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Abstract An experimental study is discussed on a

strategy that combines on-off and sliding mode control

to swing up and control a pendulum with two reaction

wheels in the upright position. The control

scheme uses only one reaction wheel at a time,

adapting the control law to turn off one of the control

actions. The design takes into account the plant

limitations, thus justifying the combination of the

two strategies. The mechanical differences between

the standard reaction wheel pendulum configuration

and the one studied in this paper are pointed out to

explain the use and the operation of the controller.

Additionally, two cases are studied to verify

experimentally the performance of the controller

designed using low-cost hardware for real-time tests.

Keywords Reaction wheels � Nonlinear dynamics �
Pendulum � Sliding mode control � Swing-up

1 Introduction

The control and stabilization of inverted pendulums

have been studied for decades. Although these sys-

tems seem to be straightforward, they have many

attractive characteristics, such as nonminimum phase,

instability, nonlinearities, and under-actuation, that

motivate research. They are often used as benchmarks

to test new controllers as well as new arrangements of

actuators. A few examples of these systems are: the

reaction wheel pendulum [14], the wheeled inverted

pendulum [4], the pendulum on a cart system [9], the

reaction mass pendulum [10], the reaction wheel

unicycle [8], the pendulum with two reaction wheels

[16], among others. Due to the particularities of each

of the systems, the tested controllers present many

different features, including swing-up strategies which

were mainly tested on the pendulum on a cart system

and in the reaction wheel pendulum. For instance,

considering the pendulum on a cart, some interesting

techniques are presented in [2, 9].
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There are some classical approaches to swing up a

pendulumwith a reaction wheel, e.g. , Spong et al. [14]

discuss a partial feedback linearization and passivity

of the resulting zero dynamics to take the pendulum

from the downward position to the region in which

another control technique actuates to balance the

pendulum in the upright position. Another approach to

swing up the reaction wheel pendulum includes a

combination of a sliding mode controller with a

generalized PI [6]. In this case, the swing-up process is

based on the desired trajectory tracking, where the

amplitude of the pendulum oscillation is increased to

drive the pendulum until the upright position. The

choice of the desired trajectory using the system’s

energy is crucial to aid in the process of driving the

pendulum to the upright position [6].

Srinivas and Behera [15] present two different

swing-up control strategies that can be combined with

any balancing scheme to stabilize the pendulum in the

upright position. The first one is a sinusoidal swing-up

scheme in which the amplitude of the signal is

increased until the pendulum is close enough to the

upright position to be able to switch to the balancing

strategy. The second control strategy to swing up the

reaction wheel pendulum concerns the real-time

application of interconnection and damping assign-

ment-passivity based control considering a con-

strained input case. Later, Jepsen et al. [7] present a

switching strategy in which a bang-bang controller is

combined with three criteria based on the system’s

energy. This bang-bang controller has to drive the

pendulum until it reaches the region of the catch angle

of the stabilizing controller. Thus, it needs to use two

different controllers to swing up and stabilize the

reaction wheel pendulum in the upright position.

More recently, Sowman et al. [13] demonstrate that

nonlinear model predictive control could be an

alternative to swing up and balance the reaction wheel

pendulum in the upright position using a single

controller. The performance of such a controller was

also verified experimentally. Gutiérrez-Oribio et al.

[5] propose the control and stabilization of the

classical reaction wheel pendulum using a third-order

discontinuous integral sliding mode algorithm.

Although the analysis carried out has ensured only

local finite-time convergence of the states to the

origin, in the experiment, it was possible to drive the

pendulum to the upright position using the proposed

approach releasing the pendulum from the downward

position.

This brief literature review about the swing-up

control strategies for pendulums actuated by reaction

wheels focuses on the designs that are verified

experimentally. Many other strategies are not

addressed either because the experimental tests are

not conducted, or they have discussed only on the

balancing control strategies, where the pendulum is

released around the unstable equilibrium point. How-

ever, these strategies have contributed significantly to

the development of the control theory.

Nonetheless, this paper presents a swing-up

approach based on the variable structure control

(VSC) in which sliding mode constitutes a significant

feature. It has attractive properties such as insensitivity

to bounded uncertainties, disturbances, as well as

parasitic dynamics [3, 12]. The designer chooses a

custom function and designs a high-speed switching

control law, usually divided into two parts: a switching

part which is responsible for driving the system to the

function and an equivalent one, which controls the

system in the vicinity of the sliding function. The main

objective of the control law is to drive the system to a

sliding manifold, and once the sliding variable is zero

and remains at zero, the control law will slide to the

equilibrium point.

The pendulum configuration studied in this paper is

based on the classical reaction wheel pendulum, but

instead of having one reaction wheel, it has two. This

different configuration is introduced in [16] which

carry out a comparison of using one or two actuators

controlled by a simple PID controller. Moreover,

Trentin et al. [17] design nonlinear controllers for this

new configuration, including a nonlinear proportional-

derivative controller and a sliding mode controller. In

this case, both reaction wheels are actuated and the

sliding mode controller had a much better outcome.

The performance of the nonlinear controllers are

verified experimentally.

Thereby, the main contribution of this paper is to

present an experimental study of a variable structure

swing-up control law for a pendulum with two

reaction wheels using only one of them at a time.

One of the objectives is to evaluate if the controller

designed can overcome many of the problems of the

experimental device. The only measured variable in

this study is the pendulum’s angular position. Thus,

there is no information regarding the reaction wheels’
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rates. This makes the applicability of some control

strategies impossible and unsuitable; once for many

designs, there will not be enough information to

guarantee the stability of the control laws that are

proposed. Furthermore, the pendulum angular motion

also presents a nonlinear behavior regarding the

friction, where the equation of motion is updated to

take into account dissipative effects by considering

viscous and the Coulomb frictional models. This

phenomenon is also considered in the controller

design and it is identified in [17]. Since many of the

parameters of the plant are inaccurate, the sliding

mode control can be very useful and it is combined

with the on-off control to deal with the limitations of

the DC motors. Additionally, some particularities of

this dynamic system with two reaction wheels are

discussed to explain the adopted swing-up control

strategy.

This paper is organized as follows: Sect. 2 covers

the mathematical model of the pendulum with two

reaction wheels, Sect. 3 shows how the swing-up

control strategy based on sliding modes was con-

ducted, Sect. 4 presents a brief experimental descrip-

tion of the plant and hardware used for tests and the

experimental results obtained. It also explains the

mechanical differences between the classical reaction

wheel pendulum and the pendulum studied in this

paper. Finally, Sect. 5 describes the concluding

remarks of the paper.

2 Mathematical model

This section presents the mathematical model of the

pendulum with two reactions that is shown in Fig. 1.

The model of this pendulum configuration is first

derived in [16] and complemented with a model for the

friction torque in [17]. Here, we present directly the

equation of motion of the pendulum with two reaction

wheels and afterwards the motor torque equations.

This model’s derivation was performed in the body

(pendulum) fixed frame, not in the inertial one. Thus,

the angular velocities and accelerations are evaluated

in the body frame, which means that they are relative

angular velocities and accelerations; they are not

absolute ones.

The position control is performed through voltage

inputs to the DC motors, that in turn, actuate the

reaction wheels generating torques in order to provide

an adequate output for the pendulum’s angular posi-

tion. To do so, the system’s mathematical modeling is

described. Therefore, the equation of motion of the

pendulum with two reaction wheels is:

IOzeq
€hþ IAzw1€aþ IBzw2

€b ¼ ðm1 � m2Þg
‘

2
sin h� Tfr

ð1Þ

where h describes the pendulum angular motion and €h
its angular acceleration, €a is the angular acceleration

of the reaction wheel 1 and €b the angular acceleration

of the reaction wheel 2. IOzeq is the moment of inertia of

the pendulum and reaction wheels, IAzw1 and I
B
zw2 are the

moments of inertia of reaction wheels 1 and 2,

respectively, that are given by:

Fig. 1 Pendulum with two reaction wheels
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IOzeq ¼
1

2
m1r

2
1 þ m2r

2
2

� �
þ 1

4
m1‘

2 þ m2‘
2

� �
þ

þ 1

12
mp‘

2

ð2Þ

IAzw1 ¼
1

2
m1r

2
1

ð3Þ

IBzw2 ¼
1

2
m2r

2
2

ð4Þ

The subscript 1 is related to the reaction wheel 1 and

the subscript 2 to the reaction wheel 2 regarding the

masses m and the radii r. Moreover, Tfr is the friction

torque for which its model was updated to represent

the friction of the experimental device:

Tfr ¼ sgn ð _hÞ Cvj _hj þ Cc

� �
ð5Þ

where Cv ¼ 0:0031 Nms/rad is the coefficient of

viscous friction, and Cc ¼ 0:011 Nm the Coulomb

friction coefficient [17]. Additionally, the motor

torques for each reaction wheel are:

T1 ¼ IAzw1
€hþ IAzw1€a ð6Þ

T2 ¼ IBzw2
€hþ IBzw2

€b ð7Þ

Coupling the DC motors model to the motor torque

equations, and solving with respect to the variables of

the voltages applied to them, yields:

Va ¼ T1
Ra

Kt
þ Kv _a ð8Þ

Vb ¼ T2
Ra

Kt
þ Kv

_b ð9Þ

where Ra ¼ 1:06X is the armature resistance, Kt ¼
0:0063 Vs/rad is the motor torque constant, and Kv ¼
0:0063 Nm/A is the back electromotive force constant.

The other parameters based on the experimental

device are m1 ¼ 0:21 kg, r1 ¼ 0:11 m, m2 ¼ 0:13

kg, r2 ¼ 0:1 m, mp ¼ 0:16 kg and ‘ ¼ 0:5 m. The

mathematical model is described as input-output

where the input is the voltage applied to the DC

motors that depends on the motor torques, and the

output is the pendulum’s angular position. Additional

details can be seen in Fig. 3.

3 The controller design

There are many different swing-up control strategies

already presented in the literature, as aforementioned.

Here, the strategy is straightforward and combines an

on-off controller with the sliding mode controller. The

control law presented in this manuscript was first

designed to use both reaction wheels at the same time,

see [17]. However, we managed to adapt the control

law to swing up the pendulum and control it in the

upright position using just one of them at a time. This

also took into account the limits of the DCmotor; thus,

the proposed sliding mode control law is combined

with an on-off controller.

Firstly, the design of a sliding mode control using a

sliding function is carried out as if both reaction

wheels were used to control the pendulum. The use of

this function is because the DC motors do not have

encoders. Thereby, the angular velocities of the

reaction wheels are unknown. Consequently, the

sliding function takes into account the known states,

which are the angular position and velocity of the

pendulum. The tracking error is defined as e ¼ h� hd,
where hd is the desired pendulum angular position.

The sliding function (rðe; tÞ) is given by:

rðe; tÞ ¼ _eþ ce ð10Þ

where c is a positive constant, the system reaches the

sliding function when rðe; tÞ ¼ 0, and if it remains at

zero, it will slide to the equilibrium point. When

analyzing the function presented in (10) in the error

configuration space, it represents a straight line of

sliding, and it must have its values tending to zero to

assure the convergence in a finite time interval. The

derivative of the sliding function yields:

_r ¼ €eþ c _e � €h� €hd þ c _e ð11Þ

Selecting the following equation to be a candidate for

the Lyapunov function, we have:

VðrÞ ¼ 1

2
r2 ð12Þ

where this function must be positive definite with a

negative definite derivative to be a Lyapunov function.

Evaluating the derivative of (12), yields:
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_VðrÞ ¼ r _r; r 6¼ 0 ð13Þ

Now, it is imperative to prove that the derivative of the

candidate to be Lyapunov function is negative definite.

Thus, rearranging the equation of motion presented in

(1) and substituting it into the derivative of the sliding

function in (11) leads to:

_r ¼
ðm1 � m2Þg ‘

2
sin h

IOzeq
�

IAzw1
IOzeq

IBzw2
IOzeq

" #
€a
€b

� �
þ

� Tfr
IOzeq

� €hd þ c _e

ð14Þ

The 2� 1 desired states vector g ¼ €a€b
n oT

and the

1� 2 matrix Q½ � are introduced to simplify the

notation:

½Q� ¼ IAzw1
IOzeq

IBzw2
IOzeq

" #

ð15Þ

Furthermore, adopting the control law as:

Q½ �g ¼
ðm1 � m2Þg ‘

2
sin h

IOzeq
� Tfr
IOzeq

� €hdþ

þ c _eþ j sgn ðrÞ
ð16Þ

Substituting the control law (16) into (14), and

rearranging it:

_r ¼ �j sgn ðrÞ ð17Þ

This result is substituted into the derivative of the

candidate for the Lyapunov function presented in (13):

_VðrÞ ¼ r �j sgn ðrÞð Þ ¼ �jjrj\0; r 6¼ 0 ð18Þ

where j is an arbitrary positive constant, thus proving

that the selected function is a Lyapunov function

where its derivative is negative definite. A saturation

function is adopted instead of the sign function to

avoid chattering, which is:

sat(r) =

1 if r[D

kr if jrj �D; k ¼ 1

D
�1 if r\� D

8
><

>:
ð19Þ

where a linear boundary layer is established between

both positions of the sign function, thus, Fig. 2

illustrates the saturation function utilized in this work.

Thus, the control law can be rewritten with the

saturation function:

Q½ �g ¼
ðm1 � m2Þg ‘

2
sin h

IOzeq
� Tfr
IOzeq

� €hdþ

þ c _eþ j sat ðrÞ
ð20Þ

And it can be rewritten as:

½Q�g ¼ L ð21Þ

where L ¼ ueq þ u�. The slidingmode control law can

be separated into twomain components, the equivalent

(ueq) and the switching parts (u�). The equivalent

component takes place once the system is sliding and

the switching component drives the system to the

sliding function; where:

ueq ¼
ðm1 � m2Þg ‘

2
sin h

IOzeq
� Tfr
IOzeq

� €hd þ c _e ð22Þ

and

u� ¼ j sat ðrÞ ð23Þ

This sliding mode control law was designed to provide

the desired angular acceleration for the reactions

wheels. Moreover, we chose to swing up the pendulum

using a reaction wheel at a time. To accomplish this

task, the control law needs to be rearranged to turn off

one of the control modes, i. e., to one of the reaction

wheels, an angular acceleration equals to zero is

commanded.

Fig. 2 Saturation function
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Thereby, the sliding mode control law presented in

(21) for the 2-RWP can be rewritten such that each

control mode can be allocated separately. Thus, the

inverse of the [Q] can be evaluated using a weighted

pseudo-inverse as done in [11]:

g ¼ ½W �½Q�T ½Q�½W �½Q�T
� ��1

L ð24Þ

where for the case of the 2-RWP, [W] is a 2� 2

diagonal matrix:

½W � ¼
W1 0

0 W2

� 	
ð25Þ

where W1 and W2 are the weights related to each

reaction wheel, respectively. Thus, when it is desired

to use only reaction wheel 1:W1 ¼ 1 andW2 ¼ 0, and

when using reaction wheel 2: W1 ¼ 0 and W2 ¼ 1.

The swing-up control law can be summarized as:

gsw ¼

g if sgn ð _hÞ ¼ 1

g if sgn ð _hÞ ¼ 0

0 if sgn ð _hÞ ¼ �1 and jhj[ 20	

g if sgn ð _hÞ ¼ �1 and jhj\20	

8
>>><

>>>:

ð26Þ

where gsw is the resulting desired rates for the reaction

wheels’ angular acceleration, taking into account

which reaction wheel is actuating and employing the

sliding mode control law designed, and _h is the

pendulum’s angular velocity.

This swing-up control strategy is developed to deal

with the limitations of the experimental set-up.

Moreover, the controller is set to turn-off when the

DC motor starts to be unable to provide the necessary

torque, i.e., the pendulum’s angular position starts to

repeat, and the pendulum angular velocity changes its

sign. The controller is turned back on when the

pendulum reaches another point where the angular

position will be repeated, and the angular velocity sign

will change again.

In this strategy, the swing-up is always seeking for

the sliding function, and it does not switch between

controllers. Once the controller is on, the sliding mode

control law is responsible for providing adequate

angular acceleration for the reaction wheel that is

being used. Thus, the motor torque is evaluated, and

the voltage is commanded to the DC motor. Addi-

tionally, the process of turning off the controller when

reaching the saturation of the DC motor uses of the

energy of swinging the pendulum to help to take it to

the unstable equilibrium point.

One of the hypotheses made based on experimental

observation is that the swing-up control law proposed

is only turned off when the pendulum’s angular

position is in a region different than jhj\200,

otherwise the sliding mode control actuates.

Thus, the process of swinging up the pendulum will

drive the pendulum to the upright position using only a

reaction wheel at a time, and the designed sliding

mode control law will balance the pendulum in the

upright position.

4 Results and discussion

This section briefly explains the experimental set-up

and reports the two cases studied by this paper, the

swing-up and control of an inverted pendulum with

two reaction wheels using one of them at a time. The

results using reaction wheels 1 and 2 are compared and

explained based on the dynamics of the pendulumwith

two reaction wheels for a better understanding.

The control strategy designed is implemented in an

experimental application to verify its performance.

The experimental device has a precision potentiometer

that measures the pendulum’s angular position, a relay

module, two PWM control boards, one for each DC

motor, and an Arduino Uno prototype platform with a

microcontroller. The control law presented in (26) is

programmed in the script developed in Arduino.

The real-time controller works as follows: the

precision potentiometer evaluates the pendulum’s

angular position, where the script uses a moving

average of five samples to attenuate the noise, and

evaluates its derivatives as the difference of consec-

utive samples divided by the time step. These are the

inputs for the control law presented in (26) that

evaluates the desired rates for the reaction wheels’

angular acceleration. Afterwards, Eqs. (6) and (7)

compute the motor torques of the reaction wheels.

Here, the reaction wheel mode that is on was already

decided, i. e., only one reaction wheel is actuated

according to the designer. With these values, Eqs. (8)

and (9) calculate the voltages that must be applied to

the DC motors. However, the second terms of these

equations are neglected because the DC motors do not

have encoders; thus, the angular velocities of the
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reaction wheels are unknown. These voltages are

converted to PWM values from � 255 to 255 and then

commanded to the PWM boards, which are externally

fed with 12 V by power sources. The process is

restarted and repeated for the duration of the exper-

iment. Figure 3 illustrates a block diagram to help to

understand this process, providing the inputs and

outputs of each step of the control strategy. Additional

information concerning the experimental device and

the low-cost hardware used for the tests can be

consulted in [16, 17].

Firstly, Fig. 4 shows the controlled pendulum’s

angular position for the two situations investigated in

this paper. When actuating using only the reaction

wheel 1 (RW1), the pendulum reaches the upright

position faster than when using only reaction wheel 2

(RW2). The gains used for all the experiments were

j ¼ 100, D ¼ 1, actuating RW1 c ¼ 2:7, and actuat-

ing RW2 c ¼ 2:4.

After 10 s, both cases can control the pendulum in

the upright position. The swing-up process can be

considered slow. However, the hardware used, the

self-manufactured pendulum, and its big dimensions

have to be taken into account. This series of limitations

that the plant imposes to this control problem is

responsible for these slower results. Although they

emphasize the strength of the control law used, which,

despite all the difficulties encountered, manages to

swing up and control the pendulum in the upright

position with the adaptations made.

Additionally, the difference in the performance

between using reaction wheels 1 and 2 can be

explained due to the inertia of each one of them.

Reaction wheel 2 is smaller and has a lower mass,

which implicates in a lower moment of inertia. When

considering Eqs. (6) and (7) to calculate the motor

torque for the DC motors, it could explain the

difference found in the results. The smaller reaction

wheel is easier accelerated. However, when analyzing

the result depicted in Fig. 4, this does not turn out to be

an advantage, since when actuating reaction wheel 1,

the pendulum reaches the upright position faster.

Figure 5 depicts the voltages applied to reaction

wheel 1. It is important to highlight that when one of

the reaction wheels control modes is off, the voltage

should remain at zero, as observed.

Figure 6 presents the voltages applied to reaction

wheel 2 and as expected when only reaction wheel 1 is

actuated, the voltage of reaction wheel 2 remains at

zero.

Since only one reaction wheel is actuated at a time,

the voltage applied reaches the DC motor’s saturation

limit of |12| V in the swing-up process. This means that

at those instants, the DC motor employs its maximum

acceleration capacity. Furthermore, the noise pre-

sented in the measurement of the pendulum angular

position by the potentiometer causes some imperfec-

tions to the controller during the transitions between

turning it off and on. This happens because the

controller is based on the pendulum angular velocity to

be turned off or on. This rate is obtained by deriving

the average angular position, which amplifies the

Fig. 3 Block diagram of the controller operation

0 2.5 5 7.5 10 12.5 15
Time [s]

-50

0

50

100

150

200

250

300

θ
(t
)[
D
eg
]

Fig. 4 Comparison of the experimental pendulum’s angular

position to swing up and control the 2-RWP in the upright

position (h ¼ 0	). — actuating RW 1 and - - - actuating RW 2
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remaining noise. Although this problem can be

observed in the transitions, the controller is able to

cope with this issue and it does not affect significantly

the overall performance.

Moreover, when the pendulum approaches the

desired set-point (h ¼ 0o), the voltages, either using

reaction wheel 1 or 2, are not close to the saturation

limit and they are almost constant. However, small

oscillations can be observed. This happens because we

are not fully actuating the system, there are some

contributions due to constructions imperfections that

were not possible to be modeled once this pendulum

was self-manufactured, and there is also the nonlinear

behavior of the friction phenomenon.

Figure 7 illustrates the error configuration space in

which the sliding function was designed. The swing-

up process generates the spirals where we can interpret

that one of the control modes was on, and it was not

possible to reach the sliding function. And then, the

system goes to a farther away position, and it uses the

pendulum energy to help in the swing-up process.

Thus, a new attempt is made to try to reach the

designed sliding function. In the attempt that the

pendulum reaches the sliding function, it passes the

0 2.5 5 7.5 10 12.5 15
Time [s]

-9

-6

-3

0

3

6

9

12
V

α
(t
)[
V
]

Fig. 5 Comparison of the voltages applied to the DC motor of

RW 1 to swing up and control the 2-RWP in the upright position

(h ¼ 0	). — actuating RW 1 and - - - actuating RW 2

0 2.5 5 7.5 10 12.5 15
Time [s]

-3

0

3

6

9

12

V
β
(t
)[
V
]

Fig. 6 Comparison of the voltages applied to the DC motor 2 to

swing up and control the 2-RWP in the upright position

(h ¼ 0	). — actuating RW 1 and - - - actuating RW 2

0 2 4 6
e(t) [rad]

-15

-12.5

-10

-7.5

-5

-2.5

0

2.5

5

ė
(t
)
[r
ad

/s
]

Fig. 7 Error configuration space with the sliding functions

designed. — using RW 1, - - - using RW 2 and -•- the desired
sliding function using RW1 and . . . the desired sliding function

using RW2

0 2.5 5 7.5 10 12.5 15
Time [s]

-3

0

3

6

9

12

15

σ

Fig. 8 Sliding function to swing up and control the 2-RWP in

the upright position (h ¼ 0o)— using RW 1 and - - - using RW2
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function. This also can be seen in Fig. 8, where we

show the behavior of the sliding function over time.

Analyzing the behavior of the sliding function over

time, we can verify exactly the moment when the

control is turned off due to the DCmotor’s limitations,

comparing the time when this occurs to Figs. 5 and 6 in

which the voltages applied to the DC motors are

presented.

In the controller designed, if the pendulum’s

angular position is repeated and the pendulum angular

velocity changes its signal, the controller is turned off.

Thus, the controller will only be turned back on when

this happens again, i. e., the pendulum reached another

point where its angular velocity was changed. This

idea is due to the limitations of the DC motors

employed in the plant. The DC motor used for the

experimental tests reaches a high angular velocity.

This means that low torque is achieved, which is not

very interesting for this kind of control strategy. It

would be more important than the DC motor provided

a higher torque than achieving high angular velocity.

From the experimental characterization of the DC

motor shown in [16], we can also see that the DC

motors used are slow, they have a high time constant

s ¼ 5:88 s. This is also an issue because even if 12 V is

commanded to the DC motors, it takes some time for

them to provide the acceleration needed.

Additionally, this paper does not look into an

energy approach. We combine a simple swing-up

control strategy that deals with the experimental

limitations of the plant. We know that the DC motor

used does not provide high torques. Therefore, we

have chosen to turn off the controller when the torque

provided is not enough to reach either the sliding

function or the upright position. The disadvantage is

that it does not drive the pendulum energy and disk

velocity to zero, once the voltages applied to the DC

motors for both cases studied are almost constant after

the pendulum is controlled in the upright position.

Furthermore, some features make the swing-up and

control of the configuration studied in this paper easier

than the classical reaction wheel pendulum. In the

equation of motion presented in (1), we need to

consider to the accompanying term of sinðhÞ, that is
ðm1 � m2Þg ‘

2
. To model this different configuration,

the masses of each DC motors balance themselves.

Thus, the term mentioned depends on the reaction

wheels’ masses difference. However, this

configuration remains an underactuated mechanical

system, but this mass difference is smaller than when

considering the classical reaction wheel pendulum.

Besides, if this new system has both reaction wheels

with the same mass, this system is no longer a

pendulum, it is a linear system if we do not consider

the pendulum friction, and it will not oscillate like a

pendulum.

It is essential to state that the strategy presented by

this paper was adapted to work within the experimen-

tal device when actuating only a reaction wheel at a

time. When both reaction wheels are actuated for such

configuration, it is not necessary to swing up the

pendulum. The real-time implementation of swing-up

control strategies in practice is not very simple to be

carried out. In this case, an extra challenge is to do so

using low-cost hardware costing around USD 150

[16]. The reader can examine the performance of the

controller in a video in [1].

5 Conclusions

This manuscript presents a novel approach to swing up

and control an inverted pendulum with two reaction

wheels combining on-off and sliding mode control.

The properties achieved using SMC are essential to

deal with many of the limitations of the plant, which

include the absence of sensors in the DC motors, the

low-cost hardware, and the nonlinear behavior of the

friction. Additionally, the controller presented is first

designed to actuate the system entirely and it is

adapted to work using only a reaction wheel. The

strategy presents excellent experimental results and is

able to swing up the pendulum and control it in the

upright position using a single controller.
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