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Electrostatic Spacecraft Collision Avoidance Using Piece-Wise
Constant Charges

Shuquan Wang∗and Hanspeter Schaub†

This paper develops a three-phase piece-wise constant spacecraft charge maneuver to achieve a
short-range collision avoidance with a symmetric relative trajectory. This symmetric trajectory guar-
antees collision avoidance, restores the original relative motion direction, and keeps the relative kinetic
energy level the same as the initial one. The paper first presents an analytical solution to calculate a
unique symmetric trajectory when the middle phase is a circular trajectory. Next a general symmetric
trajectory programming strategy is developed where the middle-phase can be any conic section. Four
constraints are required to guarantee a symmetric collision avoidance trajectory, while five independent
variables are required to solve the problem. This leaves one degree of freedom which is utilized to op-
timize the trajectory subject to specific cost charge functions. There is a duality in the charge solution
when solving for the open-loop trajectory with one of the solutions being false. This is addressed by
properly initializing and confining the region of the numerical search routine. Minimum charge criteria
are determined to avoid a collision by analyzing the geometric properties of the two-body system and
comparing the results from circular transitional trajectory calculations.

I. Introduction
Clustered spacecraft have many advantages over a single large

monolithic satellite. However, spacecraft cluster concepts also in-
troduce the issue of potential collisions. In close-proximity space-
craft missions, such as close formations and small satellite swarms,
the chance for spacecraft to collide must be treated carefully to pre-
vent the huge cost of an unexpected collision. Collisions can occur
when some spacecraft within the cluster have control or sensor fail-
ures, or are lacking in their guidance strategy to guarantee collision
avoidance among a large number of cluster members. For long-
term formation flying missions, a collision can also occur when the
influences of the orbital disturbances accumulate. The chance of
a potential collision from multiple sources motivates the studies of
the spacecraft collision avoidance problem.

The most common approach in dealing with spacecraft collision
avoidance is to examine the collision probability of a spacecraft
cluster and perform some velocity corrections to reduce the proba-
bility to an acceptable level. Patera and Peterson develop a method
to select a maneuver that will reduce the collision probability.1

This method minimizes the maneuver magnitude and space vehicle
propellant expenses. Slater et al.2 use the available state and dis-
turbance information to calculate the actual probability of collision
based on a probabilistic model, then discuss the velocity correc-
tion requirements to avoid collisions. Patera proposes a spherical
conflict volume to calculate the conflict probability in identify-
ing high-risk conjunctions.3 The conflict probabilities are larger
than associated collision probabilities and therefore are more eas-
ily interpreted. All of the above works use thrusters to achieve the
velocity corrections. These strategies use propellent, which will
increase the fuel budget of the spacecraft. Further, the associated
exhaust plume impingement may cause damage to the instruments
on board in a close proximity formation.

In this paper a different scenario is considered where an active
Coulomb control strategy is used after a potential collision has been
detected. The craft are assumed to be moving within dozens of
meters from each other, and the relative velocities are small–on the
order of centimeters per second. This collision avoidance strat-
egy is not applicable to rapidly approaching spacecraft because of
the technical challenges of achieving sufficiently large electrostatic
fields. Instead, this work assumes fields that are comparable to
the electrostatic potentials that can occur naturally with geostation-
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ary spacecraft. Here the potentials can reach multiple kV levels.4

The collision avoidance maneuver strategy uses only piece-wise
constant electrostatic (Coulomb) forces. Coulomb thrusting can
generate the required micro- and milli-newton levels of forces to
avoid a collision of two slowly drifting spacecraft while requiring
essentially no propellant and a few watts of electrical power.

The concept of Coulomb thrusting or Coulomb Formation Fly-
ing (CFF) is first introduced by King et al. in Reference 4. CFF
uses Coulomb forces to control the distances between spacecraft
to achieve the desired relative motion. Spacecraft will naturally
charge to either positive or negative voltages due to their inter-
action with the local space plasma environment. The spacecraft
charge level can be actively controlled by continuously emitting
electrons or ions as used on the current CLUSTER mission.5, 6 The
fuel-efficiency of Coulomb thrusting is at least 3–5 orders greater
than that of Electric Propulsion (EP), and typically requires only a
few watts of electrical power to operate.4 A challenge of CFF is
that, unlike conventional thrusters that can produce a thrust vector
in any direction, the Coulomb forces lie only along the line-of-
sight directions between spacecraft. But this is less of an issue
in using Coulomb forces to avoid a collision. The most impor-
tant factor in preventing collision is the separation distance, which
can be fully controlled using Coulomb forces. Another challenge
of CFF is that the sparse space plasma will shield electrostatic
charges. This effect will reduce the amount of electrostatic force
that a neighboring charged spacecraft will experience. The amount
of shielding is characterized by the Debye length.7, 8 At separa-
tion distances greater than a Debye length the perceived inter-craft
Coulomb force quickly becomes negligible. At LEO where the
plasma is relatively dense and cold, the Debye length is on the order
of centimeters. This results in a strong shielding of Coulomb forces
and makes Coulomb thrusting not feasible. However, at GEO the
Debye lengths range between 100–1000 meters.4, 9 At 1 AU in deep
space the Debye length ranges around 20–50 meters.4 This makes
the Coulomb thrusting concept feasible for HEO and deep space
missions while the minimum separation distances are less than 100
meters.

The CFF concept has been investigated for several different mis-
sion scenarios. Lappas et al. in Reference 10 develop a hybrid
propulsion strategy by combining Coulomb forces and standard
electric thrusters for formation flying on the orders of tens of meters
in GEO. Reference 11 analyses the stability of a spinning two-craft
Coulomb tether. It shows that, if the Debye length is larger than
the separation distance then the nonlinear radial motion is locally
stable, otherwise the radial motion is unstable. And the perturbed
out-of-plane motion is always stable regardless of Debye length.
Vasavada and Schaub12 present analytical tools to determine the
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charge solution for a static four–craft formation. Reference 13
designs a two-stage charge feedback control strategy for a 1–D
constrained Coulomb structure. It also analyses the condition for
symmetric relative motions of Coulomb structure to be stabiliz-
able by investigating the total energy of the system. Hussein and
Schaub derive the collinear three-craft spinning family of solutions
in Reference 14. A feedback control based on the linearized model
is designed to stabilize a collinear virtual Coulomb tether system.
Asymptotic stability is achieved if the system’s angular momentum
is equivalent to the estimated/nominal angular momentum, which
is utilized to calculate the nominal charges. However, none of these
CFF related works consider the issue of performing active collision
avoidance. Such a capability will be required when considering fly-
ing larger numbers of craft in close proximity.

Reference 15 is the first publication that develops a collision
avoidance strategy using only Coulomb forces. A controller is
designed based on Lyapunov stability analysis and requires only
feedback on separation distance. Without charge saturations the
controller can prevent any collision. Considering charge satura-
tions, the paper finds the analytical criteria for an avoidable col-
lision by assuming the Debye length to be infinity. While this
feedback control strategy can maintain specified safety separation
distances, this control will cause the craft to depart in a different di-
rection from when the collision avoidance maneuver started. This
change in direction should be avoided if possible to not re-direct
the craft and cause them to approach another craft.

Instead of designing a feedback control strategy, this paper in-
vestigates an open-loop strategy to find a symmetric trajectory to
achieve the collision avoidance objective. In particular, a solution
is sought that retains the original relative velocity vector after the
collision avoidance maneuver. The paper investigates how to de-
velop such open-loop charged relative motion trajectories. How to
feedback stabilize such a trajectory and make it robust to unmod-
eled dynamics and sensor errors is the topic of future work. Such
a feedback strategy is non-trivial due to the under-actuated nature
of the Coulomb force. For example, the line-of-sight force cannot
change the momentum vector to reverse an overshoot. Assuming
the Debye length to be large compared to the separation distance,
and that the spacecraft charges are piece-wise constant, the relative
equations of motion during a constant charge phase have exactly
the same algebraic form as in the Gravitational 2-Body Problem
(G2BP). In this work the spacecraft are assumed to be operating in
deep space and not orbiting a gravitational body. Thus, the relative
trajectory segments corresponding to constant spacecraft charge re-
sult in a conic sections.16 By switching the spacecraft charges, a
symmetric trajectory made of three patched conic sections, repel–
attract–repel, is sought to achieve a collision avoidance meanwhile
to retain the relative speed magnitude and direction. The geome-
tries of the symmetric trajectories are explored to investigate charge
optimality of the resulting open-loop maneuvers. This is important
when the limited charge capability of actual craft are taken into
consideration. Further, given a maximum charging capability, ini-
tial condition criteria that lead to a successful collision avoidance
maneuver are explored.

II. Problem Statement
A. Charged Spacecraft Equations of Motion

This paper considers two spacecraft free-flying in 3-dimensional
space where there are no external forces acting on the system. The
scenario of the two body system is shown in Figure 1. Assum-
ing point-charge models for the spacecraft, the partially-shielded
electrostatic potential generated by the ith spacecraft in a plasma
environment is given by17

Vi(r) = kc
qi
r

exp(−r/λd), (1)

where kc = 8.99×109 C−2 ·N ·m2 is the Coulomb constant, qi is
the charge of the ith spacecraft, r is the separation distance between
the ith spacecraft and the point of interest, λd is the Debye length
which characterizes the strength of the plasma shielding effect. The
corresponding electrostatic field is obtained by taking the gradient
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Figure 1: Illustration of the 2-spacecraft system.
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where r is the inertial position vector pointing from the ith space-
craft to the point of interest, êr is the unit vector of r. Thus, the
Coulomb force between the two spacecraft, acting on m1, is

F = q1E2(r21) = kc
q1q2
r2

„
1 +

r

λd

«
exp
„
− r

λd

«
ê21

= −kc
q1q2
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«
exp
„
− r

λd

«
ê12, (3)

where r12 is the relative position vector from spacecraft 1 (SC1) to
spacecraft 2 (SC2), ê12 is the unit vector of r12. In the remaining
context, we use êr to represent ê12 for brief notation. From the
expression of the Coulomb force, it can be seen that the smaller
the plasma Debye length, the shorter the effective range of a given
electrical charge. For high Earth orbits the Debye length ranges
between 100–1000 m.4, 18, 9 In deep space at 1 AU distance from
the sun the Debye length can vary between 30–50 m. CFF typically
has spacecraft separation distances less than 100 m.

The inertial equations of motion (EOM) of the two charged
spacecraft are

m1R̈1 = −kc
q1q2
r2

„
1 +

r

λd

«
exp

„
− r

λd

«
êr, (4a)

m2R̈2 = kc
q1q2
r2

„
1 +

r

λd

«
exp

„
− r

λd

«
êr, (4b)

where Ri is the inertial position vector of the ith spacecraft. The
inertial relative acceleration vector r̈ is

r̈ = R̈2 − R̈1

=
kcq1q2
m1m2r2

(m1 +m2)

„
1 +

r

λd

«
exp

„
− r

λd

«
êr. (5)

Note that these equations do not explicitly consider planetary grav-
ity and the Lorentz forces acting on the spacecraft. Pollock et. al.
prove that the Lorentz force magnitude is not comparable with the
Coulomb force in GEO.19 If the collision avoidance maneuver time
is very small compared to the cluster orbital period, then Eq. (5) can
also be considered as an approximation of the charged relative or-
bital motion. For example, a GEO spacecraft collision avoidance
maneuver that takes minutes would be very short compared to the
1 day orbit period, and thus the relative orbital motion would have
a secondary effect on the relative motion.

This paper finds a symmetric patched conic section trajectory to
prevent a collision, while forcing the departure velocity vector to be
the same as the initial arrival velocity vector. Reference 16 shows
that if λd → ∞, and the charge product Q = q1q2 is constant,
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then the relative motion trajectory of the two spacecraft is a conic
section. Letting λd →∞ and defining

µ = −kc
Q(m1 +m2)

m1m2
, (6)

Eq. (5) is rewritten as

r̈ = − µ

r3
r. (7)

Eq. (7) has exactly the same algebraic form as the EOM of the
G2BP. If the charge product Q is constant, then the effective grav-
itational coefficient µ is also constant. Thus, the resulting motion
can be described by a conic section. Note that here µ can be posi-
tive or negative. The negative and constant charge product results
in a positive effective gravitational constant µ > 0. In this case,
Eq. (7) is exactly the same as the G2BP. If Q is negative and con-
stant, then the relative trajectory is a repulsive hyperbola, where
SC2 is moving along a hyperbola, and SC1 stays at the farther fo-
cus point.16 If the charge product Q is piece–wise constant, then
the relative trajectory would be a patched conic section.

B. 3-Phase Symmetric Trajectory Scenario
For a two spacecraft system controlled only by Coulomb forces,

generally there is an infinity of possible charge and charge switch-
ing time solutions which achieve a collision avoidance. This paper
investigates a symmetric trajectory programming approach to avoid
a collision as well as to hold the relative velocity.

A
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D

E

ro

Trajectory 

of SC2

symmetry 

axis
free fly
repel
attract

O, SC1

rφ

Figure 2: Illustration of the symmetric patched conic section
trajectory with respect to SC1.

An example of the symmetric relative trajectory scenario is
shown in Figure 2. The controlled part of the symmetric trajectory
is composed of three phases: repel–attract–repel. At the begin-
ning, the two spacecraft are flying freely and approaching each
other such that their minimum separation distance will violate a
desired safety distance rs. At the point A, the separation distance
r between the spacecraft reaches a potential collision region range
rφ. The spacecraft are charged such that Q > 0 and the spacecraft
start to repel each other to avoid the collision. The magnitude of the
charge product is held constant in Phase-I until point B is reached.
Thus the trajectory dAB is a repulsive hyperbola. At point B the
charge product switches to a negative value such that the space-
craft are attracting each other. During Phase-II from the point B
to the point C, the charge product is again held constant. The arcdBC is an attractive conic section which can be ellipsis, parabola, or
hyperbola depending on the relative arrival velocity magnitude. At
the point C the charge product switches back to the same value as
in arc dAB to produce a symmetric trajectory to dAB. At the point
E, the spacecraft are discharged and begin to fly freely in space.
The entire trajectory is symmetric about the axis OD. The sym-
metry axis OD is the line crossing SC1 and perpendicular to the
initial relative velocity.

From the above description of the 3–phase trajectory, it can be
seen that the trajectory is determined by the three–charge product
during the three phases, and the two–charge switching time at the
points B and C. Once these five variables are determined, the rel-
ative trajectory is determined.

III. Circular Transitional Orbit Programming
Before studying the general symmetric trajectories, let us at first

investigate a special case where the Phase-II trajectory is a section

of a circle as illustrated in Figure 3. Assume that the relative po-
sition vector rA and the relative velocity ṙA at the point A can be
measured. There are five unknown parameters that need to be de-
termined: the three charge products QI, QII and QIII, and the two
charge switching times at points B and C. To solve for these five
variables some constraints must be clarified.

A B C

D

E
SC 1

SC 2, OSC1, O

SC2

Figure 3: Scenario of the circular Phase-II trajectory.

A. Constraints
For Phase-I dAB and Phase-III dCE to be symmetric, the charge

products should be the same value. Thus, the first constraint is

QIII = QI. (8)

Because the trajectory of Phase-II dBC is a section of a circle, its
shape is always symmetric about the symmetry axis OD. Then a
symmetric arc dBC requires that the angle ∠DOC satisfies

∠DOC = ∠BOD. (9)

The point B connects Phase-I and Phase-II. Thus ṙB must be per-
pendicular to rB because Phase-II is circular. This implies the
point B is the periapsis of Phase-I. This results in the third con-
straint:

rB = rpI. (10)

The trajectory of Phase-II is a section of a circle, this requirement
can be formulated using the angular momentum magnitude:

h2
II = µIIrB . (11)

The collision avoidance task requires that the separation distance
r(t) must be greater than a certain safe-restraint distance rs for all
time:

r(t) ≥ rs. (12)

This constraint is global and comes from the collision avoidance
mission. For the convenience of calculation, this safety constraint
is expressed by the condition

rmin = γrs, (13)

where γ ≥ 1. In the case that Phase-II is a section of a circle,
rmin = rB . Thus the final safety constraint for a circular transi-
tional symmetric trajectory is

rB = γrs. (14)

Now five constraints given in Eqs. (8)–(11) and (14) have been
found.

B. Circular Transitional Orbit Algorithm
The symmetric constraint in Eq. (8) provides QIII once QI is

obtained. Note that the angle ∠DOC is the true anomaly angle
(in case the point D is the periapsis) of Phase-II. Once the conic
section properties of Phase-II, which are determined by QII, are
achieved, the charge switching time at the point C is then solved
by using Kepler’s equation and the symmetry constraint in Eq. (9).
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Now there are three variables (QI, QII, tI) left out of the five
unknown parameters that still need to be determined. The conic
section properties of Phase-I are solved using rA and ṙA. The
eccentricity vector of Phase-I is

cI = ṙA × h− µI

rA
rA, (15)

where rA = |rA|, h = rA× ṙA is the specific angular momentum
of the system, and

µI = −kc
QI(m1 +m2)

m1m2
(16)

is the effective gravitational coefficient of Phase-I. Note that,
through Eq. (6), finding the charge products QI and QII is equiv-
alent to finding µI and µII. The vector h is constant by the as-
sumption that there are no external forces acting on the sytem. The
eccentricity and semi-major axis of Phase-I are calculated by

eI = −‖cI‖
µI

, (17a)

aI =
rAµI

2µI − rAv2
A

, (17b)

where vA = ‖ṙA‖ is the magnitude of the relative velocity vector.
The angle ∠AOD is calculated as

∠AOD = arctan
„

h

rAvA

«
− π

2
. (18)

Utilizing the constraint that the point B must be the periapsis of
Phase-I, the charge switching time tB at point B is calculated via

tB =
|NAI|p
µI/aI

(19)

with the right hand side of this equation being completely deter-
mined by µI, which in return is determined by QI. Thus, it can be
concluded that the Phase-I trajectory are determined by the charge
product QI.

The radius rB is calculated by

rB =
h2/µI

1− eI
, (20)

where the eccentricity eI is given by Eq. (17a). Substituting
Eq. (20) into the safety constraint in Eq. (14) and multiplying both
sides by µI(1− eI)/(γrs), yields

µI(1− eI) =
h2

γrs
. (21)

Subtracting both sides by µI, taking the square of both sides, and
using eI = − ‖c‖

µI
= ‖ rA

rA
− ṙA×h

µI
‖, yields

µ2
I e

2
I = µ2

I − 2µIṙA × h · rA/rA + ṙA × h · ṙA × h. (22)

Substituting Eq. (22) into Eq. (21), yields

−2µIṙA × h · rA/rA + ṙA × h · ṙA × h =
h4

γ2r2s
− 2µIh

2

γrs
.

(23)

Thus, the Phase-I effective gravitational coefficient for a circular
transitional trajectory is solved by grouping terms containing µI:

µI,c =
1

2

h4

γ2r2s
− ṙA × h · ṙA × h

h2

γrs
− ṙA × h · rA

rA

. (24)

After obtaining µI,c, the variable tI is determined by Eq. (19).
These values of µI and tI ensure that at the point B the relative

speed vector is perpendicular to the relative position vector, mean-
while the safety constraint rB = γrs is also satisfied.

The next step is to find a proper QII or µII that results in a cir-
cular orbit. Using the constraint for a circular transitional orbit in
Eq. (11), µII is found to be

µII,c =
h2

rB
=

h2

γrs
. (25)

To find the Phase-II duration time tII, the Phase-II symmetry
constraint in Eq. (9) is utilized. Note that the angular velocity is
constant in Phase-II, the duration time is proportional to the angle
∠BOC as:

tII,c = ∠BOC · TII

2π
= 2∠BOD · TII

2π
=
∠BOD · TII

π
, (26)

where the period of the Phase-II circular orbit is TII =
p
µII/r3II,

the angle ∠BOD is given by

∠BOD = ∠AOD − |fAI| = ∠AOD + atan

 
îcI × îrA · îh

îcI · îrA

!
,

(27)

where îcI, îrA and îh are the unit vectors of cI, rA and h respec-
tively. The angle ∠AOD is expressed in Eq. (18).

Thus a symmetric trajectory with Phase-II being a part of a cir-
cular orbit has been found. Specifically, the variables µI, µII, QIII,
tB , tII are calculated through Eqs. (24), (25), (8), (19) and (26),
respectively. Note that this circular transitional trajectory solution
is calculated analytically.

IV. General Symmetric Trajectory Programming
Strategy

After solving a circular Phase-II trajectory in the last section, this
section investigates the more general symmetric collision avoid-
ance trajectory with the Phase-II trajectory being any type of conic
section.

A general 3-phase symmetric trajectory is shown in Figure 2.
As mentioned in the last section, as with the circular Phase-
II case, there are five unknowns that need to be determined:
[QI, QII, QIII, tB , tII].

A. Constraints
The general constraints are largely the same as those for the cir-

cular transitional orbit. The three constraints in Eqs. (8), (9), and
(13) are directly used to ensure a symmetric trajectory. Because
here the Phase-II trajectory is a part of a general conic section, the
circular constraints in Eqs. (10) and (11) are not applicable.

Since the arc dBC does not necessarily to be a part of a circle, for
Phase-II to be symmetric about the axis OD, the point D must be
the periapsis or apoapsis of Phase-II. This requirement is formu-
lated as:

rD = rp,II, or rD = ra,II, (28)

where rp,II and ra,II are the periapsis radius and the apoapsis radius
of Phase-II.

Now there are four equality constraints to solve the patched
conic collision avoidance trajectory. Eqs. (8), (9) and (28) are from
the symmetric patched conic section properties and ensure a sym-
metric trajectory. The constraint given by Eq. (14) is required by
the collision avoidance task. To complete the 5-variable searching
problem, one more constraint is needed.

Note that the four equality constraints ensure a collision avoid-
ance trajectory and meanwhile result in a symmetric trajectory. The
remaining one degree of freedom actually provides a flexibility in
solving for the five variables. Here this section assumes that a
proper value ofQI is given, then constructs a closed-loop numerical
iteration routine to find other four variables. This iteration routine
can be used as a part of the charge-optimal trajectory programming
algorithm that updatesQI such that a certain charge cost function is
minimized. The charge-optimization examples are shown and dis-
cussed in the second simulation case in the numerical simulation
section.
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B. General Numerical Iteration Routine
Assuming that a proper value of QI has been given, this section

develops a numerical iteration routine to find a symmetric patched
conic section trajectory to avoid a potential collision. The charge
product QI and the initial conditions [rA, ṙA] determine the conic
section of Phase-I. Without loss of generality, assume that tA = 0.
If tB is given, the angle ∠AOB can be calculated using Kepler’s
equation in Phase-I. The states [rB , ṙB ] are determined by solving
the orbit EOM of Phase-I. Utilizing the constraint that the point
D must be the periapsis or apoapsis of Phase-II, the point C is
determined by the constraint in Eq. (9). Phase-III is determined
by the state of point C, which can be infered from tB . Thus, the
charge switching time tB logically determines the whole patched
conic section trajectory. In the numerical iteration routine, tB is
chosen as the variable to be propagated.

Now tB has been chosen as the variable to be propagated in the
iteration loop. Given an initial guess of tB , it is updated accord-
ing to the error of a target function. The states at the point B are
determined by using the conic section properties of Phase-I. The
mean hyperbolic anomaly of the point B considered in Phase-I is
calculated using the Kepler’s equation:

NBI = NAI +

r
µI

a3
I
· tB = NAI + nI · tB . (29)

Then the hyperbolic anomaly HBI is calculated by numerically
solving the standard anomaly relationship:20

NBI = eIsinh(HBI) +HBI. (30)

Thus the true anomaly of the point B in Phase-I is determined by

fB,I = 2 · arctan

 
tanh

 
HBI

2

!r
eI + 1

eI − 1

!
. (31)

The radius and the magnitude of the relative velocity at the point
B are

rB =
h2/µI

1− eI cos fBI
, (32a)

vB =

s
µI

„
2

rB
− 1

aI

«
, (32b)

where h is the magnitude of the specific angular momentum de-
termined by the initial conditions. Eq. (32b) is obtained from the
energy equation.

After obtaining the relative motion states at point B, Phase-II
is determined by the symmetric conic section constraints. Specif-
ically, the charge product QII and the point C are determined
through the following process. At first, the angle ∠AOB is cal-
culated by

∠AOB = |fB,I − fA,I|. (33)

The angle ∠BOD is determined by the geometry relation:

∠BOD = ∠AOD − ∠AOB. (34)

According to the symmetric constraint in Eq. (9), the angle

∠COD = ∠BOD (35)

is solved. Thus the point C is located. Note that of the five vari-
ables that determine the symmetric conic section trajectory, the
points B, C, and the charge products QI, QIII have been solved.
The only variable left to be determined is the charge product QII.
Solving for µ from Eq. (7) yields

µII = −kc
QII(m1 +m2)

m1m2
. (36)

Once µII is solved, QII is also determined. The following devel-
opment solves for µII based on the states of the point B and the
symmetric constraints.

Since the arc dBC is a part of a conic section, it has all of the
properties of conic section orbit. Utilizing the vis-viva equation,
the eccentricity e is expressed as:

e =

s
1 +

„
v2

µ
− 2

r

«
h2

µ
. (37)

Because h is assumed to be constant, the expression of the ec-
centricity in Eq. (37) contains only three unknown variables r, v
and µ. Substituting Eq. (37) into the radius equation, yields

r =
h2

µ+ cos f
q
µ2 +

`
v2 − 2µ

r

´
h2

. (38)

Transforming Eq. (38) to separate the square root term, yields

cos f

s
µ2 +

„
v2 − 2µ

r

«
h2 =

h2

r
− µ. (39)

Squaring Eq. (39) and using the fact that 1 − cos2 f = sin2 f ,
Eq. (39) is simplified to be

sin2f µ2 − 2h2

r
sin2f µ− cos2f v2h2 +

h4

r2
= 0. (40)

This equation contains four variables µ, f , r and v. Note that
Eq. (40) is valid for all conic section orbits. Evaluating f , r and
v at point B in Phase-II, Eq. (40) becomes a quadratic equation of
µ. The values for rB and vB are given by Eq. (32). By the symme-
try constraint, the point D can only be the periapsis or apoapsis of
Phase-II. If the point D is the periapsis, then

fB,II = −∠BOD. (41)

Otherwise D is the apoapsis of Phase-II with

fB,II = π − ∠BOD. (42)

In both cases, the resulting final equations after substituting fBII
into Eq. (40) are identical:

sin2∠BOD| {z }
l1

µ2
II−

2h2

rB
sin2∠BOD| {z }
l2

µII

− cos2∠BOD v2
Bh

2 +
h4

r2B| {z }
l3

= 0. (43)

Analytically solving for µII from Eq. (43), the charge product in
Phase-II is then obtained by Eq. (36).

Note that given µI, tB and ∠BOD, generally there are two so-
lutions of µII to Eq. (43):

µ
(1)
II =

h2

rB
+

1

2 sin2∠BOD

q
l22 − 4l1l3, (44a)

µ
(2)
II =

h2

rB
− 1

2 sin2∠BOD

q
l22 − 4l1l3. (44b)

Substituting Eq. (44) into the RHS of Eq. (39), yields

h2

r
− µ = ∓ 1

2 sin2∠BOD

q
l22 − 4l1l3. (45)

This indicates that the two solutions result in two opposite signs
in the RHS of Eq. (39). But for a particular value of f , either
−∠BOD or π−∠BOD, the LHS of Eq. (39) must has a specific
sign. This means only one of the two solutions to Eq. (43) satisfies
Eq. (39). In other words, only one of the two values in Eq. (44)
results in a symmetric trajectory.
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b) Point D is the apoapsis of Phase-II.

Figure 4: Two cases of using µ(1,2)
II solutions, in both cases only

one of the two solutions results in an actual symmetric trajec-
tory.

The plots in Figure 4 show the two scenarios using µ(1,2)
II given

by Eq. (44). Figure 4(a) shows the case that the point D is ex-
pected to be the periapsis of Phase-II. Figure 4(b) shows the case
that the point D is designated as the apoapsis of Phase-II. In Fig-
ure 4(a), the angle ∠BOD = 71.9◦, and fB,II is expected to be
−∠BOD = −71.9◦. With this value of fB,II, the LHS of Eq. (39)
must be positive. Correspondingly, only µ(2)

II satisfies Eq. (39).
This is confirmed by Figure 4(a). Figure 4(b) confirms the other
case that only µ(1)

II results in the symmetric trajectory with the point
D being the apoapsis of Phase-II.

By assuming that the variables QI and tB are given, the previ-
ous development outlines how to solve for the states at the points
B and C, and the charge product of Phase-II QII. However, in our
present algorithm tB is not explicity determined. Note that three
constraints have been used in deriving the formulas in Eqs. (8),
(28), and (9). The safety constraint in Eq. (13) needs to be imple-
mented to achieve a collision avoidance trajectory. A numerical
search routine is expected to find an appropriate tB such that the
closest distance rmin = γrs, where γ ≥ 1.

The following theorem provides a rule to find the minimum dis-
tance in the whole trajectory.

Theorem 1 Consider the 3-Phase symmetric patched conic sec-
tion trajectory as shown by Figure 2. If the pointD is the periapsis
of Phase-II, then the minimum distance of the entire dAE trajectory

is the periapsis radius of Phase-II, i.e.:

rmin = rp,II (46)

If the point D is the apoapsis of Phase-II, then the minimum dis-
tance is the periapsis radius of Phase-I, i.e.:

rmin = rp,I (47)

Proof If D is the periapsis of Phase-II, then rp,II is the mini-
mum distance in Phase-II. So it’s true that rp,II < rB . Because
∠BOD < 90◦, fB,II ∈ (−90◦, 0◦), thus ṙB < 0. Then the peri-
apsis of Phase-I does not lie along the arc dAB. This indicates that
throughout Phase-I, ṙ < 0. Thus, rB is the minimum distance in
Phase-I. Because rp,II < rB , rp,II is the minimum distance in the
entire trajectory.

If D is the apoapsis of Phase-II, then rB is the minimum
distance in Phase-II because fB,II ∈ (90◦, 180◦)and ṙB >
0. Note that if ṙA < 0, then the periapsis of Phase-
I must lie in the arc dAB because ṙ crosses zero in Phase-
I. So rp,I is the minimum distance in Phase-I, which indicates
that rp,I < rB . Because rB is the minimum distance in
Phase-II, rp,I is the minimum distance in the entire trajectory.
�
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Figure 5: Illustration of the two cases with the point D being
the periapsis and apoapsis of Phase-II.

The proof of Theorem 1 indicates that if the point D is the pe-
riapsis of Phase-II, then tB < tp,I where tp,I is the time for SC2
to fly from the point A to the periapsis of Phase-I. If point D is
the apoapsis of Phase-II, then tB > tp,I. Figure 5(b) illustrates
this scenario in detail. Figure 6 shows the change of rp,II w.r.t.
tB assuming that µI is fixed. It can be seen that when tB < tp,I
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and µ(2)
II is used, rp,II is monotonically increasing as tB increases;

when tB > tp,I and µ(1)
II is used, rp,II is monotonically decreasing

as tB increases. Thus, a symmetric collision avoidance trajectory
with the point D being the periapsis of Phase-II can be solved by
initializing t(0)B < tp,I and updating tB using a common numerical
methods such as Newton’s method or the secant method.
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1
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3

4

5
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7

8

tB, [s]

r p,
II, [

m
]

 

 

D: Periapsis
D: Apoapsis

tp,I

µII = µ
(2)
II µII = µ

(1)
II

Figure 6: Given µI, the resulting rp,II with respect to tB .

Alternatively initializing t(0)B > tp,I and using µ(1)
II lead to a

symmetric collision avoidance trajectory with the point D being
the apoapsis of Phase-II. In this case, by setting rp,I = γrs and
solving for corresponding µI from Eq. (24), any symmetric solution
of Phase-II trajectory will satisfy the collision avoidance require-
ment. Thus, there are infinite choices of tB that lead to symmetric
maneuvers if the point D is the apoapsis of Phase-II.

Before performing a numerical search for tB under a given µI,
it must be decided a priori whether a periapsis or an apoapsis D
point solution is being sought. During the numerical iterations the
current estimates of tB must be constrained to remain either larger
or smaller than tp,I. If tB crosses tp,I without switching the µII
solution, the algorithm will lead to an asymmetric trajectory with
fB,II lying in a wrong quadrant, as shown by the dashed lines in
Figure 4.

Note that the path with the point D being the apoapsis of Phase-
II is a longer path, both in length and in time. Practically speaking,
there is a bigger chance for the longer path to be influenced by dis-
turbances. Though in developing the algorithm the Debye length
effect is not taken into consideration, this effect does exist in the
space environment. Thus, the shorter path with the point D being
the periapsis is preferred.

Finally, all the required sub-steps have been presented to out-
line the overall collision avoidance algorithm. The basic logic is to
search for a proper t∗B such that the collision avoidance criteria

rp,II = γrs (48)

is satisfied, with the point D being the periapsis of Phase-II. In this
paper, Newton’s method is used in the numerical searching for t∗B
such that the following target function becomes zero:

g(tB) = rp,II(tB)− γrs. (49)

The iteration routine to determine a symmetric collision avoid-
ance with D being the periapses of Phase-II propagates according
to the following steps:

Step 1 Initialization: From the measurements rA
and ṙA, calculate eI, aI through Eq. (17),
and calculate the angle ∠AOD through
Eq. (18). Prescribe a proper µI, which
means |µI|must be greater than |µI,c| to en-
sure rp,I > γrs. It must also make sure
QI is implementable, which means QI <
Qmax. Calculate tp,I. Initialize tB :

t
(0)
B = αtp,I (50)

where 0 < α < 1.

Step 2 Solve for the point B’s states rB and vB
through Eqs. (29)–(32).

Step 3 Solve for µ(2)
II by Eq. (44), using the minus

sign. Calculate rp,II through

rp,II = aII(1− eII) (51)

and aII is solved by the energy equation, eII
is calculated through Eq. (37) evaluating at
point B in Phase-II.

Step 4 Calculate g(tB) by Eq. (49). Judge
whether |g(tB)| < Tol. If yes, STOP.
Otherwise, go to Step 5. Here Tol is the
tolerance of the iteration error in the unit
of meters. This paper uses Tol= 10−4 m
in the numerical simulations.

Step 5 Calculate g′ = ∂g
∂tB

using the finite differ-
ence method.

Step 6 Update t(i+1)
B = t

(i)
B −

g
g′ , i = i + 1. Go

to Step 2.

After choosing a proper value of QI, this routine calculates
a symmetric collision avoidance trajectory composed of three
patched conic-sections.

V. Collision Avoidance Criteria with Charge
Saturation

The previous section develops a numerical routine to find a sym-
metric patched conic section trajectory to avoid the collision and
meanwhile preserve the relative velocity magnitude and direction
of the two-spacecraft system. In deriving this routine, it is assumed
that the charge product of the two spacecraft is unlimited. If the
charge product limitation is taken into consideration, the system’s
ability to avoid a potential collision is then limited. Under certain
conditions, for example the two spacecraft are approaching each
other too quickly, the collision would be unpreventable. This sec-
tion determines the criteria to predict whether a potential collision
can be prevented using the presented collision avoidance routines.

d
rA

vA

SC1, O

SC2, A

xA

ro

ı̂v

ı̂h

ı̂D

Figure 7: Geometry of the 2-spacecraft system.

Figure 7 illustrates the geometry of the two spacecraft system
when the collision avoidance strategy is triggered at time tA. The
vectors rA, vA and h can be expressed in the {ı̂v, ı̂h, ı̂D} 1 frame
as

rA=− xAı̂v + dı̂D (52a)
vA= v0ı̂v (52b)
h = rA × vA = dv0ı̂h (52c)

1{ı̂v, ı̂h, ı̂D} centers at SC1, with ı̂v pointing to the SC2’s relative velocity
direction, ı̂h is the unit vector of the relative angular momentum, ı̂D closes the right
hand coordinate.
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This section is investigating the critical state with γ = 1. Substi-
tuting Eq. (52) into Eq. (24) and using the fact ‖rA‖ = rφ, yield

µI,c =
rφ v

2
0 d

2 − r2s rφ v2
0

2rs(rφ − rs)
(53)

Eq. (53) provides the value of µI that results in rp,I = rs. Thus,
the circular transitional orbit solution gives µI in the critical state.

Theorem 2 Consider a repulsive hyperbola motion governed by
Eq. (7), with µ < 0 being constant. Given initial position and
velocity [r0, ṙ0], the radius of the periapsis rp increases as |µ|
increases.

Proof To mathematically prove this theorem, it’s required to ex-
press rp in terms of µ and initial conditions. For a repulsive
hyperbola, the periapsis radius is given as16

rp = a(1 + e) (54)

Here a and e are actually determined by the initial conditions and
µ. Substituting e =

p
1− h2/µa and Eq. (17b) into Eq. (54) and

using |µ| = −µ instead of µ, yields

rp =
1

2|µ|/r0 + v2
0

„
|µ|+

q
|µ|2 + h2 (2|µ|/r0 + v2

0)

«
(55)

where r0 = ‖r0‖, v0 = ‖ṙ0‖, h = ‖r0 × ṙ0‖, which are all
determined by the initial conditions.

It’s still not obvious to see the trend of rp as |µ| increases. Tak-
ing a partial derivative of rp with respect to |µ|, yields

∂rp
∂|µ| =

1 +
`
|µ|+ h2/r0

´ ‹
β

2|µ|/r0 + v2
0

− |µ|+ β

r0(2|µ|/r0 + v2
0)2

(56)

where β =
p
|µ|2 + h2 (2|µ|/r0 + v2

0). The trend of rp as µ in-
creases is determined by the sign of ∂rp

∂|µ| . Eq. (56) can be changed
to be:

∂rp
∂|µ| =

1

(2|µ|/r0 + v2
0)2

(
|µ|
r0

+ v2
0 +

„
|µ|2

r0
+ |µ|v2

0

« .
β

)
(57)

Eq. (57) gives a simplified expression of ∂rp
∂|µ| with every individ-

ual term being positive. Thus, the partial derivative ∂rp
∂|µ| is alway

positive. This proves that rp increases as |µ| increases. �

Applying Theorem 2 in the 3-phase symmetric patched conic
section scenario yields the following lemma.

Lemma 1 For the 3-Phase patched conic section scenario as
shown in Figure 2, the circular transitional trajectory solution pro-
vides the minimum value ofQI that satisfies the collision avoidance
constraint rmin ≥ rs.

Proof For the critical case where γ = 1, the circular transitional
trajectory has the following properties:

rp,I = rs, rII = rs (58)

where rII is the radius of Phase-II, which is constant.
By Theorem 2, µI,c in Eq. (53) provides the minimum value

of |µI| that satisfies rp,I ≥ rs. From Eq. (6), the charge prod-
uct QI is proportional to |µI|, thus the circular transitional tra-
jectory provides the minimum value of QI such that rp,I ≥ rs.
For Phase-II, the radius is equal to rs, which satisfies the col-
lision avoidance requirement. So the circular transitional trajec-
tory solution provides the minimum QI to avoid the collision.
�

Theorem 3 For the two effective gravitational coefficients given
by Eq. (24) and Eq. (25), µI,c > |µII,c| if and only if d < d∗ =

rs
q

rφ
3rφ−2rs

.

Proof First, let us investigate µII,c − |µI,c|:

µII,c − |µI,c| =µII,c + µI,c

=
h2

rs
+
rφv

2
0d

2 − r2srφv2
0

2rs(rφ − rs)

=
v2
0

2rs(rφ − rs)

“
(3rφ − 2rs)d

2 − rφr2s
”

(59)

When |µI,c| > µII,c, µII,c−|µI,c| < 0, applying this to the formula
in Eq. (59), yields

v2
0

2rs(rφ − rs)

“
(3rφ − 2rs)d

2 − rφr2s
”
< 0

⇔ d <

s
rφr2s

3rφ − 2rs
= d∗ (60)

�

Theorem 2 and Lemma 1 show QI is lower bounded by the cir-
cular Phase-II solution:

QI ≥ QI,c = − µI,cm1m2

kc(m1 +m2)
= − (rφv

2
0d

2 − r2srφv2
0)m1m2

2kcrs(rφ − rs)(m1 +m2)
(61)

If d satisfies the condition in Theorem 3, then the circular trans-
fer orbit provides the minimum charge product level among all the
collision avoidance solutions. To illustrate this, consider the fol-
lowing numerical simulation results with the initial conditions:

R1(t0)=[0, 0, 0]T m, Ṙ1(t0)=[0, 0, 0]T m/s,

R2(t0)=[20, d, 0]T m, Ṙ2(t0)=[−0.03, 0, 0]T m/s (62)

and with rφ = 15 m, rs = 5 m. Figure 8 shows the charge product
magnitudes under different values of the offset distance d. For the
circular transitional trajectory case Theorem 3 states that QI > QII
when d < 3.2733 m, and this is reflected in Figure 8(a). Because
the minimum magnitude of QI is given by the circular transitional
trajectory solution, the circular transitional trajectory solution gives
the minimum charge product throughout the maneuver.

For general symmetric trajectory cases, given a value of d, there
remains one degree of freedom to determine the collision avoidance
trajectory. The numerical algorithm presented in the last section
chooses a value of QI and calculates all the remaining variables.
Figure 8(b) shows the value of |QII| corresponding to QI under
different d, with all other variables the same as in Figure 8(a).

Figure 8(b) illustrates that the solution with |QII| < QI always
exists, while the solution with |QII| > QI exists only when d >
d∗. This agrees with the intuition that QI can be infinitely large
to achieve the symmetric collision avoidance trajectory, but it must
be greater than a certain value to ensure a collision avoidance with
r > rs. When d < d∗, the minimum acceptable value of QI is
still greater than corresponding |QII| as predicted by Theorem 3,
thus the solution with |QII| > QI does not exist in this situation.
Another important aspect is that if d < d∗, the solution with QI =
|QII| is the L∞ optimal charge solution; when d > d∗, the circular
transfer orbit is the L∞ charge optimal solution. This helps to
choose a proper value of QI such that the maximum charge level
during the whole process is minimized.

Note that the criteria in Eq. (61) has exactly the same form as
Eq. (42) in Reference 15. The authors of Reference 15 assume that
the two spacecraft are fully charged to get the criteria in Eq. (42).
This assumption matches with the situation in Phase-I, where the
two spacecraft have a constant charge product and are repeling each
other. The physical meanings of the criteria in Eq. (42) in Refer-
ence 15 can be utilized here. For a given formation flying mission
in which the maximum magnitude of the possible separation dis-
tance rate has been determined, Eq. (61) provides a guide to design
the spacecraft charge devices such thatQI,c is achieveable, thus the
collision can be avoided with a symmetric trajectory.
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Figure 8: Charge product values under different d.

If the maximum charge product has been specified, then Eq. (63)
below tells us the maximum allowable relative velocity that guar-
antees the collision to be avoidable.

v0 ≤

s
2QI,maxkc(m1 +m2)

m1m2

rs(rφ − rs)
rφ(d2 − r2s)

(63)

Note that the inequality in Eq. (63) is obtained by solving for v0
from the inequality in Eq. (61).

VI. Numerical Simulations
A numerical iteration routine using Newton’s method to solve

for a symmetric patched conic section trajectory has been set up.
The logic of the routine is to search an appropriate time value tB
such that the target function g(tB) defined in Eq. (49) converges to
zero, with the point D being the periapsis of Phase-II.

The following numerical simulation cases show the effectiveness
of the routine in different situations. All the cases share a common
set of the parameters of the two spacecraft system:

m1 = m2 = 50 kg, rφ = 15 m, rs = 7 m, γ = 1. (64)

The initial inertial state vectors are also the same across all numer-
ical studies unless specified:

R1(t0) = [0, 0, 0]T m
R2(t0) = [−16, 3, 0]T m


Ṙ1(t0) = [0, 0, 0]T m/s
Ṙ2(t0) = [0.02, 0, 0]T m/s

(65)

The numerical simulation integrates the fundamental equations of
motion in Eq. (4) using a variable step size 4th order Runge–Kutta
integrator.

A. Ideal Conditions Examples
The phrase “ideal conditions” means the two spacecraft are

flying in free space in a vacuum (no plasma environment) with
λd = ∞. Setting the variable µI = −0.01 m3/s2, the corre-
sponding charge product is QI = 27.81 (µC)2. Figure 9 shows
two simulation results under these conditions. The first trajectory
(solid line) has the pointD as the periapsis of Phase-II. The second
trajectory (dashed line) is the case that the point D is the apoapsis
of Phase-II. This can be achieved by initializing tB to be larger than
tp,I, and using µ(1)

II instead of µ(2)
II in the routine. Table 1 shows

some detailed results of the simulations.
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Figure 9: Idea simulation.

Table 1: Results of the ideal simulations.

tB [s] rD [m] QII [µC2]

sim 1 291.42 7.00 -6.480
sim 2 391.61 15.64 -1.036

In both of the two simulations the collision avoidance require-
ment rmin ≥ rs is satisfied, and the final relative speed direction is
held the same as the initial direction. The first simulation has the
shorter path, though the magnitude of QII is bigger. The apoapsis
case (the point D is the apoapsis of Phase-II) is a conservative tra-
jectory far exceeding the collision avoidance requirement. Notice
that a small difference in tB results in a huge difference in the total
maneuver time. The longer transition time span makes the apoapsis
case much more vulnerable to disturbances.
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Figure 10: Charge expense history while sweeping µI.

B. Charge Expense Analysis
In these simulations the charge expense under different choices

of the free variable µI is analyzed. Two charge cost functions are
defined as:

J1 = max(QI, |QII|), J2 =
2tBQI + tII|QII|

2tB + tII
. (66)

Here J1 is the maximum magnitude of the charge products. This is
important when the maximum vehicle voltage level is of concern.
J2 is the time averaged charge product, which provides insight into
the nominal charge and voltages levels. Numerical sweeps of |µI|
are performed using the same parameters as in Eq. (64), but with
the different initial conditions:

R1(t0) = [0, 0, 0]T m
R2(t0) = [−16, 6, 0]T m

,


Ṙ1(t0) = [0, 0, 0]T m/s
Ṙ2(t0) = [0.03, 0, 0]T m/s

.

(67)

Note that with the provided parameters and initial conditions, the
condition in Theorem 3 is not satisfied, which implies the solution
with |QII| > QI exists. Figure 10 shows the values of J1 and
J2 for each value of |µI|. Figure 10(a) shows that the minimum
value of J1 is achieved at the marked point where QI = |QII|.
As |µI| increases, before it reaches the point where |QII| = QI,
|QII| dominates and J1 = |QII|. After the marked point, J1 is
linearly increasing because now J1 = QI and QI is proportional
to |µI|. Figure 10(b) shows that the minimum J2 happens at the
point where QI is minimum. This is because when QI = QI,c,
2tB is about two times greater than tII, and as |µI| increases, tB is
increasing, and tII is decreasing. So the influence of tB dominates
J2. Thus J2 ≈ QI as shown in Figure 10(b).

The two plots in Figure 10 together show an example that, ac-
cording to difference charge expense concerns, the “optimal” solu-
tions can be different.

C. Simulation With Debye Length Effect
The algorithm developed in this paper is an open loop program-

ming algorithm, assuming that the spacecraft are flying in free
space. The orbital motion and the Debye shielding effect haven’t
been taken into account. Figure 11 compares an ideal trajectory
(dashed line) with a trajectory in the presence of the Debye shield-
ing (solid line) under the same initial conditions. In the case that the
Debye shielding is applied, the Debye length is set to be λd = 50
m. This value represents the Debye length in deep space at 1 AU
distance from the sun.
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Figure 11: Relative trajectories of the two spacecraft under the
condition λd = 50 m.

The final velocity direction of the disturbed trajectory has an
offset of 3.98◦ from the ideal trajectory. The minimum distance
of the disturbed trajectory is 0.254 m or about 3.6% less than
that of the ideal case γrs, due to the partial shielding of Coulomb
force. The Debye length always decreases the effectiveness of the
Coulomb repulsion. This effect could be compensated for with a
γ > 1 safety factor. Future work will investigate how to feedback
stabilize such open-loop trajectories. A challenge here is the under-
actuated nature of the Coulomb thrusting. Further, the momentum
conservation makes it impossible to reverse the motion to compen-
sate for an overshoot. Any feedback control development could try
to bias the tracking errors to slightly undershoot the desired trajec-
tory.

VII. Conclusion
This paper proposes a symmetric 3-phase relative trajectory

composed of patched conic sections as the collision avoidance tra-
jectory. An analytical solution to circular transitional symmetric
trajectory and a numerical routine to find general symmetric tra-
jectory solutions are developed. With the presence of the Debye
shielding effect, the trajectory deviates from the ideal trajectory,
but only with small errors of a few percent. An issue in generating
the algorithm for a multiple spacecraft formation is that increasing
the number of the spacecraft would rapidly increase the complex-
ity of the problem. But the control algorithm in this paper can
be applied in a multi-spacecraft formation in the case where two
spacecraft are very close and others are far away from these two
spacecraft. In this case the impact from other spacecraft can be
treated as disturbances. The study of the impact from other space-
craft in a formation is one direction for further study. The results
in this paper can be extended to more general applications such as
asymmetric flyby maneuver. The final relative velocity’s direction
can be controlled by changing the symmetric axis. The magni-
tude of the final relative velocity can be controlled by changing
the energy level of Phase-III, correspondingly the properties of the
Phase-III trajectory are also changed and need to be treated care-
fully.
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