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This paper studies a three-body Coulomb virtual structure control problem. For a formation of three spacecraft flying freely
in deep space, actively controlled Coulomb forces are used to stabilize the formation to a shape-fixed triangular configuration.
The control problem is challenging because the system is nonlinear and nonaffine, while the direct control of all three sides at the
same time is often not implementable using only real charges. Firstly, a two-side switched control strategy is developed to control
the two sides with the worst shape errors such that the implementable charge control solution is guaranteed. However, analytical
and practical stability issues arise due to the discrete control time steps. Using the multiple Lyapunov functions analysis tool,
a stable switched control strategy is setup in a manner such that the activated error function is decreasing rapidly enough to
compensate for a potentially increased amount during the last uncontrolled control cycle. Thus all the error functions are made
Lyapunov-like and the global stability of the switched control strategy is guaranteed. Perfect convergence to desired triangular
shape is not physically achievable with Coulomb forces alone because the general triangular shape is not a natural equilibrium
solution. Numerical simulations illustrate the effectiveness of the stable switched control strategy.

I Introduction
A spacecraft virtual structure is a cluster or formation of space-

craft with a fixed relative configuration forming a desired shape to
satisfy mission sensor requirements. A feedback control strategy
is required to stabilize the spacecraft to the reference configura-
tion. The goal is to be able to place sensors at desired locations to
provide the required baselines to satisfy mission objectives. The
free-flying concept is attractive in that it allows for large sen-
sor baselines to be considered, and the overall cluster shape can
be changed over time to accommodate changing mission sens-
ing requirements. The virtual structure approach is a convenient
method to prescribe a coordinated behavior of the formation be-
cause this approach assumes the reference structure fixed in the
Hill frame. Reference 1 develops a formation feedback control
strategy to achieve the virtual structure control. The authors at
first assume that a rigid structure is in orbit, then use an inverse
dynamics method to determine a feedforward reference control us-
ing thrusters that can maintain the spacecraft in the rigid structure
configuration. At last a feedback control loop is utilized to stabi-
lize the spacecraft cluster about the virtual structure. This virtual
structure control is based on the thrusters’ capability to control the
three-dimensional motions of the satellites.

In contrast, this paper studies a Coulomb virtual structure control
problem. As compared to the traditional virtual structure control,
Coulomb virtual structure control is a very different problem be-
cause the direct controllability of the relative satellite positions is
not present. A Coulomb virtual structure uses only electrostatic
forces (Coulomb forces) to control the shape of the formation, and
not necessarily the formation’s inertial position and orientation.
The use of Coulomb forces to control spacecraft relative motion
was first investigated by King et. al. in 2002.2 Since then many
applications of the Coulomb formation flying (CFF) concept have
been studied. These include CFF equilibrium solutions,3–6 2-craft
Coulomb tether control,7–10 hybrid propulsion strategy combining
Coulomb forces and elestric thrusters,11 as well as spacecraft colli-
sion avoidance using Coulomb forces.12–14 Considering the plasma
environment in space, the Coulomb thrusting approach is applica-
ble in tight clustered space mission in GEO or in deep space where
the Debye shielding effect is not very strong and the separation
distances are within 100 meters.

The studies of open-loop equilibrium charge solutions and
Coulomb virtual tether control are related to Coulomb virtual struc-
ture control, but they focus on different aspects. The Coulomb
tether papers present the first examples of feedback stabilized vir-
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tual Coulomb structures.7–10 However, their control methodology
does not scale to systems with more than 2 spacecraft. Refer-
ences 15,16 and 17 are more closely related to the Coulomb virtual
structure control problem considered in this paper. Reference 15
studies constant charge invariant shape solutions for spinning three
craft Coulomb formation. It shows that only the collinear con-
figuration and expanding equilateral triangle configuration can be
invariant assuming a fixed spacecraft potential. Reference 16 in-
troduces the spinning 2-craft Coulomb tether concept. It is the
first work that analyses the open-loop stability of a Coulomb tether
with constant spacecraft charges, based on a linearized model. As-
suming the Coulomb tether flying in deep space, it shows that the
radial motion is locally stable if the spacecraft separation distance
is less then the Debye length. Reference 17 studies the three-
craft Coulomb tether problem. Based on a linearized model about
a collinear equilibrium configuration, a linear feedback control is
developed to stabilize the Coulomb tether to the collinear relative
equilibria. The nonlinear system converges to a neighborhood of
the desired equilibrium, but due to the approximation using lin-
earization technique, the size of the convergence neighborhood is
limited. General triangular formation shapes, or non-equiblibrium
collinear shapes, are not feasible with this control strategy.

The three-craft Coulomb virtual structure control is a good
start to the general N-craft Coulomb virtual structure problem.
Reference 18 studies a one-dimensionally constrained three-craft
Coulomb virtual structure control. Here a two stage control strat-
egy is developed to make the 1D three-craft formation converge
to a desired configuration. The first stage uses saturated control to
stabilize the relative motion of the formation. After the relative mo-
tion is stabilized, the second stage is engaged to control the shape
of the formation to converge to the desired shape. The control
convergence domains are found numerically. But for a symmetric
configuration case, analytical criterion is derived analytically. The
1D nature of this work allows for significant mathematical simplifi-
cations, and provides for a dynamical system where solving for the
charge products always leads to real and unique individual charge
solutions.

This paper extends the work in Reference 18 into three-
dimensional space. This extention results in a significant increase
in the complexity of the dynamical system, as well as the control
implementation. While the products of the spacecraft charges ap-
pear linearly in the dynamics, the mapping to individual charges
can yield imaginary solutions at times. Thus a standard inverse dy-
namics solution is not feasible here. Instead, a Lyapunov-based
nonlinear control strategy is sought which stabilizes the config-
uration of the 3-craft formation to an arbitrary triangular shape.
This paper studies how to develop an implementable control strat-
egy while still ensuring the stability of the system. One method
to guarantee an implementable control is to always control the
worst two sides of the triangle. However, such switching strat-
egy can cause stability issues due to the discrete control time steps.
Multiple Lyapunov functions analysis is a tool to analyze the sta-
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bility of a switched system. This paper investigates how to modify
the switched control strategy such that the stability of the charged
spacecraft virtual structure system is ensured. Because the gen-
eral triangular shape (except for the collinear configuration case)
doesn’t have an equilibrium charge solution, the asymptotical sta-
bility is not achievable. Numerical simulations illustrate the closed-
loop performance of the new 3-craft charge control strategy.

This paper makes several simplifications to investigate the con-
trol of a triangular configuration of a Coulomb virtual structure.
This work is the first step into the Coulomb virtual control in real
situation, in which the gravitational forces, Debye shielding et. al.
are considered. The control problem gets complicated fast when
the discrete control input is considered. The influences of the grav-
itational forces and Debye shielding are beyond the scope of this
paper and are the next step to the Coulomb virtual control problem.

m3, q3
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m2, q2
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r23

r13
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Figure 1: Scenario of the 3-body system.

II Separation Distance Equations Of Motion
This paper considers a three spacecraft cluster flying in the 3-

dimensional free space where there are no external forces acting
on the system. The scenario of the 3-body Coulomb virtual struc-
ture is shown in Figure 1. Assuming point-charge models for the
spacecraft, the Coulomb force between the ith and j th spacecraft
exerted by the ith spacecraft is given by:14

Fij = −kc
qiqj
r2ij

(
1 +

rij
λd

)
exp

(
− rij
λd

)
êij, (1)

where kc = 8.99 × 109 Nm2C−2 is the Coulomb constant, qi is
the charge of the ith spacecraft which can be actively controlled,
rij = ‖rij‖ is the separation distance between the ith and j th

spacecraft, êij is the unit vector pointing from the ith to j th space-
craft. The parameter λd is the Debye length which characterizes
the plasma shielding effect. It is influenced by the temperature and
the ion/electron density. The Debye length ranges within [0.02,
0.4]m in LEO, [142, 1496]m in GEO and [20,40]m at 1AU in deep
space.2 Generally it is assumed that the Coulomb thrusting is ap-
plicable only when the separation distance is less than the local
Debye length. In developing the control algorithm, it’s assumed
that λd =∞ which indicates that the plasma shielding effect is not
explicitly considered.

By the assumption that there are no external forces acting on the
3-body system, the inertial equations of motion (EOMs) are given
by:

m1r̈1 =− kc
q1q2
r212

ê12 − kc
q1q3
r213

ê13, (2a)

m2r̈2 =kc
q1q2
r212

ê12 − kc
q2q3
r223

ê23, (2b)

m3r̈3 =kc
q1q3
r213

ê13 + kc
q2q3
r223

ê23, (2c)

m1

m2

m3

r13

r12

r23

α1

α2

α3

Figure 2: Geometry of the 3-body system.

wheremi is the mass of the ith spacecraft, ri is the inertial position
of the ith spacecraft.

This paper intends to develop a control algorithm to make the
3-body formation assume a certain desired shape. The shape of
a 3-body formation can be completely defined by the three sepa-
ration distances between any two spacecraft. Mathematically, the
objective of the control to be making the three separation distances
(r12, r23, r13)T converge to the desired distances (r∗12, r

∗
23, r

∗
13)T .

The first step is to identify the separation distances’ EOMs.
For the notational convenience, a vector ξ is defined as a func-

tion of the charge products:

ξ = (ξ1, ξ2, ξ3)T =

(
kc
q1q2
r212

, kc
q2q3
r223

, kc
q1q3
r213

)T
. (3)

Based on the inertial EOM in Eq. (2), the relative positions’
EOMs are found:

r̈12 = r̈2 − r̈1 = ξ1

(
1

m1
+

1

m2

)
ê12 − ξ2

1

m2
ê23 + ξ3

1

m1
ê13,

(4a)

r̈23 = r̈3 − r̈2 = −ξ1
1

m2
ê12 + ξ2

(
1

m2
+

1

m3

)
ê23 + ξ3

1

m3
ê13,

(4b)

r̈13 = r̈3 − r̈1 = ξ1
1

m1
ê12 + ξ2

1

m3
ê23 + ξ3

(
1

m1
+

1

m3

)
ê13.

(4c)

The relationship between the separation distance’s acceleration
r̈ij and the relative acceleration r̈ij is achieved by differentiating
the identity rij =

√
rij · rij twice:

r̈ij = r̈ij · êij +
1

rij
‖ṙij‖2

(
1− cos2 ∠(rij , ṙij)

)
. (5)

where ∠(rij , ṙij) denotes the angle between the two vectors rij
and ṙij .

Substituting the relative positions’ EOMs in Eq. (4) into Eq. (5),
yields the separation distances’ EOMs:

r̈12 = ξ1

(
1

m1
+

1

m2

)
+ ξ2

1

m2
cosα2 + ξ3

1

m1
cosα1 + f1,

(6a)

r̈23 = ξ1
1

m2
cosα2 + ξ2

(
1

m2
+

1

m3

)
+ ξ3

1

m3
cosα3 + f2,

(6b)

r̈13 = ξ1
1

m1
cosα1 + ξ2

1

m3
cosα3 + ξ3

(
1

m1
+

1

m3

)
+ f3,

(6c)

where αi is the angle of the two sides cornered at the ith spacecraft
as shown in Figure 2, fi is given by:

f1 = ‖ṙ12‖2
(

1− cos2 ∠(r12, ṙ12)
)
, (7a)

f2 = ‖ṙ23‖2
(

1− cos2 ∠(r23, ṙ23)
)
, (7b)

f3 = ‖ṙ13‖2
(

1− cos2 ∠(r13, ṙ13)
)
. (7c)
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III Virtual Structure Control Strategy
The objective of the Coulomb virtual structure control is to sta-

bilize the cluster to the desired triangle. The inertial orientation is
not concerned. Mathematically the goal of the control is to make
the separation distances converge to the given desired distances:

(r12, r23, r13)T → (r∗12, r
∗
23, r

∗
13)T . (8)

This paper assumes that the desired shape of the 3-body system is
stationary, which means that the three separation distances are con-
stant. Using the state vectorX = (r12, r23, r13)T , the separation
distances’ EOMs in Eq. (6) are rewritten into a concise form as:

Ẍ = [B]ξ + f , (9)

where f = (f1, f2, f3)T , and the matrix [B] is

[B] =


(

1
m1

+ 1
m2

)
cosα2
m2

cosα1
m1

cosα2
m2

(
1
m2

+ 1
m3

)
cosα3
m3

cosα1
m1

cosα3
m3

(
1
m1

+ 1
m3

)
 .

(10)

Define the state tracking error to be

∆X = X −X∗, (11)

where X∗ = (r∗12, r
∗
23, r

∗
13)T is the array of desired separation

distances.
The objective of the control is to find an implementable solution

of ξ to make ∆X → 0. Note that ξ is a linear function of the
charge products. But the individual charges of spacecraft are the
ultimate control inputs of the control system, which makes this a
non-affine control problem. Not all the combinations of the charge
products result in real solutions of individual charges, some com-
binations result in complex values of individual charges. Those
complex solutions of individual charges are not physically imple-
mentable. This issue will be discussed and addressed later on.

III.A 3-Side Control Law
First, let us consider the case where all three sides are to be con-

trolled at once. As will be seen, this three-side control solution
does not always result in real charge solutions due to the non-affine
nature of the Coulomb forces. Let us define a Lyapunov function
candidate as

V =
1

2
∆XT [K]∆X +

1

2
∆ẊT∆Ẋ, (12)

where [K] is a 3 × 3 positive definite matrix. Let us use [K] =
k[I3×3] for simplicity with k > 0 being constant. Taking a first-
order time derivative of V and utilizing the EOMs in Eq. (9), yields:

V̇ = ∆ẊT ([K]∆X + ∆Ẍ
)

= ∆ẊT ([K]∆X + [B]ξ + f
)
. (13)

To guarantee overall stability set V̇ to be a negative semi-definite
function:

V̇ = −∆ẊT [P ]∆Ẋ, (14)

where [P ] is a 3× 3 positive definite matrix. Note that this form of
V̇ is negative semi-definite, not negative definite. This is because
V is a function of both ∆X and ∆Ẋ), but V̇ is only explicitly a
function of only ∆Ẋ .

Substituting Eq. (14) into Eq. (13) and solving for ξ, yields:

ξ = [B]−1(−[K]∆X − f − [P ]∆Ẋ). (15)

Note that even though V̇ is negative semi-definite, the control
law given by Eq. (15) is driving the state tracking error ∆X con-
verge to zero. This can be proved by the following two steps. The
second-order time derivative of V is:

V̈ = −2∆ẊT [P ]∆Ẍ. (16)

When V̇ = 0 which indicates ∆Ẋ , V̈ = 0. Taking a third-order
time derivative of V :

...
V = −2∆ẌT [P ]∆Ẍ − 2∆ẊT [P ]∆

...
X. (17)

When V̇ = 0, it’s obvious that
...
V ≤ 0 and

...
V = 0 only when

∆X = 0. Thus the system is asymptotically stable if the control
law given by Eq. (15) can be implemented.

From the definition of ξ in Eq. (3), the individual charges are
solved through:

q1 =
√

ξ1ξ3
ξ2kc

|r12r13|
|r23|

q2 = sign(ξ2ξ3)
√

ξ1ξ2
ξ3kc

|r12r23|
|r13|

q3 = sign(ξ3)
√

ξ2ξ3
ξ1kc

|r23r13|
|r12|

. (18)

Notice that Eq. (18) doesn’t necessarily result in real solutions of
the individual charges. If ξ1 · ξ2 · ξ3 < 0, the individual charges are
imaginary and are not physically implementable. By the definition
in Eq. (3), ξ1 · ξ2 · ξ3 ∝ (q1q2q3)2. For an implementable solution
of ξ, the following inequality must be satisfied:

ξ1 · ξ2 · ξ3 ≥ 0. (19)

However, the inequality in Eq. (19) is not guaranteed from the 3-
side control algorithm in Eq. (15). Some special strategy has to be
engaged to make the control algorithm physically implementable.

III.B 2-Side Control Switch Strategy
The previous section develops a Lyapunov-based control law

that controls the three triangle side-lengths at once. The control is
asymptotically stable, but it’s not always physically implementable
because at times it requires imaginary charges. If we control two
sides at once instead of controlling three sides, correspondingly a
subset of the state-space EOMs in Eq. (9) are considered, then the
control input matrix [B] becomes a 2× 3 matrix. Utilizing the null
space of the control input matrix, there is a family of solutions that
have the same response. An implementable solution can always be
found out from this solution family. The use of the null space of
the input matrix to determine implementable real charge solutions
is discussed in Reference 18.

This paper proposes a strategy that always controls the “worst”
two sides of the triangle. By continuously switching to control the
“worst” two sides, it’s expected that the system is stabilized and the
state tracking error converge to zero. However, the actual switching
strategy must be carefully chosen to avoid making the system un-
stable. This paper defines the switching criterion by investigating
the three sub-Lyapunov functions:

Va =
1

2
k(∆X2

1 + ∆X2
3 ) +

1

2
(∆X2

1 + ∆X2
3 )

,
k

2
∆XT

a ∆Xa +
1

2
∆ẊT

a ∆Ẋa,

(20a)

Vb =
1

2
k(∆X2

1 + ∆X2
2 ) +

1

2
(∆X2

1 + ∆X2
2 )

,
k

2
∆XT

b ∆Xb +
1

2
∆ẊT

b ∆Ẋb,

(20b)

Vc =
1

2
k(∆X2

2 + ∆X2
3 ) +

1

2
(∆X2

2 + ∆X2
3 )

,
k

2
∆XT

c ∆Xc +
1

2
∆ẊT

c ∆Ẋc.

(20c)

The subscripts (a, b, c) denote the errors of the two sides cornered
at the (1st, 2nd, 3rd) spacecraft respectively. The final Lyapunov
function candidate being controlled is chosen to be the largest sub-
Lyapunov function:

Vctrl = max{Va, Vb, Vc}. (21)

Once the control ξ is determined, the motions of the three sides
are determined by Eq. (9). In order to develop a control algorithm
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to only stabilize two sides at once, the dynamics of the two sides
being controlled are:

Ẍctrl = [Bctrl]ξ + fctrl, (22)

where [Bctrl] is a 2× 3 matrix with the two rows selected from the
matrix [B] according to the two sides being controlled.

Taking a first-order time derivative of Vctrl, assuming the deriva-
tive is taken not at the time of switch, yields:

V̇ctrl = ∆ẊT
ctrl
(
k∆Xctrl + [Bctrl]ξ + fctrl

)
. (23)

Let V̇ctrl forced to be

V̇ctrl = −∆ẊT
ctrl[P2]∆Ẋctrl, (24)

where [P2] is a 2×2 positive definite matrix. Substituting Eq. (23)
into Eq. (24), yields:

[Bctrl]ξ = −k∆Xctrl − fctrl − [P2]∆Ẋctrl. (25)

Note that [Bctrl] is a 2 × 3 matrix. As mentioned in the beginning
of this section, there is a family of solutions of ξ that satisfy the
control condition in Eq. (25). Let us begin with the minimum norm
solution to Eq. (25):

ξ̂ = [Bctrl]
†(− k∆Xctrl − fctrl − [P2]∆Xctrl

)
, (26)

where [Bctrl]
† = [Bctrl]

T ([Bctrl][Bctrl]
T )−1 is the pseudo-inverse of

the matrix [Bctrl]. Note that ξ̂ in Eq. (26) is the minimum solution
to Eq. (25) which minimizes the norm of the ξ vector. The general
solution to Eq. (25) can be written as:

ξ = ξ̂ + γ · bctrl, (27)

where bctrl is a 3 × 1 base vector of the null space of the matrix
[Bctrl]. Because [Bctrl] is a 2 × 3 matrix, it always has a nonempty
null space. The scalar parameter γ ∈ R can be any real number.
The flexibility of the value of γ provides a single degree of freedom
(DOF) that can be utilized to find an implementable (real spacecraft
charge) control solution.

So far the implementation problem has been narrowed down to
finding a proper value of γ to make the solution ξ implementable.
Reiterate the implementability criterion as:

ξ1 · ξ2 · ξ3 ≥ 0. (28)

Substituting Eq. (27) into the criterion, yields:

g(γ) , ξ1 · ξ2 · ξ3 =
(
ξ̂1 + γbctrl(1)

)(
ξ̂2 + γbctrl(2)

)(
ξ̂3 + γbctrl(3)

)
≥ 0,

(29)

where ξ̂i is given by the minimum norm solution in Eq. (26). The
next step is to find a value of γ that satisfies the inequality g(γ) ≥
0. Note that g(γ) is a cubic equation of γ. The two examples of the
function g(γ) are illustrated in Figure 3. In both cases, there are
two continuous intervals of γ that make g(γ) ≥ 0. Generally, even
when there exist a pair of imaginary solutions, the open region (2)
in the case that bctrl(1)bctrl(2)bctrl(3) > 0 and the open region
(3) in the case that bctrl(1)bctrl(2)bctrl(3) < 0 still exist. This
indicates that there always exists a family of solutions that make the
2-side control implementable with the same dynamical behavior.

Because there is an infinite number of solutions that make the
control implementable, a solution is chosen which minimizes the
spacecraft charge magnitudes to simplify the technical implemen-
tation of this charge control solution, this extra DOF is utilized to
find an optimal solution that minimizes the spacecraft charge mag-
nitudes. A charge cost function is defined:

J(γ) =

3∑
i=1

q2i . (30)
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Figure 3: Examples of g(γ) function in two cases.

Reference 18 develops an algorithm based on Newton’s method to
search the optimal solution of γ that minimizes the cost function
J(γ) subject to the implementation requirement g(γ) > 0. The
same algorithm is applied in this paper to determine the charge-
optimal solution.

In the ideal case with the control being continuous, the Lya-
punov function being controlled is continuous and non-increasing.
However, in praxis the control frequency is always limited result-
ing control cycles of finite duration. The discrete control time step
makes the Lyapunov function being controlled discontinuous at the
switch point. This discontinuity breaks down the stability proof
based on continuous Lyapunov function. The next section utilizes
a multiple Lyapunov function analysis tool to analyze the stability
of the switched system and develops a stable switch strategy with
present of the limited control time step.

IV Multiple Lyapunov Functions Analysis
The last section designs a switching control strategy that always

controls the “worst” two sides of the triangle, with the “worst” two
sides defined by the corresponding Lyapunov function candidates.
Stability is ensured if the switching can occur infinitely fast. The
action of the switching may cause stability issues if the switching
occurs over finite time steps. The tracking error of the uncontrolled
triangle side can become the largest error during the finite control
interval.

Multiple Lyapunov functions for switched systems is a tool to
analyze this type of systems with discretely switched control ob-
jectives.19 Before analyzing the switched system, it’s necessary to
define several concepts.

Definition A switched system is a simple case of a hybrid system
that is of multi-modal, while the system switches in a way that there
are finite switches in finite time.19
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Definition Control cycle period is the time period while the con-
trol has to be constant without updating, it’s limited by the hard-
ware components such as sensors and actuators. The value of the
control cycle period is constant.

Definition Switch cycle period is the time period during when the
active Lyapunov function hasn’t been switched. The value of the
switch cycle period is not constant, the minimum possible value is
equal to the control cycle period.

The switched control developed in the last section switches ac-
cording to the three Lyapunov functions defined in Eq. (20). Now
the switch frequency is constrained by the control cycle period.
The maximum switch frequency is the inverse of the control cy-
cle period. This satisfies the definition of the switched system that
there are finite switches in finite time.

IV.A Stability Analysis
The stability of a switched system can not be characterized using

only the Lyapunov stability theorem of a continuous system. Even
when all the Lyapunov function rates of the activated models are
negative semi-definite, the system can still be unstable due to the
control objective switching.

Figure 4 shows a simulation example of the three-body Coulomb
virtual structure control using the continuous control strategy de-
veloped in the previous section, but implemented with finite control
cycles. Figure 4(a) shows the distance errors, Figures 4(b)–4(d)
show the Lyapunov functions in different time ranges. The plots
show that the system is stable during Region 1, but unstable during
Region 2. Special tools should be engaged to explain and analyze
this behavior.

Branicky’s contribution in Reference 19 is a milestone in analyz-
ing nonlinear hybrid system. He proves several theorems that jus-
tify the stability of different hybrid systems based on Lyapunov’s
stability theorem. This paper employs Theorem 2.3 from Refer-
ence 19 repeated here for clarity:

Theorem 1 (Theorem 2.3 in Reference 19) Suppose we have can-
didate Lyapunov functions Vi, i = 1, · · · , N and vector fields
ẋ = fi(x). Let S be the set of all switching sequences associated
with the system.

If for each S ∈ S we have that for all i, Vi is Lyapunov-like
for fi and xS(·) over S|i (S|i denotes the endpoints of the times
that system i is active), then the system is stable in the sense of
Lyapunov.

where “Lyapunov-like function” is defined as:

Definition (Reference 19) Given a strictly increasing sequence of
times T in R, we say that V is Lyapunov-like for function f and
trajectory x(·) over T if:

• V̇ ≤ 0 when the corresponding mode is activated

• V is monotonically nonincreasing on E(T )

where E(T ) denotes the even sequence of T : t0, t2, t4, · · · .
�

Theorem 1 explains the behavior in Figure 4. Figure 4(c) shows
a snapshot at Region 1. It can be seen that at every other switch-
ing time, each Lyapunov function candidate is less than its value at
the time point that is two switching cycles before. By Theorem 1,
the Lyapunov function candidates (Va, Vb, Vc) are Lyapunov-like
and the system is stable in this region. Figure 4(d) is a snap-
shot during Region 2. In this case, the control switches at the
maximum frequency and the switching cycle period is equal to
the control cycle period. Even though during each control cycle
the controlled Lyapunov function is decreasing, the un-controlled
Lyapunov functions increase faster than the controlled Lyapunov
function’s decreasing rate. At every other switching time, each
Lyapunov function candidate is greater than its value at the time
that is two switching periods earlier. So the Lyapunov function
candidates (Va, Vb, Vc) is not Lyapunov-like during Region 2, the
stability is not ensured in this region.

The stability of the switched control strategy given by Eq. (21)
and Eq. (27) is not guaranteed because the Lyapunov function can-
didates (Va, Vb, Vc) are not guaranteed to be Lyapunov-like.
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Figure 4: Simulation example of the unstable switch control
strategy.
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IV.B Switched Control Stability Requirements
Theorem 1 explains why the stability of switched control strat-

egy given by Eq. (21) and Eq. (27) is not ensured. This section
improves the control strategy to make the Lyapunov function can-
didates Va–Vc satisfy the Lyapunov-like conditions, such that the
system is made stable even with discrete non-zero control cycles.

Assume that during one switching cycle Vβ is the controlled
Lyapunov function. The corresponding two sides being controlled
are denoted as ith and j th sides, the uncontrolled side is the kth side.
Here “uncontrolled” doesn’t mean the control won’t affect the kth

side, but the kth is not taken into consideration in developing the
control algorithm. Note that when Vβ is under control, the errors
in the ith and j th sides are decreasing, but the trend of the error in
the kth side is undetermined.

Figure 4(d) shows an example that when Va is decreasing, Vb
and Vc are increasing at a very high rate. This means that the er-
rors in the L12 and L13 sides are decreasing, but the error in the
L23 side is increasing dramatically and destroys the stability of the
system. To ensure stability of the system, the uncontrolled side’s
behavior can not be neglected.

Note that the control in Eq. (27) makes the errors in both of the
two sides ith and j th decreasing. The error in the uncontrolled side
needs to be investigated. Define three error functions in the same
form as the Lyapunov function candidates:

V1 =
k

2
∆X2

1 +
1

2
∆Ẋ2

1 , V2 =
k

2
∆X2

2 +
1

2
∆Ẋ2

2 ,

V3 =
k

2
∆X2

3 +
1

2
∆Ẋ2

3 . (31)

Without loss of generality, rearrange the state vector in the form

X =

(
Xctrl

Xuc

)
, (32)

where Xctrl is composed of two distance errors corresponding to
the two controlled side, Xuc denote the distance error of the un-
controlled side. Correspondingly the EOM is rewritten to be:(

Ẍctrl

Ẍuc

)
=

[
[Bctrl]
Buc

] (
ξ̂ + γbctrl

)
+

(
fctrl
fuc

)
, (33)

where Buc is a 1 × 3 vector that is the line in the matrix [B] cor-
responding to the uncontrolled side, fuc is the component of the
vector f corresponding to the uncontrolled side. Substituting ξ̂ in
Eq. (26) into Eq. (33) and carrying out the algebra, yields:

(
Ẍctrl

Ẍuc

)
=

 −k∆Xctrl − [P2]∆Ẋctrl

Buc[Bctrl]
†(− k∆Xctrl − [P2]∆Ẋctrl · · ·

−fctrl
)

+ γBucbctrl + fuc

 .

(34)

Taking a time derivative of the error function of the uncontrolled
side Vuc and substituting Ẍuc, yield:

V̇uc =k∆Ẋuc(∆Xuc + ∆Ẍuc)

=k∆Ẋuc
(

∆Xuc +Buc[Bctrl]
†(− k∆Xctrl

− [P2]∆Ẋctrl − fctrl
)

+ γBucbctrl + fuc
)
. (35)

Eq. (35) shows that the sign of the uncontrolled side’s error is unde-
termined. Even though there are two parameters [P2] and γ that can
be adjusted, this flexibility doesn’t guarantee there exists a solution
to make V̇uc negative because in some cases controlling three sides
is impossible.

To find a way to solve this problem, it is beneficial to take a
closer look at the unstable situation shown in Figure 4(d). Note
that the three Lyapunov function candidates are actually the com-
binations of the error functions:

Va = V1 + V3, Vb = V1 + V2, Vc = V2 + V3. (36)
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Figure 5: Unstable switch analysis.

Figure 5 shows the details of the Lyapunov function candidates
and the error functions during several unstable switches. In Fig-
ure 5(a), during the nth switch cycle, V̇c < 0 while V̇a and V̇b are
positive. V̇c < 0 indicates V̇2 < 0 and V̇3 < 0. This is verified by
Figure 5(b). So Va,b > 0 is due to the excessive increasing of V1,
as shown in Figure 5(b). At the beginning of the next control cycle,
(n+1)th control cycle, it is identified that Va is the largest Lypunov
function candidate. According to the switch strategy in Eq. (21),
the controller switches to control Va which indicates V1,3 < 0 as
shown in Figure 5(b). Focusing on V1 in Figure 5(b), one can see
that during the (n + 1)th control cycle, V1 is controlled such that
V̇1 < 0. But the rate of decreasing of V1 is smaller than its increas-
ing rate during the nth control cycle. This results in that at the next
switch time (at the point C in Figure 5(b)), V1 hasn’t decreased to
the same level as the value at the beginning of the nth control cycle
(at the point A). That is V (C)

1 > V
(A)
1 . According to Branicky’s

theorem in Theorem 1, V1 is not Lyapaunov-like and the stability
is not guaranteed.

By the above analysis, it can be concluded that the instability
comes from two sources:

1. The decreasing rate of the error function of the new controlled
side is not big enough to compensate for its increased amount
during the last control cycle.

2. The new, uncontrolled error function is growing too fast.

Upon entering a new control objective switch, both the new un-
controlled and the new controlled sides’ error functions need to
be taken care of to ensure the Lyapunov function candidates to be
Lyapunov-like. Corresponding to Figure 5(b), the magnitude of the
slope of V1 during the (n + 1)th control cycle should be greater
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than the slope during the nth control cycle. The increasing rate of
V2 during the (m + 1)th control cycle should be less than its de-
creasing rate during the nth control cycle. Figure 6 illustrates this
idea. In this way, V (C)

1 < V
(A)
1 and V (C)

2 < V
(A)
2 . V3 is always

being controlled during the two control cycles so it’s automatically
satisfied that V (c)

3 < V
(A)
3 . Thus all of the Lyapunov function

candidates are Lyapunov-like during the two control cycles.
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Figure 6: Hand-Drawn Illustration of the new switch strategy
effect.

To take care of the new controlled side, which indicates this side
was uncontrolled over possibly several control cycles, the first step
is to determine the requirement to remain Lyapunov-like for this
side. Let Vm denote the new controlled side’s error function. The
requirement for this side to be Lyapunov-like is that the change of
the corresponding error function in the new switch cycle ∆V

(n+1)
m

should be less than its change in the previous switch cycle ∆V
(n)
m .

This can be expressed mathematically in the way:∫
(n+1)

V̇ (n+1)
m dt < −∆V (n)

m , (37)

where
∫
(n+1)

means the integration across the (n + 1)th switch
cycle. Because the control cycle period is very small, the inequality
in Eq. (37) is approximated by

V̇ (n+1)
m ∆t < −∆V (n)

m , (38)

where ∆t is the control cycle period which is constant. This re-
quires the error function rate V̇ (n+1)

m should be less than a certain
value:

V̇ (n+1)
m < −∆V (n)

m /∆t. (39)

Because the subscriptm denotes the new controlled side, V̇ (n+1)
m is

determined to be negative. If ∆V
(n)
m is negative which means Vm

decreases in the nth control cycle, then the requirement in Eq. (39)
is automatically satisfied. Otherwise, a strategy that makes the in-
equality in Eq. (41) always satisfied is expected. Taking a time
derivative of Vm then substituting the EOM of Xm in Eq. (33)
yields:

V̇m = ∆Ẋm
(
k∆Xm +Bm[Bctrl]

†(−k∆Xctrl

− [P2]∆Ẋctrl − fctrl) + fm
)
. (40)

In this expression of V̇m only the control coefficients k and [P2]
are not dependent on the states and can be utilized to adjust the
value of V̇m. This paper choose to change the matrix [P2] to make

the error functions to be Lyapunov-like. Substituting Eq. (40) into
the inequality in Eq. (41), yields:

∆ẊmBm[Bctrl]
†[P2]∆Ẋctrl > ∆Ẋm

(
k∆Xm + fm

+Bm[Bctrl]
†(−k∆Xctrl − fctrl)

)
+

∆V
(n)
m

∆t
. (41)

The inequality in Eq. (41) is the requirement for the matrix
[P2] that ensures the error function of the new controlled side is
Lyapunov-like. The requirement for the new uncontrolled side is
similar:

∆ẊucBuc[Bctrl]
†[P2]∆Ẋctrl > ∆Ẋuc

(
k∆Xuc + fuc

+Buc[Bctrl]
†(−k∆Xctrl − fctrl)

)
+

∆V
(n)
uc

∆t
. (42)

The inequalities in Eqs. (41), (42) are two conditions that guar-
antees the error functions to be Lyapunov-like. Note that the matrix
[P2] should be positive definite, so there are three requirements for
[P2] that ensures a globally stable switched control.

IV.C Stable Switched Strategy
The previous section determined three requirements that ensured

a stable switched control. This section develops a new switched
control strategy that implements the stability requirements found
in Eqs. (41) and (42). Above all, the existence of solutions that
satisfy the stability requirements needs to be investigated. Let us
begin with introducing an asymmetric positive definite matrix.

Property 1 A 2× 2 matrix [A] in the form

[A] =

[
A11 A12

−A12 A22

]
(43)

is a positive definite matrix if and only if:

A11 > 0, A22 > 0. (44)

Proof The symmetric part of the matrix [A] is:

[As] =
1

2
[A] +

1

2
[A]T =

[
A11 0
0 A22

]
. (45)

It is evident that the symmetric matrix [As] is positive definite if
and only if A11 > 0 and A22 > 0. A necessary and sufficient con-
dition for a real matrix to be positive definite is that its symmetric
part is positive definite. Thus the matrix [A] is positive definite if
and only if A11 > 0 and A22 > 0. �

This form of a positive definite matrix is more general than sym-
metric positive definite matrices. This provides more flexibilities
in solving the inequalities in Eqs. (41) and (42). Note that the in-
equalities in Eqs. (41) and (42) can be written in the general form:

aT [P2]b > c, (46)

where a and b are two 2-dimensional vectors, c is a real num-
ber that equals the right hand side (RHS) of the inequalities. The
following theorem studies the existence of the solutions to this in-
equality.

Theorem 2 Assume a positive definite matrix in the form:

[A] =

[
A11 A12

−A12 A22

]
, (47)

where A11 and A22 are positive. Define two arrays: a =
[a1, a2]T and b = [b1, b2]T . If the following two inequalities
and one equation do not happen at the same time:

a1b1 < 0, (48a)
a2b2 < 0, (48b)
a2b1 = a1b2, (48c)
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then for any c ∈ R, there always exists a solution of the matrix [A]
that satisfies the inequality:

aT [A]b > c. (49)

Proof It needs to be proved that the solution of [A] exists under
the following two cases:

1. a2b1 6= a1b2,

2. a2b1 = a1b2 and a1b1 > 0 and/or a2b2 > 0.

Carrying out the algebra in the inequality in Eq. (47), yields:

a1b1A11 + (a1b2 − a2b1)A12 + a2b2A22 > c. (50)

Note that the requirements for Aij are A11 > 0 and A22 > 0, the
third element A12 can be any real number. Next the existence of
the positive definite matrix [A] is proven under the enumerated two
cases.

Case 1: a2b1 6= a1b2. When a2b1 6= a1b2, the element A12

can be used to adjust the value of the left hand side (LHS) of the
inequality in Eq. (50). If a1b2 > a2b1, then any real value of A12

that satisfies:

A12 >
c− a1b1A11 − a2b2A22

a1b2 − a2b1
(51)

is a solution to the inequality in Eq. (47) while preserving the pos-
itive definiteness of the matrix [A]. Alternatively if a1b2 < a2b1,
then any real value of A12 that satisfies:

A12 <
c− a1b1A11 − a2b2A22

a1b2 − a2b1
(52)

is a solution to the inequality in Eq. (47).
Case 2: a2b1 = a1b2 and a1b1 > 0 and/or a2b2 > 0. When

a2b1 = a1b2, the inequality in Eq. (50) simplifies to

a1b1A11 + a2b2A22 > c. (53)

Because either a1b1 > 0 or a2b2 > 0, without loss of generality
it’s supposed a1b1 > 0. Solving for A11 from the inequality in
Eq. (53), yields:

A11 >
1

a1b1
(c− a2b2A22). (54)

The inequality in Eq. (54) does not conflict with the requirement
that A11 > 0. Thus any value of A11 that satisfies:

A11 > max
{

1

a1b1
(c− a2b2A22), 0

}
(55)

is a solution to the inequality in Eq. (47).
�

Theorem 2 proves the existence of solutions to the inequalities
in Eqs. (41) and (42) unless the condition in Eq. (48) occurs. Note
that the two inequalities and one equation in Eq. (48) are rarely to
happen at the same time. By intuition without rigorous proof, here
it is assumed that a1b2 = a2b1 is a transient state. The situation
given by Eq. (48) is never detected in simulations.

So far all the preparations are in place to present the stable
switched control strategy. Note that the previous switch strategy
shown in Eq. (21) works well most of the time. The temporary loss
of stability happens is due to the discrete control time steps which
result in violation of the Lyapunov-like condition. The previous
switch strategy given by Eq. (21) is still valid unless the Lyapunov-
like condition is violated.

Beginning a new control cycle, there are three possible combi-
nations of the controlled sides. One of them corresponds to no
switching case, the other two correspond to two switched control
cases. For the notational convenience, denote the three possibilities
as “no switching”, “switch-1” and “switch-2”. When an unstable

switching, which means the switching doesn’t satisfy the require-
ments in Eqs. (41) and (42), is detected, it is easier to change the
new controlled side than to change the value of the matrix [P2].
Upon this situation, at first the controller switches the sides being
controlled without changing the value of [P2]. If simply switch-
ing sides can not ensure Lyapunov-like condition, the controller
changes the matrix [P2].

Figure 7 illustrates the strategy of switching. The details of
calculating the value of the matrix [P2] is not illustrated. Upon
changing the value of [P2], it’s better to start with simpler diagonal
form. If the diagonal form of [P2] matrix cannot provide a stable
switched control, then the more complex asymmetric matrix form
as shown in Eq. (47) is sought. The proof of Theorem 2 provides
requirement of [P2] that ensures stability. To summarize, one ele-
ment of [P2] (either P2(1, 1) or P2(1, 2), denote it as P2,c) must be
greater than or less than a certain value (denote the value as ps). To
implement this requirement, a coefficient τ is introduced to define
an equality constraint:

P2,c = τps (56)

When P2,c should be greater than ps, τ > 1 is chosen; when P2,c

should be less than ps, τ < 1 is chosen.

V Numerical Simulations
This section presents numerical simulations to show the effec-

tiveness and performance of the stable switched 3-craft charge
control. The desired shape here is triangular configuration. For no-
tational convenience, the old controller with the switching strategy
given by Eq. (21) is called Controller-1, the new stable controller
with the switching strategy given by Figure 7 is called Controller-2.

Both Controller-1 and Controller-2 are used to control the 3-
craft Coulomb virtual structure. Under the same initial condi-
tions the performances of the two controllers can be compared.
The Controller-1 has different unstable behavior when the con-
trol charge level is different. The following numerical simulations
demonstrate the behaviors of the control in two cases: large control
effort case and small control effort case. The response of the sys-
tem is different in different situations. When the initial errors and
separation distances are large, the control charges levels are large.
The following two simulation cases illustrate the behavior of the
system under two controllers. In all of the simulations the masses
of the three spacecraft are the same:

m1 = m2 = m3 = 50 kg. (57)

V.A Large Control Effort Case
The initial positions and velocities of the three spacecraft are r1 = [9,−2, 0]T m
r2 = [0,−4, 0]T m
r3 = [−2,−2, 0]T m

,

 ṙ1 = [0, 0.01, 0]T m/s
ṙ2 = [0, 0, 0]T m/s
ṙ3 = [0,−0.01, 0]T m/s

.

(58)

The expected triangular shape of the virtual structure is defined by
the separation distances:

X∗ = [6, 7, 5]T m. (59)

The proportional feedback coefficients are:

k = 0.0003 s−2. (60)

The nominal value of the matrix [P2] is

[P ∗2 ] =

[
0.02 0

0 0.02

]
s−1. (61)

Note that the value of the [P2] matrix is varying using Controller-2.
Figure 8 shows the responses of the system under the two dif-

ferent control strategy. Comparing the separation distance errors in
Figures 8(a) and 8(b), it is evident that the stable switched control
strategy performs better than the unstable switched control. Using
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Figure 7: Stable switch strategy flowchart.

this set of initial states and controller parameters, the old controller
assuming continuos switching capabilities cannot stabilize the dis-
tance errors to zero, while the stable switched control strategy with
finite control cycles stabilizes the errors near zero. Because the ro-
tating triangular configuration is not an equilibrium solutions, the
errors cannot converge perfectly to zero. The smaller the control
cycles are, the smaller the final state errors will become.

The error functions’ histories in Figure 8(c) explains the behav-
ior of the continuous-switching controller. During the time around
700–1000s, the controller switches at the highest frequency and the
error functions don’t satisfy the Lyapunov-like conditions. The de-
tails are similar to Figure 5(b). The error histories in Figure 8(a)
indicate this region is an unstable segment. Figure 8(d) shows that
under the control of the stable switched control strategy, the error
functions drop to very low level (10−7m2/s2) within 1000s, but
won’t really decrease to zero. This means the system is stable, but
not asymptotically stable as explained above.

Figures 8(e) and 8(f) show the charge histories of the two simu-
lations. It can be seen that under the control of the stable switched
controller, the charge histories have more spikes than that of the
unstable switched control. This is due to the variation of the matrix
[P2] in the stable switched control. Despite the spikes in the charge
histories, it can be seen that after the distance errors settle down
(after 800s as shown in Figure 8(b)), the control charge level that
holds the spinning triangle is around 5µC. But at the beginning the
charge level goes up to 90µC which is challenging to practically
implemente. This simulation case is aggressive. The intention of
this simulation case is to demonstrate different behaviors under dif-
ferent situations.

V.B Small Control Effort Case
In this simulation, the initial errors and the separation distances

are small thus the controllers require small charge levels. The ini-
tial conditions are set as r1 = [2, 0, 0] m

r2 = [0, − 4, 0] m
r3 = [−2, − 2, 0] m

,

 ṙ1 = [0, 0.002, 0] m/s
ṙ2 = [0, 0, 0] m/s
ṙ3 = [0, − 0.002, 0] m/s

.

(62)

The expected separation distances are given by:

X∗ = [4, , 4, 4]T m. (63)

The controller coefficients are

k = 0.0003 s−2, [P ∗2 ] = diag(0.005, 0.005) s−1. (64)

Figure 9 shows the simulation results under the two controllers.
Figures 9(a), 9(c) and 9(e) show the results of the simulation using
Controller-1. The distance error history in Figure 9(a) shows that
at the beginning 2000s, the errors are staying at high level. The
error functions shown in Figure 9(e) verify that during [0,2000]s,
there are several temporary unstable regions where both of the three
error functions are increasing. After 2000s, the distance errors are
decreasing significantly.

Figures 9(b), 9(d) and 9(f) show the results of the simulation
using Controller-2. Figure 9(b) shows that the distance errors
decrease and stabilize to zero in much shorter time than using
Controller-1. Comparing the charge histories in Figures 9(c) and
9(d), it can be seen that there are more spikes when Controller-2
is being used. Figure 9(b) also shows that the distance errors do
not converge to zero. This is because the new switched control
Controller-2 is stable, but not asymptotically stable.

It’s not always the case that Controller-2 performs better
than Controller-1. Under different initial conditions and differ-
ent controller coefficients Controller-1 may perform better than
Controller-2. There is one difference between the two simulation
cases. When using Controller-1 in the large control effort case in
the illustrated simulation results, the distance errors settles down to
a certain level and stack there. But in the small control effort case,
the distance errors keep changing and won’t stay at a certain level.

VI Conclusion
This paper studies a three-spacecraft Coulomb formation tri-

angular shape control problem. Assuming continuous switching
capability, a 2-side switched control strategy is developed to al-
ways control the worst two sides instead of controlling both of
the three sides. Here an implementable control solution is always
guaranteed. However, the discrete control time steps may cause
temporary instability of the shape control. A stable switched con-
trol strategy is developed based on the multiple Lyapunov functions
analysis. This new switch strategy ensures all of the error functions
to be Lyapunov-like thus stability is guaranteed. Numerical simula-
tions demonstrate the improvement of the stable switched control.
The new switched control also induces spikes in the control charges
because the new control changes the value of the distance rate feed-
back gain matrix to ensure stability. The method of employing
Lyapunov-like control functions is a promising approach to inves-
tigate the relative control of charged spacecraft with more than
three vehicles. The new switched control strategy is successful
in stabilizing a non-equilibrium triangular shape. Further research
will investigate how this control can be utilized to control 3-craft
collinear equilibrium shapes.
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a) Separation distance errors, Controller-1.
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b) Separation distance errors, Controller-2.
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c) Error functions, Controller-1.
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d) Error functions, Controller-2.
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e) Charges, Controller-1.
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Figure 8: Big control effort simulations.
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a) Separation distance errors, Controller-1.
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b) Separation distance errors, Controller-2.

0 1000 2000 3000 4000
−20

−10

0

10

20

30

time [s]

ch
ar

g
es

 [
µC

]

c) Charges, Controller-1.

0 1000 2000 3000 4000
−10

−5

0

5

10

time [s]

ch
ar

g
es

 [
µC

]

d) Charges, Controller-2.

0 1000 2000 3000 4000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

time [s]

Er
ro

r f
u

n
ct

io
n

s 
in

 3
 s

id
es

 [m
2
/s

2
]

 

 

V
1

V
2

V
3

e) Error functions, Controller-1.
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f) Error functions, Controller-2.

Figure 9: Small control effort simulations.
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