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ABSTRACT Reactionwheels have been extensively used to control and stabilize awide range of applications
due to the angularmomentum exchange that they provide tomechanical systems. However, there exist several
limitations associated with actuator saturation and the presence of singularities that lead towards the use of
different controllers and devices. Recently, a new and unusual configuration using two reaction wheels was
proposed and illustrated in an inverted pendulum to drive and control it using a simple and well-known PID
controller. In this context, this paper improves the previous results on the same system by proposing two
more sophisticated nonlinear controllers: a nonlinear proportional-derivative and a sliding mode controller.
The proof of the stability of each controller is also provided, and the asymptotic stability is proven. A friction
model is experimentally updated into the differential equations of the pendulum and also included for the
controllers designing. A real-time application verifies the performance of the controllers using low-cost
hardware. Results based on the analysis of different performance indices highlight the improvement of
applying these two nonlinear control techniques comparing to the previous paper using this configuration of
actuators.

INDEX TERMS Inverted pendulum, low-cost hardware, reaction wheels, sliding mode control.

I. INTRODUCTION
Inverted pendulum models such as the wheeled inverted pen-
dulum, the pendulum and a cart system, and the reaction
wheel pendulum, among others, have been subject to studies
for decades, helping to develop new control strategies or even
describing the dynamics of real-world mechanisms [1]–[5].
Other inverted pendulum-like systems have been studied
recently. Owczarkowski et al. [6] investigated the control of
a real bicycle robot which has its balance controlled by a
reaction wheel pendulum, where a combination of feedback-
linearization-based techniques and robust LQR control laws
was carried out. Moreover, the studies of unicycles were
also conducted, where Jin et al. [7] used the gyroscopic
precession of two gyroscopes to provide lateral balance to
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the system. Neves et al. [8] designed a robust controller
that minimized the H2 system norm considering parametric
uncertainties in the poly-topic domain for a reaction wheel
unicycle, and the controller performance was verified exper-
imentally. A ball-bot system, a pendulum balanced on a ball,
has also attracted attention in the past few years [9]–[11].
This system consists of an inverted pendulum rolling on
a sphere and can be controlled by its Omni-wheels [10]
or using reaction wheels [11]. Sekhar et al. [11] derived a
mathematical model using Lagrangian mechanics, where it
included reaction wheels to control the ball-bot system. PID
and LQR controllers were designed to control the system
with or without the reaction wheels to compare the perfor-
mances. Furthermore, Lima et al. [10] verified experimen-
tally a LMI based robust H2 controller for such a system.
Also, the majority of these inverted pendulum-like systems
are nonlinear and under-actuated, which makes their control
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and stabilizationmore complicated [12]. Thus, the problem of
balancing inverted pendulum systems is of great importance
for control and robotic communities.

Trentin et al. [13] suggested an unusual and new pendulum
configuration where instead of using only a reaction wheel to
drive and control a pendulum in the inverted position, it uses
two. A simple PID controller was designed to evaluate the
difference of actuating an inverted pendulum with one or two
actuators. This systemmay attract attention for many reasons,
ranging from academic and pedagogic purposes to the devel-
opment of new control techniques. It is also interesting that
one can use one reaction wheel or both to drive the pendulum
to the inverted position.

There is a large variety of control techniques to be applied
to stabilize inverted pendulums. The present paper intends
to investigate the use of two nonlinear control techniques,
one Lyapunov-based and other based on variable structure
control (VSC), to be applied in the same configuration that we
proposed in Trentin et al. [13]. The Lyapunov direct method
can provide a helpful tool to analyze the stability of dynamical
systems. From this method, it is possible to propose energy-
like functions that must be positive definite with its derivative
being at least negative semi-definite [14]–[17]. Therefore,
this function will be a Lyapunov function and the stability
analysis of the problem can be carried out.

The variable structure control is an advanced nonlinear
control strategy that has provided adequate means to design
robust state feedback controllers. The aim is to obtain the
desired plant behavior, changing its structure automatically
on reaching a switching surface. It is an efficient control
strategy that is used to a broad class of both nonlinear and
linear systems subject to external disturbances and modeling
uncertainty [18]–[20]. The controller structure is changed by
using a high-speed switching feedback control. The switching
feedback control law drives the trajectory of the system onto
a specified and user-chosen surface, which is termed the
sliding surface or the switching surface and maintains the
trajectory on this sliding surface for all subsequent time [18],
[20], [21]. The primary mode of variable structure control
operation is sliding mode control, which includes excellent
properties, such as low sensitivity to plant parameter uncer-
tainty, rejection of a particular class of external disturbances,
reduced-order modeling of plant dynamics, and finite-time
convergence [18]–[22].

The basic principle of VSC theory is to design a switch-
ing surface, which has the desired behavior of the states,
and a control law that brings the states to that surface. The
advantage is that once the system’s states reach the switching
surface, the system operation mode depends only on the
equation of the switching surface designed, regardless of
the parameters of the system, even if the system parameters
have a change [18], [20]. Therefore, the VSC theory can
overcome the invariance of uncertain parameters such as
disturbance and perturbation of parameters, and can reduce
the order of the system and the algorithm is simple and easy
to realize [23].

Although the theory of variable structure systems has
undergone extensive and detailed studies in the control
community [23]–[25]. In recent years, researches on VSC
theory has been successfully applied to a wide variety of
practical systems, such as satellite and spacecraft attitude
control [26]–[30], power model [31], cranes [32], [33], quad-
rotors [34] and robot control [35]–[37]. The variable struc-
ture control technique also has wide application in advanced
microprocessor technology of the on-line control of dynamic
systems, for example, robotic manipulators, heat processes,
electro-pneumatic system [24]. Additionally, for inverted
pendulum systems, Riachy et al. [38] designed a second-
order sliding mode controller for an inverted pendulum under
uncertainty conditions. Furthermore, Wang [39] carried out
the stabilization and tracking control using sliding modes of
an X-Z inverted pendulum that can move combining vertical
and horizontal forces. Iriarte et al. [40] presented a second-
order sliding mode tracking controller for the reaction wheel
pendulum. Adhikary and Mahanta [41] proposed an inte-
gral back-stepping sliding mode controller for the swing-
up and stabilization of the pendulum and a cart system.
Guo et al. [42] carried out the design and implementation of
a sliding mode controller for the wheeled inverted pendulum.

Thereby, the main contribution of this paper is to describe
new control realizations regarding the pendulum with two
reaction wheels to improve the performance comparing with
our previous paper [13]. This paper illustrates the design
of two nonlinear controllers for the two reaction wheels
pendulum (2-RWP). The first one designed is a classical
nonlinear proportional-derivative controller derived from the
Lyapunov stability theory. The proof of stability is provided
using the higher-order derivatives of the Lyapunov function
candidate, where the asymptotic stability is proven. Addi-
tionally, considering that many parameters of the plant are
known with limited accuracy, a sliding mode controller is
also designed for this different pendulum configuration. The
new results obtained experimentally using low-cost hardware
are compared to established ones. Moreover, the way that the
plant was manufactured using DC motors without encoders
makes it impossible to knowmany of the states of the reaction
wheels. This was taken into account in the design of the
controllers, which have to be able to overcome this practical
challenge.

This paper is organized as follows. Primarily, section II
describes the model of the pendulum with two reaction
wheels and the experimental characterization of the pendu-
lum friction. Subsequently, section III presents a Lyapunov-
based proportional-derivative controller. The design of the
sliding mode controller for the 2-RWP is carried out
in section IV in which the stability analysis assures asymptot-
ically stability. Furthermore, section V exhibits the descrip-
tion of the experimental set-up used for the tests of the
nonlinear controllers in real-time, showing the low-cost hard-
ware. Afterwards, the results obtained using the nonlinear
controllers are shown in section VI. They are compared to
the previous one highlighting the improvement of using the
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two control techniques proposed in this paper. Finally, the
conclusions are carried out.

II. MODEL OF THE TWO REACTION WHEELS PENDULUM
The pendulumwith two reaction wheels is presented in Fig. 1.
The complete model of this unusual pendulum configuration
was carried out in [13], where θ describes the pendulum
motion, α the motion of reaction wheel 1 and β the motion
of the reaction wheel 2.

FIGURE 1. Two reaction wheels pendulum [13].

The equation of motion of the 2-RWP is given by:

IOzeqθ̈ + I
O
zw1α̈ + I

O
zw2β̈ = (m1 − m2)g

`

2
sin θ (1)

where IOzeq =
1
12mp`

2
+

1
2

(
m1r21 + m2r22

)
+

1
4

(
m1`

2
+ m2`

2
)

is the moment of inertia of the pendulum and both reac-
tion wheels computed relatively to the fixed point O using
Steiner’s Theorem, mp is the pendulum mass, ` is the pen-
dulum length, g is the acceleration of gravity, and θ describes
the angular position of the pendulum. The moments of inertia
of each reaction wheel are IOzw1 =

1
2m1r21+

1
4m1`

2 and IOzw2 =
1
2m2r22 +

1
4m2`

2, respectively. They were also calculated
relatively to the fixed point O. θ̈ is the angular acceleration
of the pendulum, α̈ is the angular acceleration of reaction
wheel 1, β̈ is the angular acceleration of reaction wheel 2,
m1 and m2 are the masses, and r1 and r2 are the radii of the
reaction wheels 1 and 2, respectively.

Additionally, the motor torques for each reaction
wheel are:

T1 = IAzw1θ̈ + I
A
zw1α̈ (2)

T2 = IBzw2θ̈ + I
B
zw2β̈ (3)

where with respect to the point A, the moment of inertia of
the reaction wheel 1 is IAzw1 =

1
2m1r21 , and the moment of

inertia of reaction wheel 2 is IBzw2 =
1
2m2r22 relatively to

the fixed point B. The parameters used for simulations were

m1 = 0.21 kg, r1 = 0.11 m, m2 = 0.13 kg, r2 = 0.1 m,
mp = 0.16 kg and ` = 0.5 m. These parameters were
obtained from the experimental device. Equations (1), (2)
and (3) describe the motion of the 2-RWP.

The torques T1 and T2 are provided by DC motors coupled
to the reaction wheels, whose equations are given by:

T1 = Vα
Kt
Ra
−
Kt Kv
Ra

α̇ (4)

T2 = Vβ
Kt
Ra
−
Kt Kv
Ra

β̇ (5)

And equations (4) and (5) can be rearranged in such man-
ner that they will provide the necessary voltage for each DC
motor based on the motor torques:

Vα = T1
Ra
Kt
+ Kvα̇ (6)

Vβ = T2
Ra
Kt
+ Kvβ̇ (7)

where Ra is the armature resistance, Kt is the motor torque
constant, and Kv is the back electromotive force constant.
From the experimental characterization of the DC motor

already presented in [13], where a first-order transfer function
represents the DC motor coupled to the reaction wheel relat-
ing the angular velocity of the reaction wheel with the voltage
applied to the DCmotor, the values obtained for the stationary
gain and for the time constant were: K = 54.62 Vs/rad and
τ = 5.88 s. Considering these values and the moment of iner-
tia of each reactionwheel is possible to find thatRa = 1.06�,
Kt = 0.0063 Vs/rad and Kv = 0.0063 Nm/A.

A. EXPERIMENTAL CHARACTERIZATION OF THE
PENDULUM FRICTION
It is essential to highlight that the pendulum built for the
experimental tests has some construction imperfections and
presents a nonlinear behavior regarding its friction. The pen-
dulum angular motion has small velocities for which is dif-
ficult to model the effect of friction [43]. Therefore, it is
imperative to include such a phenomenon in the model of
the pendulum with two reaction wheels. The model must
consider the contributions of Coulomb and viscous friction to
be able to represent this phenomenon, and it is described by:

Tfr = sgn(θ̇ )
(
Cv|θ̇ | + Cc

)
(8)

where Cv is the coefficient of viscous friction and Cc the
Coulomb friction value. The parameters of this friction model
were identified, and themodel was included in the equation of
motion of the 2-RWP presented in (1). Regarding the identifi-
cation of the model, the pendulum was released from θ = 90
degrees so that the friction behavior could be observed until
the pendulum stopped in the stable equilibrium point, the
downward position. Fig. 2 presents the experimental result
of releasing the pendulum and waiting for it to stop and
compares this result with the 2-RWP equation of motion with
the friction model included given by:

IOzeqθ̈ + I
O
zw1α̈ + I

O
zw2β̈ = (m1 − m2)g

`

2
sin θ − Tfr (9)
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FIGURE 2. Identification of the friction of the 2-RWP. - - - indicates
numerical result and ___ the experimental result.

This model has a very close fit to the experimental result,
where Cv = 0.0031 Nms/rad and Cc = 0.011 Nm. Also, the
friction model used here, composed by viscous and Coulomb
friction contribution, is trendy in the literature [43]. More-
over, this has not been considered in our previous paper [13],
and the friction contribution is significant to be identified
and included in the design of the controllers once it has a
strong nonlinear behavior and this could influence in the
performance of the controllers.

III. DESIGN OF A NONLINEAR
PROPORTIONAL-DERIVATIVE CONTROLLER
This section presents the design of a proportional-derivative
controller using a Lyapunov-based approach and also con-
sidering the nonlinear friction model of the 2-RWP. It is
necessary to select an energy-like candidate to be a Lyapunov
function to design the feedback control law:

V(δθ, δθ̇ ) = IOzeq
δθ̇2

2
+ kp

δθ2

2
(10)

where δθ̇ = θ̇ − θ̇d , δθ = θ − θd and kp is a positive
feedback gain. To the system to be stable, the derivative of
the Lyapunov candidate function must be at least negative
semi-definite. The derivative of the candidate for Lyapunov
function is given by:

V̇(δθ, δθ̇ ) = δθ̇
(
IOzeqδθ̈ + kpδθ

)
(11)

In this way, V̇(δθ, δθ̇ ) is set to be equal to a negative semi-
definite function, in this case:

V̇(δθ, δθ̇ ) = δθ̇
(
IOzeqδθ̈ + kpδθ

)
= −kdδθ̇2 (12)

where kd is a positive gain. It is possible to obtain the fol-
lowing stable closed-loop dynamical system to develop the
derivative of the Lyapunov candidate function:

IOzeqθ̈ − I
O
zeqθ̈d + kpδθ + kdδθ̇ = 0 (13)

To find the control law, it is necessary to substitute the
system motion equation (9) into the closed-loop system pre-
sented in (13), yielding:

−IOzw1α̈ − I
O
zw2β̈ + (m1 − m2)g

`

2
sin θ − Tfr +

− IOzeqθ̈d + kpδθ + kdδθ̇ = 0 (14)

and rearranging, we obtain the control law for the 2-RWP:[
IOzw1 I

O
zw2

] {
α̈

β̈

}
= (m1 − m2)g

`

2
sin θ − Tfr +

− IOzeqθ̈d + kpδθ + kdδθ̇ (15)

Usually, to guarantee the asymptotic stability of a sys-
tem, the candidate for Lyapunov function V(δθ, δθ̇ ) must
be positive definite, whereas its derivative V̇(δθ, δθ̇ ) must
be negative definite. This is a sufficient condition but not a
necessary one. If the Lyapunov function derivative is only
negative semi-definite, it is still possible for a dynamical
system to be asymptotically stable [17]. The theorem enun-
ciated below, introduced by Mukherjee and Chen [44], pro-
vides the necessary conditions to prove asymptotic stability
when the Lyapunov function derivative is only semi-definite
V̇(δθ, δθ̇ ) 6 0 by investigating the higher order derivatives
of the Lyapunov functions [44]–[46].
Theorem: Assume there exists a Lyapunov function V(x) of

the dynamical system ẋ = f (x). Let � be the non-empty set
of state space vectors such that

x ∈ �⇒ V̇(x) = 0

If the first k − 1 derivatives of V(x), evaluated on the set �,
are zero

diV(x)
dt i

= 0 ∀x ∈ � i = 1, 2, . . . , k − 1

and the k-th derivative is negative definite on the set �

dkV(x)
dtk

< 0 ∀x ∈ �

then the system x is asymptotically stable if k is an odd
number.

The proof of the theorem is provided in [44]. Thereby,
to find out which kind of stability the proposed control law
guarantees, the higher-order derivatives of the candidate to
the Lyapunov function are analyzed. Starting with the second
derivative of the candidate to Lyapunov function, presented
in (16), none information is obtained.

V̈(δθ, δθ̇ ) = −2kdδθ̇δθ̈; V̈(δθ, δθ̇ = 0) = 0 (16)

Thus, it is necessary to analyse the third derivative of
V(δθ, δθ̇ ):

...
V (δθ, δθ̇ ) = −2kdδθ̈2 − 2kdδθ̇δ

...
θ (17)

considering that δθ̇ = 0:
...
V (δθ, δθ̇ = 0) = −2kdδθ̈2 (18)
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and analyzing it when V̇(δθ, δθ̇ = 0), yields:

δθ̈ = −kpδθ (19)

Substituting the result presented in (19) into (18):
...
V (δθ, δθ̇ = 0) = −2kdk2p δθ

2 < 0 (20)

The third derivative of V(δθ, δθ̇ ) is negative definite in
terms of δθ̇ , and because the first non-zero V derivative is
of odd order, the control law is asymptotically stable.

IV. DESIGN OF A SLIDING MODE CONTROLLER
This section presents the design of a sliding mode con-
troller for the 2-RWP to evaluate how the results of a simple
approach to robust control would perform when compared
with other control techniques. It is crucial to specify a sliding
surface or to choose a sliding function to design a controller
using sliding modes [20]. The dynamic regime of this surface
is chosen in such a way that all the trajectories within this
surface converge to the desired value [18]–[20]. However, in
the design of a sliding mode controller, this surface must be
chosen in a way where the dynamic of the system become
stable and, therefore, a control law must be defined where all
trajectories are driven to the sliding surface. For the design
of the sliding mode controller, we used a sliding function
instead of a surface, since the majority of the states of the
experimental 2-RWP are unknown. Thereby, the controller
was designed using the known states. The tracking error,
defined as e = θ − θd , is associated to the desired trajectory
and the sliding function is defined by equation σ (e, t) = 0:

σ (e, t) = ė+ γ e (21)

where γ is a positive constant associated with the closed-loop
bandwidth [18]. Equation (21) represents a straight line of
sliding in the error configuration space. The sliding function
defined must have its values tending to zero, to converge
with a finite time interval. From the sliding surface presented
in (21), its derivative yields:

σ̇ = ë+ γ ė ≡ θ̈ − θ̈d + γ ė (22)

Here, it is necessary to select a candidate to be a Lyapunov
function V(σ ) being positive definite, and that has a definite
negative derivative, where a possible one is:

V(σ ) =
1
2
σ 2 (23)

With the presented candidate for Lyapunov function, the
sliding mode will exist, and the system will be stable if V̇(σ )
is negative definite:

V̇(σ ) = σ σ̇ , σ 6= 0 (24)

The motion equation of 2-RWP including the friction term,
presented in (9), can be rearranged and substituted into the
derivative of the sliding function in (22):

σ̇ =
(m1 − m2)g `2 sin θ

IOzeq
−
IOzw1
IOzeq

α̈ −
IOzw2
IOzeq

β̈ +

−
Tfr
IOzeq
− θ̈d + γ ė (25)

which leads to:

σ̇ =
(m1 − m2)g `2 sin θ

IOzeq
−

[
IOzw1
IOzeq

IOzw2
IOzeq

]{
α̈

β̈

}
︸ ︷︷ ︸

u

+

−
Tfr
IOzeq
− θ̈d + γ ė (26)

The control law u can be adopted as:

u =

[
IOzw1
IOzeq

IOzw2
IOzeq

]{
α̈

β̈

}
=

(m1 − m2)g `2 sin θ

IOzeq
+

−
Tfr
IOzeq
− θ̈d + γ ė+ ηsgn(σ ) (27)

The control law proposed in equation (27) can be substi-
tuted into the derivative of the sliding function shown in (26)
resulting:

σ̇ = −ηsgn(σ ) (28)

The result presented in (28) is substituted into the deriva-
tive of the candidate for the Lyapunov function given in
equation (24) to prove that the selected function is a Lyapunov
function with a definite negative derivative:

V̇(σ ) = σ (−ηsgn(σ )) = −η|σ | < 0, σ 6= 0 (29)

where η is an arbitrary positive constant and sgn(σ ) is a signal
function defined as:

sgn(σ ) =


1 if σ > 0
0 if σ = 0
−1 if σ < 0

(30)

From a practical point of view, a sliding mode cannot exist
because this would require that the controller switches at an
infinite frequency. In the presence of switching imperfec-
tions, the discontinuity in controller feedback produces a par-
ticular behavior known as chattering [18]. Slotine and Li [18]
proposed to smooth signal function sgn(σ ) used in the control
law to avoid chattering. So, a boundary layer around the
sliding function is established. Thus, to restrain the chattering
phenomenon, a saturated function sat(σ ) is adopted instead of
signal function sgn(σ ):

sat(σ ) =


1 if σ > 1

kσ if |σ | ≤ 1, k =
1
1

−1 if σ < −1

(31)

Thus, employing the saturation function in the adopted
control law that was presented in (27) and rewriting it:

u =

[
IOzw1
IOzeq

IOzw2
IOzeq

]{
α̈

β̈

}
=

(m1 − m2)g `2 sin θ

IOzeq
+

−
Tfr
IOzeq
− θ̈d + γ ė+ ηsat(σ ) (32)
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Since the sliding mode control law can be separated into
twomain components, the equivalent and the switching parts,
equation (32) can be written as:

u = ueq + u± (33)

where

ueq =
(m1 − m2)g `2 sin θ

IOzeq
−

Tfr
IOzeq
− θ̈d + γ ė (34)

and

u± = ηsat(σ ) (35)

The switching component of the control law (u±) takes the
system to the sliding function, and the equivalent compo-
nent (ueq) is important when the system is sliding (u± = 0),
since this component is responsible for driving the states to
the equilibrium point.

V. EXPERIMENTAL DESCRIPTION
This section presents the experimental device used for the
tests and explains how the real-time nonlinear controllers
work using the low-cost hardware proposed. Fig. 3 depicts
the 2-RWP constructed for experimental tests. The set-up
built has a Vishay spectral multi-turn potentiometer model
533 used to measure the pendulum angle. Here, an encoder
could be used; however, a secondary objective of the paper is
to analyze the performance of the low-cost hardware for the
application of nonlinear controllers. To each reaction wheel,
a DCmotor Akiyamamodel AK555/390ML 12S18200Cwas
coupled. It operates with a nominal voltage of 12 V.

FIGURE 3. Two reaction wheels pendulum built for the experimental
tests [13].

Additionally, an Arduino Uno prototype platform that has
a micro-controller was used to program the control laws

for the real-time application. A two-relay module Shun Yu,
model BTE13-00, and two PWM control boards complete
the necessary hardware to run the tests. This hardware costs
around USD 150. The hardware and the operation of the real-
time application are summarized in the flowchart illustrated
in Fig. 4.

The real-time control algorithm developed in the Arduino
Uno works simply for both controllers designed. The angular
position of the 2-RWP is read using the multi-turn poten-
tiometer. The value read by the potentiometer is converted
into an angle value, and also its derivatives are calculated in
the script developed in the Arduino. In this way, the angular
position, the angular velocity, and the angular acceleration
of the pendulum are known for each iteration since they are
necessary to evaluate the nonlinear control laws. The reaction
wheels angular acceleration are the control signals provided
by the control laws, and considering the pendulum angular
acceleration, the desired motor torques can be evaluated as
shown by equations (2) and (3).

It is essential to highlight some difficulties encountered in
the plant. There are no encoders coupled to the DC motors.
This means that the states related to the reaction wheels
are unknown, and only the desired rates are commanded.
Additionally, considering that Ra

Kt
is much greater than Kv

and that the reaction wheels angular velocities are unknown,
for the experimental application, equations (6) and (7) were
considered as:

Vα(t) = T1
Ra
Kt

(36)

Vβ (t) = T2
Ra
Kt

(37)

After calculating the desired values of voltage for each DC
motor, as shown by equations (36) and (37), these values
are converted into PWM values ranging from −255 to 255.
The relay module verifies which way the DC motors should
rotate evaluating if these values are positive or negative that
would indicate one way or the other one. Each PWM board
is fed with an external power source, and it receives the
controlled PWM signal from the Arduino. Thus, they can
provide the correct and controlled voltage signal to the DC
motors. After this point, the process is restarted. Moreover, a
saturation limit of |12| V is imposed on the voltage applied
to both DCmotors for both controllers designed in this paper.
This limit does not affect the performance of the controllers,
and it is imposed to protect the component. The flowchart
depicted in Fig. 4 exemplifies how both controllers work. The
desired and actual rates are compared, and the control laws
are evaluated.

With the desired rates evaluated by the control laws, the
reaction wheel motor torques are calculated so that the volt-
age of each reaction wheel can be evaluated. The voltages
are converted into PWM values, and after the relay analy-
sis which way the wheels must spin, they are commanded
to the PWM boards. These boards combine the controlled
signal with the external power supply to provide the correct
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FIGURE 4. Flowchart of the real-time application.

voltage to the DC motors coupled to the reaction wheels.
Subsequently, the angle value measured by the potentiometer
is fed back, and the process is restarted.

VI. RESULTS
This section presents and compares the experimental results
to drive and control an inverted pendulum using two reaction
wheels considering the proposed control laws presented in
equations (15) and (32). Additionally, Trentin et al. [13]
designed a simple and well-known PID controller, and this
result is compared with the two control techniques proposed
in this paper. Fig. 5 depicts the controlled angular position
for the 2-RWP for the three controllers where the sliding
mode control technique exhibits a better performance reach-
ing the equilibrium position first than the other controllers

FIGURE 5. Comparison of the experimental pendulum angular position to
drive and control the 2-RWP in the inverted position (θ = 0◦). - - -
indicates nonlinear PD controller, ___ sliding mode controller, and -◦- PID
controller.

and presenting no overshoot. The SMC reached the inverted
position in less than 3 seconds, while the other two controllers
took around 5 seconds to drive and stabilize the pendulum
in the inverted position. For the SMC, the gains used were
η = 10 and γ = 2. The nonlinear proportional derivative
controller has a smaller overshoot when compared to the
PID controller. For this controller, the gains were kp = 60
and kd = 15.

Nevertheless, the experimental results are close, and a
quantitative measure of performance can be helpful to evalu-
ate it. One way to carry out this is to calculate performance
indices. We evaluated two indices to verify if the same behav-
ior is observed with different measures. Both indices used
here are integrals evaluated over time. The first one, presented
in equation (38), integrates the absolute error over time and
does not weight the absolute error in the response [47].

IAE =
∫ T

0
|e(t)|dt (38)

where |e(t)| is the absolute error. The second, shown in (39),
calculates the integral of the absolute error multiplied by
time and weights the absolute error with time giving more
importance for errors in regime [47].

ITAE =
∫ T

0
t|e(t)|dt (39)

where t is time, |e(t)| is the absolute error, and T is the
total simulation time. The two indices analyze the response
differently and are an alternative to quantitatively interpret the
controller’s performance since the goal of the control design
here is to drive a pendulum using two reaction wheels to
the inverted position (unstable equilibrium point) and keep
it controlled there.

The values of the indices are presented in Table 1. Analyz-
ing the values in Table 1, the nonlinear controllers had smaller
indices than the PID, attesting better results of the nonlinear
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TABLE 1. Performance indices for the experimental results.

controllers, as seen in Fig. 5. The sliding mode control exhib-
ited smaller indices than the nonlinear proportional-derivative
controller. Nonetheless, taking into account that the sliding
mode controller does not present overshoot and the pendulum
reaches the inverted position faster than the nonlinear PD
controller, the sliding mode controller outperforms the other
controllers regarding the angular pendulum position.

FIGURE 6. Comparison of the voltages applied to the DC motors of
reaction wheels. - - - indicates nonlinear PD controller, ___ sliding mode
controller, and -◦- PID controller. (a) Vα(t) Voltage applied to DC motor of
reaction wheel 1 and (b) Vβ (t) Voltage applied to DC motor of reaction
wheel 2.

Fig. 6 compares the voltages applied to the DC motors by
each controller. By looking at the voltage applied to the DC
motor of reaction wheel 1, Fig. 6a, the slidingmode controller

presents a higher value of voltage, while in steady-state,
the voltage applied by the nonlinear proportional derivative
controller and PID are very close. However, when analyzing
the voltage applied to the DC motor of reaction wheel 2,
charted in Fig. 6b , the values for all three controllers are very
close. Thus, to a better evaluation of these results, the root
means square (RMS) value of the voltages were calculated,
and they are presented in Table 2.

TABLE 2. Root mean square values of the voltages applied to the DC
motors.

The RMS values of the nonlinear proportional-derivative
controller are the smaller ones, which indicates that this con-
troller has smaller energy consumption. When we evaluate
the RMS values for the voltage applied to DC motor 2, the
PID controller had the highest value. The RMS of all the
voltage control signals were calculated for 10 seconds.

Analyzing the RMS values of the reaction wheel 1, we note
that the sliding mode controller had the highest value. For
the better performance of the sliding mode controller, it is
necessary to spend more energy. Nonetheless, it is essential
to observe that the control signal for the SMC is much more
steady, and it outperforms the other controllers tested. This is
possible due to the SMC low sensitivity to the noise presented
in the real-time measurements, whereas the other two con-
trollers present muchmore oscillatory control voltage signals.
When the sliding function is reached (as seen in Fig. 8 approx-
imately at 2 seconds), one of the main features of sliding
mode control is to maintain the system’s behavior under the
minimum influence of parametric uncertainties and external
disturbances. When this occurs, the system behaves with the
designed dynamic characteristics given by equation (21), with
σ (e, t) = 0, providing robustness to the system and a much
more steady control signal.

However, one of the reasons for the high voltage values
can be the nonlinear behavior of the friction encountered in
the self-manufactured plant. After the pendulum is controlled
in the inverted position, its angular velocity is almost zero.
Thus, the Coulomb friction component has a more significant
contribution and the controller has to deal with this. The
voltages values should be closer to zero or around zero, but
due to the friction, a higher voltage value is commanded
for reaction wheel 1 when using the sliding mode control.
It would be interesting to develop a control strategy that
can reduce the voltage after the pendulum is controlled in
the inverted position or a better manufactured experimental
device could be built where the friction encountered can be
minimized.

Figures 7 and 8 present specific results of the sliding
mode controller. Fig. 7 exhibits the designed sliding function
in the error configuration space where the numerical and
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FIGURE 7. Error configuration space with desired sliding function. - - -
indicates numerical result, ___ the experimental result and -•- the desired
sliding function.

FIGURE 8. Sliding function to control the 2-RWP in the inverted position
(θ = 0◦). - - - indicates numerical result and ___ the experimental result.

experimental results for the controller can reach the function
and slide to the equilibrium position. For a better evaluation
of the experimental results, the numerical ones were not
presented in figures 5 and 6. Nonetheless, for the specific
analysis of the VSC, the numerical results are compared
to the experimental ones. The numerical simulations were
carried out before the real-time experiments to ensure that the
proposed control laws were suitable to drive and control an
inverted pendulum with two reaction wheels.

In the algorithm developed for the numerical simulations,
the desired and actual rates are compared, and the control
laws, presented in (15) and (32), are evaluated. With the
desired rates evaluated by the control laws, the reaction wheel
motor torques, shown in (2) and (3), are calculated, since
they are necessary for the complete integration of the math-
ematical model of the 2-RWP, composed by the equation of
motion presented in (9) and both motor torques equations.

The numerical integration is done using a fourth-order
Runge-Kuttamethodwith a time step of 0.001 s. The resulting
rates of the integration process are fed back, and the process
is restarted.

Fig. 8 depicts the behavior of the sliding function (σ (e, t)).
When it is zero, it means that the system has reached the
sliding function designed in equation (21). If the function
remains at zero, it shows that the system is sliding. The system
will thereby slide to the equilibrium point, describing the
property of attractiveness, which is also one of the features
of the sliding mode control. The reachability and the attrac-
tiveness properties are proven by analyzing the numerical and
experimental results presented in Figures 7 and 8.

The control law proposed can take the system to the slid-
ing function and keep it there controlled. Furthermore, it is
common in any control design to find discrepancies between
the model and the real-time experiment because of unmod-
eled dynamics, parameter uncertainties, and the presence of
external disturbances [12], [20].

Furthermore, both nonlinear controllers designed can be
applied for any initial conditions. Additionally, the controllers
can also track the desired trajectory. The function for the
desired trajectory (θd ) and its rates have to be provided as
input to the controllers. Thereby, it is also possible for the
controllers designed to track the desired trajectory. More-
over, it is recommended that the pendulum with two reaction
wheels be controlled in the inverted position or to track the
desired trajectory. If a set-point that is not an equilibrium
point is desired, the torque caused by gravity is not zero,
and it is also added. Thus, the controller will have to deal
with the friction and the torque caused by gravity. Thereby, a
higher voltage signal than the one employed to control the
pendulum in the inverted position will have to be applied
to the DC motors, and in steady-state, this value tends to
increase until the saturation limit is reached. Thus, after some
time, the DC motors’ saturation limits can be reached, or the
reaction wheels will reach very high angular velocities, which
can cause a catastrophic failure to the system. Either way,
this system will no longer be able to be controlled in that
position. Additionally, the following link allows the reader to
see the performance of the real-time controller implemented:
https://youtu.be/HbPgJYSusmc

VII. CONCLUSION
The main contribution of this paper was to show the appli-
cation and comparison of two nonlinear control techniques
to drive and control an inverted pendulum using a new
type of actuator involving two reaction wheels. This differ-
ent configuration of an inverted pendulum can be further
explored to test new controllers, for example, to track the
desired trajectory instead of controlling the pendulum in the
inverted position. Furthermore, swing-up control strategies
using one or both reaction wheels can also be tested. In this
paper, the design and proof of the stability of a nonlinear
proportional-derivative controller and a sliding mode con-
troller were carried out. Additionally, the use of low-cost
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hardware to reproduce these controllers in a real-time appli-
cation has proven to be very efficient despite the difficulties
encountered.

The strategies presented adequate experimental results,
which were much better than the previous one using a sim-
ple PID controller. The performance indices quantitatively
measured this improvement. The sliding mode control had a
more reliable performance when compared to the nonlinear
proportional-derivative, confirming that the use of a tech-
nique that deals with model uncertainty provides a better out-
come. When analyzing the voltage applied to the DC motors
to control the inverted pendulum, we found that the values
were higher than the expected. These values for a perfect
inverted pendulum system controlled in an equilibrium point
should be zero. In real-time experiments, it is expected that
these values be close to zero or around zero. One possible
reason might be due to the presence of the Coulomb friction
encountered when identifying the friction of the experimental
device. For future work, a control strategy to decrease the
voltage values and bring them as close as possible to zero
will be carried out.
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