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ORTHOGONAL SQUARE ROOT EIGENFACTOR
PARAMETERIZATION OF MASS MATRICES*

John L. Junkins® and Hanspeter Schaub?

Texas AEM University, College Station, TX 77843

An improved method is presented to parameterize a smoothly time varying
symmetric, positive definite system mass matrix M(t) in terms of the in-
stantaneous eigenfactors, namely the eigenvalues and eigenvectors of M(t).
Differential equations are desired whose solution generate the instantaneous
spectral decomposition of M(t). The derivation makes use of the fact that
the eigenvector matrix is orthogonal and thus evolves analogously to a higher
dimensional rotation matrix. Careful attention is given to cases where
some eigenvalues and/or their derivatives are equal or near-equal. A robust
method is presented to approximate the corresponding eigenvector deriva-
tives in these cases which ensures that the resulting eigenvectors still di-
agonalize the instantaneous M(t) matrix. This method is also capable of
handling the rare case of discontinuous eigenvectors which may only oc-
cur if both the corresponding eigenvalues and their derivatives are equal.

I. Introduction

OST multibody dynamical systems such as

multi-link robots have configuration depen-
dent mass matrices. This dependency makes the
mass matrix vary with time. Solving such dynamical
systems involves performing an inverse of the mass
matrix at each integration step. Finding this inverse
is computationally difficult and expensive for large
systems. Furthermore, standard inverse and linear
equations solution techniques are not easily paral-
lelizable and therefore cannot take full advantage of
modern parallel computing systems.

A method is introduced that parameterizes the
symmetric, positive definite mass matrix in terms
of its eigenfactors (i.e. eigenvectors and the eigen-
values). Instead of forward integrating the original
mass matrix differential equation directly, only the
eigenfactors themselves are forward integrated. The
resulting formulation is one that could be easily im-
plemented on a massively parallel computer system.
A paper by Oshman and Bar-Itzhack in Ref. 1 in-
troduces an orthogonal square root eigenfactor pa-
rameterization to solve the differential matrix Ric-
cati equation. However, their treatment of equal or
near-equal eigenvalues was found to be incorrect and
the case of discontinuous eigenvectors was not ac-
counted for. This paper provides an approximate
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treatment of the near-equal eigenvalue case and an
associated error analysis where the symmetric, pos-
itive definite matrix being parameterized is a state
dependent mass matrix M (z,t).

Eigenfactor derivatives have been discussed in the
literature for quite some time, but they are mostly
used to establish modal sensitivities and not to de-
rive eigenfactor differential equations.?® A majority
of the engineering literature on eigenfactor deriva-
tives are for the general structural eigenvalue prob-
lem (K — A\;M)v; = 0. This paper deals with
the problem where we need to find the eigenfactors
and their derivatives for given matrices M(z,t) and
J\'{(x, #,t). Since M is symmetric and positive defi-
nite, its eigenvector matrix is guaranteed to be or-
thogonal and thus behave analogously to a higher
dimensional rotation direction cosine matrix.*> This
analogy is the starting point for a simple derivation
of the eigenfactor derivatives. Except for repeated
eigenvalues, for smooth M (z,t), we anticipate con-
tinuous differentiable eigenfactors.

When repeated eigenvalues are present there are
often numerical problems associated with calculat-
ing the eigenvector derivatives. The literature usu-
ally deals with the case where M and M are given
and one needs to solve for the eigenfactor deriva-
tives.5? A simple method is presented which allows
the eigenvectors to be smoothly integrated through
the case of repeated eigenvalues, avoiding having to
re-solve an algebraic eigenvector, eigenvalue prob-
lem.

Repeated eigenvalues for mass matrices are com-
mon in mechanics (e.g. principal axes for mass
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matrices and stress tensors). We note that, if the
objective is to find a diagonalizing transformation,
then near-repeated eigenvalues only indicate a loss
of uniqueness of the eigenvectors. For many pur-
poses uniqueness is not required, and any set of or-
thogonal eigenvectors which span a unique subspace
are admissible. This is the approach realized in the
present paper when eigenvectors loose their unique-
ness for near-repeated eigenvalues; we seek to gen-
erate admissible orthogonal eigenvectors which span
the correct subspace to within acceptable precision.
This line of thinking is easily implemented for solv-
ing the algebraic eigenvalue problem for a given con-
stant matrix — however, generating the time vary-
ing instantaneous eigensolution by solving differen-
tial equations governing the eigenfactors is a more
challenging task that is addressed in this paper.

II. Problem Statement

Any real, symmetric, positive definite matrix M
of dimension nxn can be decomposed into n positive
real eigenvalues A; and n orthogonal eigenvectors c;

M =C"AC (1)

where A = diag()\;) and C' is is defined as
T

] (2)
The evolution of the C' eigenvector matrix is com-
pletely analogous to the time variation of an orthog-
onal direction cosine attitude matrix. Since M is
symmetric and positive definite, the eigenvector ma-
trix C'is guaranteed to be orthogonal

C:[cl...cn

cfc=cc”=1 (3)
and the eigenvalues will always be positive. Thus we
can always define s; = \/A; and the corresponding
matrix S = diag(s;). This allows M to be written as

(4)

where W = SC'is a matrix square root of M. There-
fore keeping track of C' and S is equivalent to a
square root algorithm with all the associated nu-
merical robustness advantages.! Note that since
si, A; > 0, the matrix inverse of M is trivial.

M=CTsTsCc =wTw

M~'=c"s C (5)

Let z be a continuous system state vector satisfy-
ing the second order dynamical differential equation

(6)

where u is a control vector. Any discontinuity in u
can only directly affect & and not & or z. Therefore

M(z)i = F(z,&,u)

2

the matrices M(z) and M(z,#,t) are continuous.
Note that complete algebraic expressions for M(x)
and M(x,&,t) are usually available for dynamical
systems.

II1I. Eigenfactor Derivatives

The fact that the eigenvector matrix C that pa-
rameterize a symmetric, positive definite matrix M
is always orthogonal will be central in the follow-
ing derivation of the eigenfactor derivatives. It is
known that an nxn orthogonal matrix C'(t) satisfies
the same differential equation as does the attitude
direction cosine matrix® !¢

¢ =—-[Q|C (7)

where [(?] is a skew-symmetric matrix.

0 Qi Qs
[Q] = | Q12 0 Qa3 (8)
—Qis —Qys 0

For the case of attitude matrices, this ;; terms rep-
resent body angular velocities. This concept of an-
gular velocities lifts to the case of higher dimensional
orthogonal matrices. Instead of being body angu-
lar velocities, here the (2;; terms can be viewed as
eigenvector angular velocities. Each {);; term gives
a measure of the rate that the two eigenvectors c;
and c; are rotating in the plane spanned by these
two vectors.

To verify that orthogonal matrices are indeed gen-
erated by the given differential equation, the first
derivative of Eq. (3) is taken

c'e+c’c=cc”+cc" =0 (9)

After substituting C' with Eq. (7)

- -c')e = -cct —cctit =0

(10)
and making use of the orthogonality condition in
Eq. (3) and the fact that [Q] = —[Q]T, the differ-
ential equation for orthogonal matrices in Eq. (7) is
verified.

The problem of finding eigenvector derivatives has
now been reduced to one of finding the €;; terms.
Taking the first derivative of Eq. (1) we obtain

M =CTAC + CTAC + CTAC (11)

After making use of Eq. (7) and defining the sym-
metric £ matrix to be

§=A[Q] - [Q]A
Eq. (11) is reduced to
M=CTe+A)C

(12)

(13)
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The ¢ matrix can be shown to be

&ij = Qij(Aj — i) (14)
Note that since the diagonal terms of £ are zero and
Aisa diagonal matrix, these two matrices projected
through C' split up the M matrix into diagonal and
off-diagonal terms. It turns out that the diagonal
terms lead to the eigenvalue derivatives and the off-
diagonal terms leads to the angular velocity terms.
Let the matrix p be

u=CcmMcT (15)
Using Eq. (14) this is rewritten as
p=E+A (16)

which can be component wise expressed as

N R IOVES for i # j
Hii =1 A fori=j

Ai) (17)

Note that Eq. (17) must always hold, even in the
presence of repeated eigenvalues. Also, as long as
Q;; is bounded, then p;; must go to zero as A\; — ;.
From here it is trivial to express {;; ash??

Qij =

for Ai # Xj (18)

Aj— A
or in terms of the square roots of the eigenvalues as

z,u.” 5 for si#sj
si—s

Q= (19)

)

At first glance it might appear that Q;; will go to
infinity when A\; — A;. However, this is generally
not the case as will be shown in the next section.

Had an eigenvector matrix V = C7T been used
instead to parameterize M in Eq. (1), then V would
have also been orthogonal and abided by the same
differential equation as in Eq. (7) with a different [Q2]
matrix.

V=—[QV (20)

However, finding this [(] matrix is more difficult and
can only be achieved through a coordinate transfor-
mation of the [Q] matrix
Q] = -vIv* (21)
In rotational dynamics, this would be analogous to
writing the body angular velocity matrix in the in-
ertial frame. This is why the current development
uses C instead of V.
Expressions for \; are found directly from Eq. (17)

Ai = pii = Tii (22)

3

where I = diag(pi;). Since s; = /A; the derivative
of s; is

1. -1 1.
si = =M\, 2= Z\js; ! 23
S 2 2 2 Sl ( )
or in matrix form®*
S B
S = 51"5’ (24)

Note that calculating s; ! is always possible since for
symmetric, positive definite matrices all eigenvalues
are always positive.

Turns out the by far largest computational effort
in evaluating C and S is finding the p;; = c?ﬂllcj
terms. However, this inner product operation lends
itself perfectly to be performed on a massively par-
allel computer system where all the y;; terms could
be calculated independently in parallel. By contrast
direct matrix inverse method do not lend themselves
easily to be calculated on parallel systems.

IV. Repeated Eigenvalues

A. Distinct Eigenvalue Derivatives

Clearly mathematical problems arise computing
Q;; using Eqs. (18) or (19) when A; — X;. When-
ever \; = )\; the associated eigenvectors ¢; and c;
that parameterize M are not unique. Any two or-
thogonal unit vectors in the plane spanned by ¢; and
c;j would generate the proper M matrix. However,
the eigenfactors not only have to generate the proper
M matrix, but they and their derivatives also need
to generate the proper continuous M matrix. This
leads to the following proposition about the conti-
nuity of ¢; and ¢; through the point where A; = A;.

Proposition 1: Let M be a continuous symmetric,
positive definite matrix with a continuous derivative
M and let A; and A; be repeated eigenvalues of M
with distinct derivatives /\2 #* )\] Then the asso-
ciated eigenvectors will be continuous and unique
through the condition where A; = A;.

Proof: To prove this proposition, let us write

M as!
M=) \E; (25)
i=1
where E; is defined as the outer product
E; = cic] (26)
The matrix M can now be written as
]\,:I = Z ()\lEl + )\iE.‘i) (27)
i=1
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Without loss of generality, we can assume that only
the first two eigenvalues A; and A, are repeated. Let
us define E;; as

E,‘j =F;+ Ej (28)

then we can rewrite M as
M = /.\1E1+/.\2E2+/\1E12+Z <)\1Ez + /\iEi) (29)
=3

Since M must be continuous, ¢; and ¢y cannot be
discontinuous since the eigenvalue derivatives A\; and
A9 are distinct. [ |

Proposition 1 leads directly to the following two
corollaries regarding the boundedness of €;;.

Corollary 1: Whenever \; — A; and Ai s /I\j then
Qi A £oo.

Proof: If ;; would go to o0 as A\; = A; in
Eqgs. (18) or (19), then it would be impossible for
¢; and c; to be continuous through the point where
A; = Aj which would contradict Proposition 1. W

Corollary 2: Whenever A\; — A; and )\l #* /-\j then
Hij — 0.

Proof:  Since Eq. (17) must hold for all time
and Q;; must be bounded whenever A\; — A; and

Ai 7 Aj, then p;; must go to zero. ||

From corollary 1 and 2 it is clear than any diffi-
culties calculating Q;; for repeated eigenvalues with
distinct eigenvalue derivatives are purely numerical
problems. Numerical simulations indicate that it is
usually easy to calculate ;; in the neighborhood of
two repeated eigenvalues as long as M is not exces-
sively large. In fact, Mills-Curran shows in Ref. 7
that at the instant where \; = A; and A\; # A; a
term analogous to (;; can be calculated using the
distinct eigenvalue derivatives.

ClT M Cj

T VRS
However, this expression is not valid in the neighbor-
hood of repeated eigenvalues. In a numerical simula-
tion one usually does not have exact repeated eigen-
values. To avoid numerical problems of calculating
the angular velocity terms in the neighborhood of
repeated eigenvalues, the following approximation is

introduced. Assume ;; is known at time step to.
Then );; at time step ¢, > t, is approximated as

(30)

TNL]A_L for |A; — \j| > €
Qi(t) = Qi;(t
1) 0) +
. for |A\; — ;| <e
Qij(to)(t1 — to) | i a1

4

In other words, the §;; term is approximated lin-
early for as long as |[A; — Aj| < e. The derivative
Qij(to) can be found numerically through a back-
wards difference method. For the present discussion
we ignore the error in approximating Qij.

Proposition 2: Assume that |A\; — ;| < € and that
|Ai—AXj| > €, then the Q;; approximation in Eq. (31)
will introduce an error in M of the order of €3.

Proof: ~ Without loss of generality, let us as-
sume that only the A\; and A, are within € to being
repeated eigenvalues.

}\2 = Al + € (32)
Let M be the exact derivative obtained from the true
[;;] matrix and M be the approximated derivative
due to the approximated {;; terms using Eq. (31).
The error in M is given as

AM = M(A, C,[Q]) - M(A,C. 1)) (33)
After using Eqs. (7), (26) and (27) AM can be ex-

pressed as

AM = eAQ, (crel + czc?) (34)
The time span At =ty — t; where |A\] — 3| < € can
be estimated as follows. Let t; be the time where the
eigenvalue difference is less than € and ¢y the time
where the difference grows larger again than e. If it
is assumed that |)\1 — )\2| > e than \; and )y can
be assumed to be near linear between t; and ¢y as il-
lustrated in Figure 1. The time At is approximately

A2(t) e
€
t | i >
tc t2 t
A (t)

Fig. 1 Repeated Eigenvalue Illustration

related to the difference in eigenvalues € through

2¢

At~ —— 35
N (35)

During the interval [t1,t5], Q,, is linearly extrapo-
lated. Let us write the Q;; term at time ¢, as a
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Taylor series expansion about time t;.

At
2 " 3 (36)
At? + O(A#?)

Qij(t2) = Qjl,, + Qi

+37 Qij

t

The approximation £;; is simply an first order trun-
cation of Eq. (36).

At

t1

Qi(t2) = Qujl, + (37)

Assuming that the third and higher order derivatives
of 5 are small compared to {24, the largest AQ;,
likely to be encountered would be of the order
1.

Ale jad ﬁglz(tl)Atz + O(AtS) (38)
Using Eqs. (35) and (38), AM can be approximated
as .
63912 (tl)
(A1 = A2)?
3

AM = (cica + cact) (39)
which is of order €. If there are m pairs of eigen-
values within € of each other, then the total error in
AM would be the sum of all m corresponding errors

as shown in Eq. (39) and also be of order €. [ ]

Note that the approximation of (2;; only directly
affects M. The actual error in M in a numerical
simulation would be related to the type of numeri-
cal integration used. The above analysis ignores the
error implicit in approximating Qij- If this approx-
imation is not valid, then an error AM would still
be of order €2. This error analysis will always break
down whenever the corresponding eigenvalue deriva-
tives loose their distinctiveness. This situation will
be discussed in the following section.

B. Equal Eigenvalue Derivatives

The error AM introduced through the approxima-
tion in Eq. (31) is more difficult to estimate when-
ever both A; = A; and A\; = X;. However, it is
possible to give a conservative error estimate for M.

Proposition 3: Let |\; — Aj| < eand |\; — A\j| < e
during the time period [t;,#2]. Then at ty, where
the eigenvalues start to differ again by more than e,
the error in M introduced by the approximation in
Eq. (31) will be no more than of order .

Proof: Without loss of generality, let’s assume
that only the first two eigenvectors are close, i.e.
|[A\1 —Az| < e. The time period [t1, 2] spans the time
where both eigenvalues and eigenvalue derivatives
are almost equal. At worst the A; and Ay would
differ by e.

)\2 = )\1 + € (40)

5

Eq. (25) can be written as

M = /\1E12 + €E2 + Z /\2E1

i=3

(41)

For this case the approximation in Eq. (31) only af-
fects Q4. Note that this ;5 term controls the rota-
tional speed of the c; and c; eigenvectors in the plane
spanned by the two. Eq. (41) shows that when-
ever there are nearly repeated eigenvalues, then the
subspace spanned by the corresponding eigenvectors
is important, not the individual eigenvectors them-
selves. Therefore approximating Q2 as in Eq. (31)
will lead to an error in M of the order of € as long
as |A\ — Ag| < e ]

Note that if the eigenvectors remain continuous
during [t1, t2], then no further modifications need be
done after time t,. However, whenever the eigenval-
ues and eigenvalue derivatives are equal it is possible
for the eigenvectors to be discontinuous. Let the two
integer sets R~ and R be defined as

R~ ={1,2,....r} (42)

Rt ={r+1,r+2,....n} (43)

Proposition 4: Let M be a continuous symmetric,
positive definite matrix with a continuous derivative
M. Assume M has 7 repeated eigenvalues which have
equal derivatives. Then if ¢; (1 € R™) is discontinu-
ous then ;) is either discontinuous or zero for every
p € RT.

~ Proof: Using Egs. (7) and (26) we can express
E; as

Bi== Quejel +ect)  itj (44)
j=1

Without loss of generality, let the first r eigenvalues
be repeated. Then F;_, is defined as

E_,=E +...+E, (45)
Since the first r eigenvalues and their derivatives are
equal, Eq. (27) can be written as

M = ).\1E1—r + )\1E.1_r + Z ).\jEj + )\jE]‘ (46)
j=r+1

Since M is continuous, the right hand side of the
above equation also would have to be continuous
whenever any eigenvectors were discontinuous. By
definition the subspace E;_, is invariant to any in-
stantaneous change of base eigenvectors. However,

American Institute of Aeronautics and Astronautics



the terms E-'l_,, and Ej need further investigation.
Using Eq. (44) E;_,. can be reduced to

El—r = — Z Z Qij(CjC? + C,'C,]r) (47)
i=1 j=r+1
where the fact was used that Qj; = —€;;. As ex-

pected, no £);; terms relating the eigenvectors of two
repeated eigenvalues appear in E_,.

The only possibility for E\_, to be invariant to
any discontinuity in ¢; (1 € R™) is for Q;, to be either
discontinuous or zero for every p € R*. Studying
Eq. (44) the same can be said for E] |

Note that the eigenvector derivatives ¢; (i € R™)
could be anything as long as A\; = A; and A\; = A;
(i,7 € R™).% However, as soon as either the eigen-
values or their derivatives become distinct the corre-
sponding eigenvectors and derivatives are uniquely
determined again. If the eigenvectors are erro-
neously continuously forward integrated, then the
corresponding C' matrix would no longer diagonal-
ize the current M (z) matrix. What is needed is a
method to rotate the two eigenvectors within the
plane spanned by them such that they once again
diagonalize the mass matrix.

V. Stabilization using the Jacobi Method

No matter what method we use, and regardless
of whether or not nearly repeated eigenvalues have
been encountered, numerical integration errors de-
grade accuracy of the eigenvector matrix C. With-
out further adjustments the errors will accumulate
and C will no longer properly diagonalize the current
mass matrix M(z,t). These adjustments are partic-
ularly desirable during periods when the €;; terms
are only being approximated and to handle cases of
discontinuous eigenvectors.

We introduce a stabilization method base on the
Jacobi method.'? The Jacobi method has been used
for over a century because of its simplicity and sta-
bility. It finds the eigenvalues and eigenvectors of a
symmetric matrix M by pre- and postmultiplying it
by successive orthogonal rotation matrices P; as is
briefly outlined below.'?

Let P; be the i-th rotation matrix and A; be the
matrix obtained after pre- and postmultiplying M
by the first £ P; matrices.

PL.. . PEPIMPyP, ... P, = Ay (48)
As k — oo the matrix Ax becomes diagonal with its
entries being the eigenvalues of M. The eigenvector
matrix C' as defined in Eq. (1) is

c=prP.. PP (49)

6

The orthogonal rotation matrix Py is defined such
that the ,j-th entry of Ay is zeroed. The matrix
Py, is a diagonal matrix with the ¢-th and j-th di-
agonal elements being cosf. The only two non-zero
off-diagonal elements are the ¢,7-th element being
—sinf and the j,i-th element being sinf. The rota-
tion angle @ is defined as

9 tan 2 50
= 5 arctan w ( )
(X3 217
if the diagonal elements are distinct or as
™
0=— 51

if the diagonal elements are equal. Once the off-
diagonal elements are small in magnitude, the the
procedure is shown to have quadratic convergence.!3

In the eigenfactor mass matrix parameterization
method presented in this paper we already have a
close approximation C of the eigenvector matrix C'.

CMCT = A (52)
Since the numerical integration is not perfect, or
since some ();; terms are only being approximated,
the Ay matrix may not be exactly diagonal. To can-
cel the first off-diagonal element the rotation matrix
P, is constructed and operated on AO.
PTA P, = A, (53)
This process is then repeated for each of the re-
maining off-diagonal elements. Assuming the matrix
has k significant off-diagonal elements, the adjusted
eigenvector matrix C’ad becomes
Coa=Pr...PIC (54)
Please note that each P;C' update does not involve a
full matrix multiplication. Actually only two eigen-
vectors are linearly combined (i.e. rotated) to form
the new eigenvectors.

If no eigenvector discontinuity had occurred, then
it was shown above that the error due to approxi-
mating Q;; would be of the order of €* for the case
of distinct eigenvalue derivatives and at least of or-
der € for the case of repeated eigenvalue derivatives.
In either case the off-diagonal terms of Ay would
be very small to begin with. A Jacobi sweep refers
to the process of sequentially zeroing each of the k
off-diagonal elements. Since the Jacobi method has
quadratic convergence and the off-diagonal terms are
of order €® or smaller to begin with, one Jacobi sweep
will suffice to cancel any diagonalizing error of the C
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matrix within machine accuracy for that particular
integration step.

This Jacobi sweep should be used whenever two
eigenvalues are near-equal and );; terms are be-
ing approximated. Performing the approximations
without the Jacobi sweeps was usually found to be
stable for a single eigenvalue crossing. However, for
repeated cases of near-equal eigenvalue events, the
errors accumulate and drive the integration unsta-
ble in some simulations. Performing these Jacobi
sweeps ensures that the current C' and A matrices
diagonalize the current mass matrix M(z) to a high
degree of approximation and stabilizes the integra-
tion process.

For the case of repeated eigenvalues there is an
infinite choice of eigenvectors that will diagonalize
M. It was shown that for non-repeated eigenvalue
derivatives there is a unique choice of eigenvectors
that will generate the proper M matrix. The Jacobi
method will only correct C such that it diagonalizes
M without any regard to M. Therefore small resid-
ual state errors can still be expected even after the
Jacobi sweep. However, numerical studies showed
that the Jacobi sweeps dramatically improve the ac-
curacy and the long term stability of the orthogonal
square root eigenfactor parameterization.

If eigenvalues and their derivatives are equal, it
was shown above that it is possible for the eigen-
vectors to be discontinuous. During the integration,
discontinuous eigenvectors will cause rapidly grow-
ing off-diagonal terms of the Ao matrix if no further
action is taken. However, by performing a Jacobi
sweep after each integration step where near-equal
eigenvalues occur automatically rotates the two cor-
responding eigenvectors such that they again diago-
nalize the current M(z,t). Therefore discontinuous
eigenvectors are handled with the same Jacobi sweep
process used to ensure long-term stability.

During the periods where no eigenvalues are close
to being equal (the common case), it is not neces-
sary to perform a Jacobi sweep after each integration
step. Numerical studies showed that performing it
after each integration step caused a slightly larger
long term error than simply performing it periodi-
cally due to an increased number of arithmetic op-
erations.

VI. Results

A preliminary study of the orthogonal square root
eigenfactor parameterization of a mass matrix was
performed on the three-link system shown in Fig-
ure 2. The system was chosen to have a low num-
ber of degrees of freedom to simplify the analysis of
the method. Also, since the system is conservative

the total system energy F remains constant and will
provide a convenient way of measuring the current
solution error.

Fig. 2 Three-Link Manipulator System

All masses and rods were set to unit weight and
length. The spring constant K was 0.2. The initial
orientation angles are #; = —90°, f; = —30° and
A3 = 0°. The forward integration was performed
with a variable step size Runge-Kutta method. The
classic fourth-order Runge-Kutta method was the
primary integrator which was compared to a third-
order Runge-Kutta method if the difference in states
between the two integration methods did not lie be-
tween two thresholds, then the integration step size
got either scaled up or down. In all simulations
run the high accuracy threshold was always set to
1.510~2 times the low accuracy threshold. To com-
pare two eigenvector matrices the Frobenius norm
was used. To compare solutions based on two differ-
ent integrations the average integration step size h
will be used. Assuming that the simulation involved
n integration steps h;, then h is defined as

_ 1 &
h:t—Zh? (55)
Iizo

The norm of the total energy error is defined as

1 [
| AE Jusosym= 7 / ARt (56)

The resulting eigenvalues time evolution for up to
20 seconds is shown in Figure 3. For rigid multi-link
system of order three or more no configuration was
found that would make eigenvalues become exactly
repeated. However, Figure 3 shows that A\, and A3
become very close at certain times. To track these
rapid changes where A\, & A3, a variable step size in-
tegration method is essential. Every time these two
eigenvalues become very close something interesting
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Eigenvalues

0 } f f
10
time[s]

Fig. 3 Eigenvalue Time History

happens to corresponding eigenvectors. Away from
anear eigenvalue encounter the eigenvectors oscillate
normally as is seen in their angular velocity measures
Q;; in Figure 4. However, every close approach of
A, and A3 causes the corresponding eigenvector axes
to “switch places.” This switching is seen as a clear
spike in the 93 time history in Figure 4.

Angular Velocities

time[s]

Fig. 4 Eigenvector Axis Angular Velocities

The following integration error studies were per-
formed with e set small small enough such that €;;
never invoked the linear approximation of Eq. (31).
Just the standard $ and C' equations are used. Case
1 is a simulation where no Jacobi sweeps are per-
formed. This is essentially the same as using the
method as proposed in Ref. 1. Case 2 is a simula-
tion where a Jacobi sweep is performed after each
integration step and in Case 3 the Jacobi sweep is
performed only periodically after each 7th integra-
tion step. The time history of the total energy error
for the first100 seconds is shown in Figure 5. For
each simulation the integration accuracy threshold
was 107° which resulted in an average step size of
about h = 0.04 seconds. Without any Jacobi sweeps,
the method clearly has a serious long term stability
problem. The energy errors grows more erratic with
time. Performing the Jacobi sweep after each in-
tegration step clearly smooths out the error curve.
However, the arithmetic is starting to add an energy
error of its own. Performing the Jacobi sweep only
periodically after each seventh integration step was
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found to stabilize and minimize the total energy er-
ror. For this case, the errors end up being on the
average about one order of magnitude smaller than
for the other two cases. This general behavior was
found to be true for all integration step sizes and
other system configurations tested.
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Fig. 6 Computational Accuracy Comparison

In Figure 6 the accuracy of the orthogonal square
root eigenfactor mass matrix parameterization is
compared to the accuracy obtained by performing
the inverse M~! directly. For the simple 3x9 sys-
tem an exact matrix inverse formulation was used.
For a given integration accuracy threshold the brute
force inverse method had one to two orders of mag-
nitude less accuracy. However, this was because the
accuracy threshold enforced a larger average integra-
tion step size than for the new method. For a fairer
comparison, Figure 6 compares the error norms rela-
tive to the average integration step size. Integrating
the eigenfactors provides only a small decrease in
accuracy compared to brute force inverse method.
The brute force inverse method would be very dif-
ficult to beat for this low order dynamical system
since it employs an exact matrix inverse. Taking
the inverse for larger systems is known to be com-
putationally very difficult and will inject significant
arithmetic error on every time step. However, the
integration of the eigenfactors is not expected to be
more difficult for higher order systems. The major
integration difficulties are already present in this low
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order system, since we have specifically addressed an
example with frequent occurence of near-repeated
eigenvalues. Therefore it is very encouraging to see
the eigenfactor method integration error comparable
to the exact brute force solution. For higher order
systems the eigenfactor method is expected to pro-
vide better accuracy and stability. Parallelization
of the present algorithm is easily accomplished and
this is conjectured to be an extremly important com-
putational feature for high-dimensional applications.
However, at present time this has not yet been nu-
merically verified and will be studied in future work.
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Fig. 7 Total Energy Error Evolution

To numerically study the integration accuracy of
the €;; approximations in Eq. (31), the € term was
set to 0.15. The integration accuracy threshold was
set to 107°. Between 4 and 5 seconds A» and A3 are
equal within this bound. The total energy norm for
up to 10 seconds is shown in Figure 7. The eigen-
values A2 and A3 are plotted as a comparison in the
background with their scale labeled on the right axis.
As expected, even with the Jacobi sweeps being per-
formed after any integration steps with §;; approx-
imations, there is still a distinct jump in the total
energy error when |A; — A3| < e. For the case where
the eigenvalues actually become equal and have dis-
tinct derivatives, a rough error estimate of €3 was
predicted. Even though the eigenvalues never actu-
ally become equal in this situation, the error is still
of the order of €3. The system was also found to be
stable for repeated cases of close eigenvalues, even
with this crude € threshold. When no Jacobi sweeps
were done and the ();; were only approximated as a
constant as proposed in Ref. 1 then the solution was
found to be unstable for the case of repeatetly close
eigenvalues.

Note that the € used in Figure 7 is much larger
than it would be normally used with this eigenfactor
method. With double precision accuracy the differ-
ence between two eigenvalues can be become much
smaller before any numerical difficulties occur. Since
the linear approximation of £);; usually results in er-
rors of the order of €3, choosing ¢ be to about 1e=>

9

would suffice for most applications.

VII. Conclusion

An improved orthogonal square root eigenfactor
parameterization of a symmetric, positive definite
mass matrix has been presented. A key feature of
this integration process proposed is the use of the Ja-
cobi method to stabilize the solution for the eigen-
factors. Repeated eigenvalues, repeated eigenvalue
derivatives and discontinuous eigenvectors can be
handled by this improved method as illustrated by
an example. This method lends itself very well to a
massively parallel computer implementation.
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