

The transversality conditions for a free final state
are”®

o Oh 1., 0g

A (ty) = a7 (tr) = 55'13—77» (ts) (11)

Ky (ty) = % (tr) = K20 (ty) (12)

Given good estimates of initial conditions, this
nonlinear optimal control problem can be solved us-
ing various standard techniques.

2

B. Attitude Coordinates

Attitude coordinates define the rotational orien-
tation of a rigid body relative to some reference
frame. Just as there are a number of different coor-
dinates which describe translation (cartesian, cylin-
drical, spherical), there are an infinite number of
different ways to describe an attitude. Common ex-
amples are the Euler angles, the classical Rodrigues
parameters or the Euler parameters (quaternions).
Describing a rotation differs though from describing
a translation in a fundamental way. The largest dif-
ference between two orientations corresponds to a
principal rotation of +180°, a finite value. Whereas
the difference in two positions can can grow to in-
finity.

Minimal three-coordinate attitude representations
usually contain singularities. These are specific atti-
tudes at which the coordinates are not defined. This
singularity can be avoided by using the Euler param-
eters at the cost of adding another coordinate. This
redundant set has an equality constraint which re-
strains the attitude vector to be of unit magnitude.
Therefore, if Euler parameters are used in a simple
optimal control problem without any constraints, an
equality constraint is automatically added.

Among others, this paper will use the very elegant
set of recently developed Modified Rodrigues Param-
eters (MRP) with their “shadow”!3™® counterpart.
They are a non-singular, minimal attitude coordi-
nate representation of rigid body attitudes with sev-
eral useful attributes. They can be defined through
a transformation from the Euler parameters as

o = Bi
" 145

or in terms of the principal rotation axis é and the
principal rotating angle ¢ as

i=123 (13)

G = é-tan(p/4) (14)

Like the Euler parameters, the modified Ro-
drigues parameters are not unique. A second set
of modified Rodrigues parameters, called the “shad-
ow” set, can be used to avoid the singularity at
¢ = £360° at the cost of a discontinuity at a switch-
ing point. The “shadow” set is found by reversing
the sign of the §;’s in Eq. (13). The transformation
between the “original” and “shadow” sets of MRPs
for any arbitrary switching surface &7 & is™3*4

s T
ol =—0;/3"G

1=1,2,3 (15)

Keep in mind that distinguishing between “orig-
inal” and “shadow” set is purely arbitrary. Both
sets describe the same physical orientation. If the
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switching condition is set to #7¢ = 1, the magni-

tude of the MRP orientation vector is bounded be-
tween 0 < @ < 1 and the principal rotation angle
is restricted between —180° < ¢ < +180°. Note
that this combined set of “original” and “shadow”
parameters implicitly “knows” the shortest rotation
back to the origin.! Principal rotations of more than
180° are typically avoided.

The differential kinematic equation for the mod-
ified Rodrigues parameters is given below."%% The
equation only contains second order polynomial non-
linearities in 4.

dé 1 1-4o7¢ O o
E—i[I(T)+[U]+UU]w (16)

Eq. (16) holds for both the “original” and the “shad-
ow” set. This means that the derivative is well de-
fined even at the switching point. Let us introduce
the notation 0" = (#7#)". Then the general rela-
tionship between dé/dt and d&° /dt for an arbitrary
switching condition is

de® 1 (d&'

dt

1 I\ T
o §(l—|—0)[0]w—

1-0o") .
ot 1

(17
The partial derivative of Eq. (16) with respect to &

1S

%(f(&)a) = (#a" — [@] — ¢" + &78I) (18)

N | =

The direction cosine matrix in terms of the modified
Rodrigues parameters is!»?:

4 (20% — 02) + ¥?
80’10’2 - 40’32
80’10’3 + 40’22

80’10’3—40’22 -|

1
(1+02)°
80'10'2 +40’3E

4 (20% — 02) + 3?2 80903 + 40X
80903 + 401 % 4 (20§ — 02) + EZJ

a? =Tz Y=1-¢?

C(d) =

(19)

III. Universal Attitude Penalty Function

A scalar attitude penalty function is sought which
is independent of the choice of attitude coordinates.
This allows for an universal solution to many space-
craft optimal control problems. We introduce the
following non-negative measure of attitude displace-
ment from a reference orientation.

1
o([C]) = (3 trace([C]) € R* (20)
This penalty function is given in terms of a proper
orthogonal direction cosine matrix [C]. This rotation

3

matrix is the most fundamental way to describe a
rotation; unfortunately, also the most redundant. If
there is no rotational displacement, the [C] matrix
is the identity matrix and ¢([C]) = 0.

1.0

a0

0.5 1

00+
-180 -90 0

Principal Rotation Angle[°]

Fig. 1 Universal Attitude Penalty Function ¢()

The largest difference between two attitudes is a
principal rotation of £180°. Here the [C] matrix is
a diagonal matrix with two entries being -1 and one
being +1. In this case ¢([C]) = 1. Therefore the g()
function is bounded for all possible motion between

0<g() <1 (21)

This penalty function can be written explicitly in
terms of the principal rotation angle ¢ as

g(¢) = si112((p'/2)

This description makes the bound in Eq. (21) very
easy to understand. The attitude cost is the highest
only if the body is turned £180° from the reference
state. The g() function is plotted relative to the prin-
cipal rotation angle ¢ in Fig. 1. Using this type of
attitude penalty function will typically avoid lengthy
rotations. It intrinsically lowers the cost once the
attitude has moved beyond +180°. The advantage

(22)
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of defining the ¢() function initially in terms of the
[C] matrix is that this rotation matrix can be pa-
rameterized by any attitude coordinates and thus
making it universally valid for any choice of attitude
coordinates. The following are a few sample param-
eterizations. Let ﬁ be an Euler parameter vector,
then

-

9(B) = B; + 55 + 33 (23)
and
% =

op

i

[0 260 28, 265]" (24)

The Euler parameters are a non-singular once-
redundant set of attitude coordinates. Their draw-
back for optimization problems is that the redun-
dancy introduces an additional equality constraint
on the attitude vector. This redundancy also re-
quires care to avoid other numerical problems when
inverting some sets of equations.

Another popular attitude coordinate set is the
classical Rodrigues parameter vector ¢. It param-
eterizes the ¢() function as

I
=-._449 25
9(@) = § T ala (25)
and 5 . )
o (26)
20 " 2+ 71q

These coordinates are a minimal three coordinate
set and don’t have any problems with redundancies.
However, like most three-parameters sets, they con-
tain a singular orientation. The classical Rodrigues
parameters go singular for any principal rotation of
+180°. If it is a priori known that no such rota-
tions will be encountered, this choice for attitude
coordinates does allow for a large range of possible
rotations.

Probably the most popular choice of attitude co-
ordinates are any one of the 12 sets of Euler angles.
Let (61,62, 03) be the set of 3-1-3 Euler angles. They

would parameterize the ¢() function as

9(5) = 3(3 — (14 cosfy) cos(fy + 63) — cos B2)
(27)
and
(14 cosfy)sin(fy + 03)
= — | sinfy cos(f; + 03) + sinby
(14 cosfy)sin(6y + 03)

(28)

QJ|Q.‘J
[lQ

The advantage of the Euler angles is that they are
easy to visualize, especially for small angles. How-
ever, any attitude description with Euler angles is
never more than 90° away from a singularity. This

4

makes these coordinates difficult to use for large ar-
bitrary rotations. Further, the kinematic equations
for the Euler angles are in terms of trigonometric
functions, making them more computationally in-
tensive than having only polynomial equations.

A very attractive attitude description are the
modified Rodrigues parameters. They parameterize
the ¢g() function as

=T =
#) =4 29
90) = ey 29)
and
5T
99 _gz( 1= 7 (30)
oG (14 577)

The MRPs are a minimal attitude description which
are also non-singular when combined with their cor-
responding “shadow set.” They are well suited to de-
scribe any large arbitrary rotation while their equa-
tions retain a simple polynomial form.

The ¢() attitude penalty function could be param-
eterized by any other attitude coordinate descrip-
tion. All equations for ¢() shown return the same
penalty for a given reference orientation. This effec-
tively removes the dependency of the optimal con-
trol solution on the choice of attitude coordinates.
However, the optimal costate vector K will depend
on the attitude coordinates used since Egs. (8), (11)
depend on the partial derivative of g() with respect
to the particular attitude coordinates.

IV. MRP Attitude Penalty Function

While the universal attitude penalty function g()
has some very appealing properties, it is usually
more complicated than just using the standard sum
squared of the attitude coordinates typically seen as
an optimal control performance measure. For exam-
ple, using the simpler attitude penalty function

G(?)=d"¢ (31)
where & is a MRP vector, retains all properties of
g() defined in Eq. (20), except being universal with
respect to attitude coordinate choice. By switching
between “original” and “shadow” MRP trajectories
on the ¢7¢ = 1 surface, the attitude penalties in
Eq. (31) are bounded within [0,1]. Using Eq. (14)
the penalty function can be written in terms of the
principal rotation angle ¢ as

G(¢) = tan*(¢/4)

The G() function is plotted relative to the principal
rotation angle ¢ in Fig. 2. Note that like the uni-
versal attitude penalty function g(), the maximum

(32)
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Fig. 2 MRP Attitude Penalty Function G()

attitude penalty is also attained at a principal rota-
tion of +£180°.

By using the MRPs, this penalty function is glob-
ally non-singular using a minimal attitude coordi-
nate description. The non-singularity comes at the
price of having the switching condition defined in

Eq. (15). However, both & and #° are well de-

fined for both the original and the “shadow” param-

eters. By choosing the switching surface ¢7¢ = 1
Eqgs. (15), (17) are simplified to

7% =—¢ (33)

& = [5]3 (34)

Observe from Eq. (34) that for pure single axis rota-
tions & simply equals #5 on the 77 = 1 switching
surface. Since the derivatives of the costates depend
on the attitude coordinates, they will also have a
discontinuity as the attitude vector is switched.

V. MRP Costate Switching Condition

The MRP have many useful attributes. However,
to avoid a singularity, this minimal attitude coordi-
nate description needs to switch between the origi-
nal and the “shadow” MRP set.* This switching

5

can occur on any surface &G = c?, where ¢ > 0.

The most attractive switching surface is #76 = 1.
During this switching the MRP attitude vector and
its derivative are generally not continuous as shown
earlier. The optimality conditions for the optimal
control problem used in this paper were derived as-
suming that all states were smooth and continuous.
This is no longer guaranteed with the MRP.

The Weierstrass-Erdmann corner conditions were
developed for the case where the state derivative is
discontinuous.”® The same initial assumptions used
in deriving the Weierstrass-Erdmann corner condi-
tions also hold if the state, not the derivative of the
state, is discontinuous. Without loss of generality,
let us assume that & is only discontinuous at %,
where 0 < t; < ty. The cost function J, in terms
of the system Hamiltonian H and the costates A,
can now be written as

J= h(tf)+/0t1_ (H_KT;,) d

ty s 35
+/ (H - A75)at (35)
"
=i+ 2+ s
where ¥ = (7,&)7 and A= (Kl,Kg)T. For nota-
tional compactness, lets define d_ = @(t]), o+ =

Ft7), Aj- = Kl(tf) and A+ = /-\‘l(tf) Each inte-
gral can now be evaluated without state discontinu-

ity problems. The first variation of J must satisfy”

The first variation of .J; is

Taking the first variation of .J; it must be taken into
account that t; is a free final time of the integral.

8Jy = (H(t;) - K(t;)Ti’(t;)) 5ty

t- HT . i HT
+/1 <af 57— Ko+ 2 5a)
0 oz o

Since the states are smooth and continuous within
the integral 6% can be written as %((51"). This per-
mits §.J; to be integrated by parts.

(38)

8Jy = (H(t;) - K(t;)T:}‘;‘(t;)> 5ty
— K)o (7)

ty AT T
e[ () o 2 s
0 ox o

(39)
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Then the state
7,8

Let 62(t;) = (8d(t,),05(¢, )T,

variations at t; 4 dt; are defined as

§F_ = 6G(t] + 0ty) = 6&(t7) + 3(t7)0t,  (40)
8B_ = 63(t7 4 6t)) = 6B(t7) + &(t7)6t,  (41)
which reduces d.J, to the simple form of
§J, =H (t,) 6t
— A" 55 — Al 63
(42)

T AT T
_|-/ ((8—If+A> éi'—i—a—li{ éﬂ')dt
0 oz ou

Similarly 4./ can be found assuming that the initial
and final states and the time ¢, are free.

6Js = AT, 65, + AT, 63,

— H (tF) 6ty — K(t5) o

ty . T T
i ox ou

Since the body angular velocity is continuous 6&_ =
00y = 0. After enforcing the optimality and
transversality conditions, the total variation §.J be-
comes

(43)

6J = AT, 65, — AT 65
- - T
+ (Rye = Ky ) 03 (44)
~ (H (1)~ H (17)) 6t =0

Since the variations §&; and dt; in Eq. (44) are in-
dependent from other variations, the following con-
clusions can be made.

A‘2+ = KQ— (45)

H(ty) = H(ty) (46)

Before any conclusions can be made about Kl_
and /Y1+7 further development is needed to establish
what constitutes an admissible variation d6_ and
04, what is their relationship and if they are non-
Zero.

It is assumed that at time ¢]” the optimal attitude

#* is on the constraint surface 774 = c?. Let #(t; +

dt1) be a variation of *. Since the variation of &*
must also be on the unit sphere surface, the following

condition must hold
722 = | (t; + ot = c* (47)
Let G(t1 4 dt1) be related to the optimal 6* through

&(1‘1+6t1)=0_"*(t1)+661 (48)

6

constraint
sphere

6'6=c?

Fig. 3 Constraint Illustration of §5

as illustrated in Fig. 3. The variation d&_ must be

such that &_ still lies on the unit sphere. Using
Eqs. (47) and (48) it can be shown that
1 T
(Ei + 555_> 66— =0 (49)

The condition in Eq. (49) is satisfied if the orthogo-
nality is satisfied or if §&_ is zero. The variation §a+
must satisfy the same type of condition. For general
rotations Eq. (49) is satisfied through the orthogo-
nality condition. However, if a single-axis rotations
is being done, then Eq. (49) is satisfied by forcing
d6_ and 474 to be zero.

Lemma: The variations 6 _ and §&4 must be zero
if a single-axis rotation is being performed.

Proof: ~ From the definition of the MRPs in
Eq. (14) it is clear that for a single-axis rotation all
MRP vectors will lie along the constant principal
rotation vector. This straight line will touch the
unit sphere constraint surface only at two points as
illustrated in Figure 4. It is impossible to be at
such a surface point and have a small variation while
remaining on the constraint surface. |

L
_'
o
1
Q

Principa
Rotation
AXxis

Fig. 4 Lemma Illustration

Since a switch occurs at t;, @7 would be the
“shadow” set of @~. This mapping from &~ to @7 is
well defined in Eq. (15), therefore the variations §&_
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and 474 must be related. Their relative mapping is
found by taking the first variation of Eq. (15).

55_ = [26_¢L — ¢T&_I] 66, (50)

Let us first examine the case where 66— and §5';
are not zero. In this case Eq. (44) shows that

A og, = AT 65 (51)

which can be expanded using Eq. (50) to
. LoNT
(s = 2607~ 3T 1)K ) s3, =0 (52)

Since Eq. (52) must hold for any admissible varia-
tions 474 the following costate switching condition
is found.

Ko = 2667 — (#T_) 1] K,_  (53)

Note that Eq. (53) yields a general mapping for the
switching of a costate Kl_ to its “shadow” costate
Kﬁ. This mapping is valid for any switching con-
dition &7 = %, but has its simplest form if the
switching surface #7& = 1 is chosen.

Eq. (46) provides another condition that must be
satisfied for optimality. Since the attitude penalty
functions g(&) and G(&) are such that p(t]) = p(t]),
Eq. (46) can be further reduced using Eqgs. (45) to

KT 3(67) = K. (¢7) (54)

By making use of the costate switching condition in
Eq. (53) and of Eq. (16), the above condition can
be shown to be always true. Therefore Eq. (46) pro-
vides no further information for the case where §5_
and §&'; are non-zero.

By our Lemma, if the optimal rotation is a single-
axis rotation then 60— = 0 and d&'; = 0. Because of
this, Eq. (44) does not reveal any information about
the costate Kl at t;. To derive the necessary costate
switching condition for A; Eq. (46), which was re-
duced to Eq. (54), will be used.

Let é be the constant axis of rotation. Using
Eq. (15) the attitude vector can be written as & =
é|d| = éo. The body angular velocity vector is given
by & = é|&| = éw. Using Egs. (16) and (17), the
following costate switching condition can be found
for the single-axis rotation case.

K1+ = (0-:,{’0-"7) /_\'17 (55)

The above condition shows that the only instance
for which A; does not have a discontinuity during
the switching is the case of a single-axis rotation
with the switching surface ¢7G = 1. Note that even

though the costate switching condition in Eq. (53)
was not derived for the case of a pure single-axis
rotation, it does simplify to Eq. (55) when a single-
axis rotation is imposed. This allows the costate
switching condition for both cases to be unified into
one costate switching condition.

Theorem (MRP Costate Switching Condition)
Let the MRP switching surface be 716 = ¢? and
let the attitude penalty function be continuous with
respect to &, then the costate K, will remain con-
tinuous during the switching of the MRPs to their
“shadow” set. The costate Kl however will have a

discontinuity defined by Eq. (53).

This theorem leads directly to the following corol-
lary regarding the costate magnitude |A; | during the
MRP switching.

Corollary: The costate magnitude |K1 | will remain
continuous during the MRP switching if the 77
1 switching surface is used.

g =

Proof: This corollary is verified by using the
theorem to find K{Kl before and after the MRP
switching and using the fact that during the switch-
ing 777 is equal to 1. |

This corollary shows that the MRP costates Ay
behave very similarly to the MRP during the switch-
ing. Both switch states on the surface of a sphere.
The difference is that the MRP switch on a unit
sphere, where the MRP costates Kl switch on a
sphere of arbitrary radius.

VI. Single-Axis Analytical Result

To verify the MRP costate switching conditions, a
simple single-axis optimal control problem is solved
analytically using the MRPs as an attitude param-
eters. For generality, the switching surface is set to
0% = c?. Lets minimize the cost function J which

depends solely on the control u

1
J:/ u’dt (56)
0

subject to the simple one-dimensional equations of
motion for a body with unit inertia

. 1 2
U:Z(l—i—o)w (57)

w=u (58)
and subject to the state constraints

O'(t():O):O'O

O'(tf = 1) =of
w(t) =w(ty) =0
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The optimal control torque u* for this cost function
J is known to be of the form

u™(t) = k(1 —2t) (60)
where k is simply a scaling factor that guarantees
that the body is at o at t;. Note that the optimal
trajectory is independent of the choice of attitude
coordinates. This allows the optimal control prob-
lem to be solved using either the “original” MRP set
or their “shadow” set. By comparing the resulting
costate A; history for the “original” and “shadow”
costates, we will be able to verify the costate switch-
ing condition for single-axis rotations in Eq. (55).
The optimality condition in Eq. (10) states that
u(t) = —Aq(t) (61)

Since u* is continuous, so is Ay as predicted in
Eq. (45). If at some point in time the MRP are
switched to their “shadow” set it obviously has no
effect on the continuity of As.

To find a time history of the costate Ay, Eq. (9)
is used.

. 1
Ay =—7 (1+0%) Ay (62)
Since A2 = 2k this can be solved for A;.
8k
AN=——— 63
1 T o2 (63)

Let 0° and Ay be the “shadow” attitude and
costate. Analogously to above, the solution for Ay

would be Sk
e (64
1+ (%)

Eq. (64) can be written in terms of o by using
Eq. (15).

k k
A = 8k _ 8 o’

1+ L 1402

(65)

Substituting Eq. (63) into Eq. (65) a direct relation-
ship between Ay and A; is obtained.

AT =0?Ay (66)
By switching between the two possible MRP atti-
tude description the costate A; would have to be
switched as well according to Eq. (66). This result
verifies the single-axis rotation MRP costate switch-
ing condition found in Eq. (55).

VII. 3-D Numerical Result

To verify the general transformation given in the
MRP costate switching condition theorem, a three-
dimensional optimal control problem was solved as

8

outlined in the problem statement. The attitude
penalty function was chosen to be the g() given in
Eq. (20). With this penalty function the answer
did not depend on the attitude coordinate choice.
Therefore the optimal solution using the combined
set of @ and @° should be the same as the optimal
solution obtained by using only & or &°.

The optimization problem was solved numerically
by a steepest descent gradient method. The only
modification needed to use the combined set of orig-
inal and shadow MRP vectors was to check whether
714 had grown larger than one. If yes, then the atti-
tude vector was switched to its shadow counter part.
At the same time the corresponding attitude costate
vector was also switched to its shadow counter part
using the MRP costate switching condition.

The three-dimensional optimal control problem
had a fixed maneuver time of ¢y = 10 seconds.
The body inertia matrix was S = diag(0.5, 1.0, 0.7)
kgm?. The cost function weights were K; = 2,
Ky, =10, K3 = 1, K, = 5 and R = 20. The
initial states were @(0) = (0.87,0,0) and &(0) =
(80.21,51.57,45.84)°/s. Note that the initial ori-
entation has the body almost turned up-side-down
with a large initial angular velocity driving it to
the up-side-down orientation. This optimal control
problem will penalize any non-zero state and torque
during the maneuver and any non-zero final state.
Note that the final state is left free though. Trying
to minimize torque for this maneuver, it would be in-
tuitively reasonable to let the body rotate trough the
up-side-down orientation and then reduce the states
instead of forcefully reversing the existing motion.
We show key results in Figures 5-8.
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Fig. 5 Optimal States for all Three Cases

Three separate optimal control problems were
solved using either /5, & or 3 as the attitude co-
ordinates. As expected, all three optimizations con-
verged to the same solution. The principal rotation
angle ¢ and the magnitude of the angular velocity
are shown in Figure 5. The optimal solution indeed
let the body rotate through the ¢ = 180° point and
diminished the angular velocity and attitude at the
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final maneuver time.
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Fig. 6 Optimal Control Torque i

The optimal control torque for the maneuver is
shown in Figure 6. The attitude coordinate vec-
tor time histories were different for each problem,
since different attitude coordinates were used. The
combined set 7/ started out identical to &, since
the initial attitude vector had less than unit mag-
nitude. As |7| grew larger than one, the combined
set @/3° trajectory is switched to the shadow set #°
trajectory. This is illustrated in Figure 7. The black

unit sphere

Fig. 7 3-D Illustration of Attitude Vectors

line denotes the trajectory of the combined &/
set which remains within the unit sphere. Note that
this trajectory converged exactly with the & and &°
trajectories whenever they too were within the unit
sphere.

The ultimate test of the MRP costate switching
condition theorem is to see if the costate Xl exhibits
the same behavior. Its trajectories are shown in Fig-
ure 8. Again the black line is the solution obtained
using the combined &/#° set and using the MRP
costate switching condition. Indeed the costate Kl
switches exactly from the costate trajectory of the
pure & solution to the costate trajectory of the pure
77 solution, thus verifying the theorem presented in
this paper.

9

Fig. 8 3-D Illustration of Costate Kl

VIII. Conclusion

An universal attitude penalty function g() for op-
timal control problems is presented which makes the
optimization independent of the choice on attitude
coordinates. This function also has other benefi-
cial properties such as being bounded between 0
and 1 and being non-singular. Another attitude
penalty function G() was presented which made use
of many good properties of the MRP. The MRP
costate switching condition introduced in this paper
makes the use of MRP combined with their “shad-
ow” set possible for general motion optimal control
problems.
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