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Abstract
A software architecture is discussed to develop, run, and test novel autonomous visual
spacecraft navigation and control methods in a realistic simulation. This architecture
harnesses two main components: a high-fidelity, faster-than-real-time, astrodynam-
ics simulation framework; and a sister software package to dynamically visualize
the simulation environment. Maneuvers such as fly-bys and orbit insertions occur
over short periods of time and must occur autonomously. Yet, there are no open-
source software packages that provide fully coupled spacecraft environments and
Flight Software (FSW) enabling Optical Navigation (OpNav) mission scenarios. The
presented tool consists of the Basilisk∗ astrodynamics framework interfacing with a
Unity-based visualization Vizard that provides a synthetic image stream of a camera
sensor. This modular and extensible setup allows optical guidance, navigation and
control (GNC) algorithms to be run in a closed-loop format purely in software. The
optical measurements are generated in the visualization and passed to the simulation,
allowing for real-time control and decision making. This Vizard software has the abil-
ity to import shape-models, planet maps, and move into an instrument point-of-view.
Paired with open-source image processing libraries, these combined components
provide all the necessary pieces to fully simulate autonomous, closed-loop, OpNav
scenarios in a faster-than-real-time configuration. This allows for progress in the
autonomy sector, as full-fledged FSW can be tested in a real flight environment. Fur-
thermore, this enables more realistic and extensive testing of the software, which
in turn increases reliability of the GNC methods as they are refined. This paper
presents the Basilisk and Vizard interface architecture, its performance, and develops
a example scenario. The image processing methods are displayed and the visualiza-
tion scenes are validated for pointing purposes, which in turns allows to develop an
autonomous pointing algorithm developed in this software environment.
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Introduction

In recent years, autonomy has been established as a key technology enabler for future
space exploration [1]. Reducing the frequency of ground-in-the-loop communication
allows for less expensive mission support systems. Aside from lightening the load
on ground-based tracking, autonomous guidance, navigation, and control can back-
up ground-in-the-loop navigation if communication failures occur or when maneuver
time and spacecraft distance make it impossible. Whether it be for robotic exploration
of the solar system, manned spaceflight, or small satellite development, autonomy
opens the door to new mission concepts [2–4].

One key enabler for autonomy is on-board optical navigation, as it provides mea-
surements that can be gathered without contacting Earth. Furthermore, it provides
direct information on what is often the subject of the mission’s scientific objec-
tives. This paper outlines a novel framework which seeks to combine navigation
algorithms within a simulated spacecraft environment. These algorithms require a
reliable and extensible test-bed to be developed and refined. This simulation test-bed
must provide realistic spacecraft simulations, model the local space environment, and
create three-dimensional visualizations of both the spacecraft and the environment.
As the guidance and control development typically involves extensive Monte-Carlo
sensitivity analysis, computational speed is of paramount importance.

High-fidelity dynamics simulations provide a vital test environment for space-
craft and robotics development. Existing tools such as DARTS [5] paired with
DSENDS, Dshell, or ROAMS1 provide high-fidelity dynamics and visualization
capabilities [6]. These tools are are used in a closed software environment that
are not generally extensible by researchers outside of the Jet Propulsion Labora-
tory. Furthermore, although DARTS provides closed-loop dynamics and control, it
does not permit the use of visualization snapshots for image processing and OpNav.
AGI-EOIR2 is an STK-based visualization tool that uses physics based radiometric
sensor and target image simulation. This software can provide highly accurate sensor
images, but these are exported to file and not integrated into a closed-loop simula-
tion. In the field of robotics, ROS [7, 8] and its sister software package Gazebo3 are
open source and provide hardware-in-the-loop capabilities. Yet, theses are tailored
for ground-robotics applications and do not provide sufficient spacecraft models and
features. An open and extensible software solution like ROS has not existed for the
spacecraft community in the past.

OpNav simulations have focused either on the image processing component [9],
on the estimation component [10, 11], or on using mission data [12]. These provide
valuable insight on many facets of the problem; yet no common open-source software

1https://dshell.jpl.nasa.gov
2https://www.agi.com/EOIR
3https://gazebosim.org/
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package exists that provides modularity and repeatability while bringing together
contributions from many developers. Furthermore, current simulations do not couple
spacecraft dynamics and control into OpNav measurements [13]. Camera models are
linked to the image processing and filter performances [14], but this does not loop
back to the spacecraft control algorithms.

One example scenario is an orbit insertion maneuver, which occurs in close prox-
imity to the body of interest during a short time span (often too short for ground
intervention) and is central to mission success. A spacecraft’s on-board use of opti-
cal measurements can provide assurance of proper maneuver execution, notably if
faults occur. Another example is the New Horizons Pluto fly-by. The mission exten-
sively studied the likelihood of having Pluto in the image frame [15], whereas
autonomous pointing could have provided more confidence by centering Pluto in the
image frame [16]. Both these examples showcase the potential for more autonomy
in the chain between OpNav, attitude control, and trajectory modifications.

Basilisk [18, 19] is a highly modular astrodynamics simulation framework that
allows for the rapid simulation of complex spacecraft dynamics. Key features include
solar radiation pressure [20–22], imbalanced reaction wheels [23], imbalanced con-
trol moment gyroscopes [24], flexible solar panels [25], fuel slosh [26, 27], depletable
mass [28], as well as multiple body gravity and gravitational spherical harmonics.
The sensor simulation and actuator components couple with the spacecraft dynamics
through a publish-subscribe (pub-sub) messaging system. [19] A state engine allows
for complex spacecraft dynamics to be setup without having to develop and code any
dynamics differential equations. [29] An associated visualization is built using the
Unity gaming engine and is called Vizard. [17]. Here the Basilisk simulation mes-
sages are streamed directly to the visualization to illustrate the spacecraft simulation
and environment states. Figure 1 shows a Mars Orbit Insertion (MOI) performed in
Basilisk and visualized inside the Vizard software. As ROS and Gazebo do for the

Fig. 1 Mars Orbit Insertion Scenario with the astrodynamics simulated inside Basilisk and visualized
using Vizard [17]
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robotics community, combined Basilisk and Vizard provide an open and extensible
software architecture to both simulate and visualize spacecraft dynamics and control
scenarios.

This papers explores a new software architecture where Vizard is not just used to
visualize the Basilisk simulation states, but becomes itself a visual sensor module for
Basilisk, thus allowing for closed-loop visual control simulations to be performed.
This allows for visual guidance and control algorithms to be tested in a faster-
than-realtime software platform that is also suitable for Monte-Carlo type sensitivity
studies. The created visualization images are controlled and shared via a new two-
way connection between Basilisk and Vizard. This is a challenge as it requires frame
synchronization such that any type of camera resolution can be simulated while main-
taining synchronization with the dynamics simulation. Furthermore, it is desirable to
design a flexible communication setup between two software packages such that they
can be run on a single or multiple computers.

This new Basilisk-Vizard software integration has the ability to support many sce-
narios at the cutting-edge of autonomy; these include optical deep space navigation,
formation flying, close proximity and servicing applications, as well as visual nav-
igation about small celestial bodies such as asteroids. Because Basilisk also allows
for formation flying capabilities [30], formation flying dynamics have the poten-
tial to be paired into a OpNav framework for relative formation control. This allows
for true-scale spacecraft models to be used for visual control, with features like self-
occultation and realistic camera model. Furthermore, implemented star-maps can be
used for realistic attitude determination and control, all within a closed loop software
framework. For entry, decent, and landing (EDL) and asteroid missions’ safety, these
developments can add an important element of reliability by providing a testbed for
autonomy and quantifying performance. Simultaneous Localization And Mapping
(SLAM) and cross-correlation methods could also be implemented and tested in a
realistic spacecraft environment. These algorithms are currently being developed for
novel navigation purposes notably within NASA and ESA [31].

This paper also details the new software architecture that allows the Vizard soft-
ware to become a highly configurable visual sensor module for Basilisk. First the
numerical performance and computational cost of the communication overhead is
explored. Next the visualization optical sensor module is validated for specific
OpNav purposes. Finally a pointing scenario is developed in order to showcase the
architecture’s performance.

Software Interface Architecture

Overview of the Basilisk and Vizard Software

Basilisk is an open-source astrodynamics framework being developed by the Uni-
versity of Colorado Autonomous Vehicle Systems (AVS) lab and the Laboratory for
Atmospheric and Space Physics (LASP). By implementing high-fidelity, faster-than-
real-time dynamics, it allows to simulate spacecraft in realistic flight conditions.
The inherent speed of the framework and its multithreaded Monte-Carlo capability
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Fig. 2 Schematic Illustration of the Basilisk architecture [18, 19, 32]

provides high-end analysis tools. In this simulation, FSW and spacecraft models are
placed into different Processes (or task Groups) to isolate their messages. By com-
municating through the pub-sub messaging system, blocks of code can be added and
contribute to the simulation without necessary knowledge of other blocks, as seen in
Fig. 2. This interface allows for closed loop control algorithms and simulations to be
developed and tested in a highly modular manner where each component has its own
unit and integrated tests.

Alongside this effort, Vizard [17] receives Basilisk state messages and dynami-
cally displays these states. Vizard has the ability to import shape-models and planet
maps, as well as display and render instrument point-of-view windows. Paired with
open-source image processing libraries, such as OpenCV4, these combined com-
ponents provide the necessary software components to fully simulate autonomous,
closed-loop OpNav or other visual sensing and control scenarios. This manuscript
develops the software architecture that allows Vizard to be integrated into Basilisk
as a visual sensor module. As a fully open-source project, Basilisk-Vizard allows
for any user to contribute to the code base, and therefore centralizes progress in
astrodynamics.

The modularity of Basilisk comes from the fact that modules publish and subscribe
without requiring knowledge of other existing modules. Processes (or Task Groups)
as pictured in Fig. 2 each own memory for their Tasks to communicate amongst them-
selves. These message containers can also interface in order to manage the separation

4https://opencv.org
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of FSW and simulation models. This naturally welcomes another actor: the visualiza-
tion. By creating a module with access to the required messages, the communication
between the software nodes is established.

Faster-than-Realtime Interfacing

The software architecture of Basilisk allows Vizard to capture information from the
spacecraft’s environment and communicate it to Basilisk mid-run. Vizard then creates
a three-dimensional visualization of the space environment including planets, moons,
stars, other spacecraft, all from the perspective of the current spacecraft location and
orientation using a specific body-relative camera frame perspective. After taking ren-
dering this view the resulting image bitmap must be transferred back to Basilisk as
an image message.

Implementation of the Vizard to Basilisk interface produces several key chal-
lenges. The first is making two heterogenous software entities written in different
programming language of C/C++ and C# communicate. Next, the simulation must
execute faster-than-real-time to be suitable for navigation and control sensitivity anal-
ysis. Finally, these heterogenous components must be integrated while maintaining
synchronous operation of the modules through each integration time step. Two types
of connections between Basilisk and Vizard are considered: the ‘Direct Connection,’
and a connection via Black Lion [32, 33].

Black Lion

First consider the case where Vizard and Basilisk are part of a larger distributed
spacecraft simulation which uses the Black Lion architecture [32, 33] to commu-
nicate across simulation nodes. The benefit of this aproach is that the Vizard-based
visual sensor Basilisk module can be integrated in very general distributed simula-
tion environments, at the cost of additional central controller software. The Black
Lion package developed in the AVS lab is middleware that ensures proper interfacing
between nodes in a heterogeneous, possibly distributed spacecraft simulation. Essen-
tially the message passing interface concept of Basilisk is expanded to function across
a range of heterogenous simulation components such as a flight processor emula-
tion or ground software system. For the scope of this paper the Black Lion nodes are
Basilisk and the visualization as illustrated in Fig. 3.

In summary, Black Lion ensures :

• The transport of binary data via a transport layer (Transmission Control Protocol
or TCP). Although User Datagram Protocol (UDP) provides a faster connection,
the three-packet exchange provided by a TCP provides the high-reliability nec-
essary for physical simulations. This ensures the camera image is received at the
correct time by Basilisk.

• The marshaling (or translation) of binary data. Each node must know how to
convert the received bytes into structures that can be managed internally.

• The synchronization of nodes to keep all the nodes in lock-step during the
simulation run.
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Fig. 3 Interactions between Basilisk, Black Lion, and Vizard

The central controller acts as a master in the synchronization of the nodes, and a
broker in the data exchanges.

The last component is the marshaling of the data. Google Protobuffers5 are used
to provide a platform and language agnostic translation layer library to facilitate
marshaling and unmarshaling of data between the two simulation applications. By
creating these Protobuffer structures, both the C++ code in Basilisk and the C# code
in Unity can read in and write out the necessary content. This method is currently in
use at LASP for real-time Basilisk-based flat-sat testing while integrating the Vizard
visualization. It notably allows running distributed simulations over a network. Users
can distribute nodes across machines, use hardware in the loop, or run the Vizard on
a computer with a high-end graphics card. This provides a wealth of optimization
strategies with the slight added complexity of interfacing with middleware. Because
Black Lion enforces synchronization across modules, the synthetic visual sensor
images are guaranteed to remain in sync with the spacecraft dynamics simulation in
Basilisk. This method is primarily aimed for more mature mission concepts. By using
hardware in the loop, the faster-than-real-time aspect is lost, but more critical tests
can be run.

Direct Communication

When performing fast analysis or making design choices, it is desirable to run
Basilisk and Vizard on the same machine without having to synchronize with other
spacecraft simulation components, such as ground software. In order to simplify the
interface, a direct communication is implemented which allows for a two-way com-
munication between Basilisk and Vizard without using Black Lion as a middle-ware
interface layer. In the absence of a central controller, the vizInterface module

5https://developers.google.com/protocol-buffers
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written in C++ takes on the synching responsibilities. Nevertheless the same methods
and tools seen in the Black Lion-based implementation are used:

• The transport layer used is a TCP, implemented with ZeroMQ.6

• The translation layer uses the same Protobuffer structure.
• The synchronization is enforced in the simulation through a blocking com-

munication interface: Basilisk waits for critical responses from Vizard through
ZeroMQ before continuing the simulation.

The direct communication protocol utilizes a separate thread to spawn Vizard from
the python layer to start a request-response pattern. In this direct communication sce-
nario, there are two main modes that the interface can work in: a lock-step mode
and a performance mode. The core difference between these is the frequency of
communication between the two nodes.

1. Lock-step: In the lock-step mode, Basilisk sends updates at every time-step
wether or not an image is requested. Lock-step provides a fluid visualization, and
renders both the spacecraft camera and Unity’s main camera to screen allowing
for user-feedback on the simulation setup and initialization. This also opens the
possibility of controlling the simulation from the visualization, as it will always
wait for a message verifying Vizard has received the simulation message. In
lock-step mode, Basilisk always waits for a message from the Vizard saying it
can move forward. This keeps the synchronicity as the message queues looks the
same on each side and the visualization always has the latest message.

2. Performance: In performance mode, the visualization and the interface are
greatly simplified. On the Vizard side, the spacecraft camera becomes the
main camera. Furthermore, Vizard only places and updates simulation states if
an image is requested and vizInterface only sends a simulation update
when an image will be requested. This brings down the number of TCP pings
to the camera image rate, instead of the simulation time step. A separate,
OpNav-specific application is shipped for this purpose. Paired with Unity’s
‘batchmode’ command-line argument, the application can stay silent and run
in the background effectively reducing the Vizard application to a simulation
module.

Interface Implementations

Figure 3 shows the interaction between the major software nodes for both interface
scenarios: via Black Lion (blue arrows) or directly (red arrows). Figure 4 outlines
the details of the interfaces of the direct communication option. As stated previously,
Basilisk modules write and subscribe to messages via the Process (or Task Group)
message memory space without any knowledge of other existing modules. Basilisk
contains a new C++ Vizard interface module which reads the required Basilisk mes-
sages, writes them as protobuffers, and gives them to Black Lion or Vizard directly.

6https://zeromq.org
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Fig. 4 Direct communication using the viz interface

The Visualization interface then unpacks the protobuffers in order for the game
communication controller to use the data.

These design choices reflect the desire for a modular yet robust architecture. The
use of Google Protobuffers allows for platform independent communication; Unity
provides a user friendly and vast community for environment development; Black
Lion is the middleware that connects and applications and synchronizes them across
separate machines. Alternatively, the direct line is created between the visualization
and Basilisk for the ability to debug, test, and analyze simulations to greater effect.
These tools provide the building blocks for the framework being implemented.

Information Flow

In both communication protocols, the information flows back and forth between the
two nodes. The main points of the information flow are detailed below and shown in
Fig. 5. The module implemented showcases the general capabilities of the simulation,
and represents only a fraction of the possible implementations. This architecture’s
greatest strength is its potential to support further complexity and development, thus
making it very extensible. This section shows an example of the data flow that can
be achieved with the architecture.

1. The vizInterface module in Basilisk checks for new information in the
simulation. If any data has changed at a simulation time-step, the protobuffer
message is updated. In the absence of change, the module will do nothing.

2. The protobuffer is passed to Unity (black arrow next to ZMQ logo) and packed
in a dictionary. This allows for a simulation update on the game engine side and
an image render if requested.

3. If an image is requested—this can be done through the presence of an image
request message in the simulation, or if the simulation time is a multiple of
the camera render rate—Vizard renders the texture viewed by its interal camera
according to specifications. This is then sent back to Basilisk in a bit-map format
while the simulation awaits the return message.
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Fig. 5 Information flow between the visualization and the simulation

4. The received image is unpacked in the vizInterface module and repacked
in a C structure for the rest of the Basilisk simulation to use (with relevant infor-
mation such as time of capture and camera used). FSW modules are traditionally
written in C, therefore the bitmap is recast to a void pointer in Basilisk. This
prevents numerous copy operations of the image data and requires no dynamic
allocation (which requires a malloc in C).

5. This image will be read by the image processing module, which will extract
spacecraft relative position with Centroid and Apparent Diameter (CAD) algo-
rithms. Figure 5 could also picture camera models for additional realism. This
can include the CCD’s sensitivity to certain colors, realistic jitter using true
attitude variations, etc.

6. This value is next sent to an Orbit Determination filter or Attitude Guidance
module along with the associated covariance as a measurement for position esti-
mation. These FSW-specific exchanges are seen in Fig. 5 with the blue arrows
which represent the pub-sub messaging system calls.

7. With an updated state estimate, the spacecraft can now control its attitude,
position, and velocity.

8. These updated states are tracked by the vizInterface and sent back to Vizard
for a new sim update in the visualization.

Unity can save images to an external file. This allows for a log of the images that
were taken to be saved for debugging and validation. The vizInterface module
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Fig. 6 Performance of Both Closed-Loop Implementations

also saves all the protobuffers from a run to file, this allows for playback capability
on every simulation run.

Closed-Loop Simulation and Performances

If the closed-loop simulations are to be used for Monte-Carlo analysis and Machine
Learning, the software architecture presented must allow for faster-than-real-time
speeds. As explained in the above subsection, there are two different modes that can
be used, with different performance goals. Figure 6 plots simulated time divided by
run times (averaging over 5 runs) for varying camera quality and render rates. The
x-axis represents the image size and although the ticks read total number of pixels,
the scale is linear (square-root of the tick labels) for legibility. The Fig. 6a shows the
results of the lock-step mode, while Fig. 6b shows the performance-mode results. All
tests are run on a MacBook Pro running macOS Version 10.13.6, a 3.5 GHz Intel
Core i7 processor with 16GB of memory, and Intel Iris Plus Graphics 650 graphics
card.

The simulation used in this section is an OpNav-point scenario developed in the
last section of this manuscript. This 100min simulation has a 0.5s integration time
step, and implements a spacecraft dynamics module alongside FSW algorithms for
attitude control running at the same 2Hz. The spacecraft searches for Mars and points
to it when able using an MRP-feedback control law [34]. The architecture provides
speeds that allow for Monte-Carlo analysis and machine learning scenarios to be run
in a reasonable amount of time. The first thing to notice is that performance-mode
provides an order of magnitude speed-up relative to its ‘Lock-Step’-mode predeces-
sor. This difference shows the main slow-down incurred comes from Basilisk needing
to wait for Unity’s updates. Furthermore, Fig. 6b shows that if the sim moves forward
with minimal communication, the rendering of the image becomes the expensive
operation. Images in Fig. 7 show the images that are received by the simulation for
processing. This is done with a 60s camera render-rate in order to capture the motion
of Mars. The planet is not initially visible from the camera’s perspective, but the
search algorithm brings the planet into the camera frame. In the second half of the
run (bottom line), the planet is fully in view of the spacecraft. These images are from
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Fig. 7 Camera view as the spacecraft moves the simulation as received by Basilisk

the scenario described in the last section of this manuscript, and can import a wide
variety of Mars surface maps.7

Optical Navigation Components

Optical navigation tracks planet and moon centroids and dimensions to determine
the spacecraft location. Several optical navigation methods exist, such as star hori-
zon [35], centroid and apparent diameter [36], star occultation [37], and landmark
tracking [13]. Each of these have their specific application scenarios depending on
the object they are required to track.

Centroid and apparent diameter measurements find the limb of a body and use the
knowledge of its actual size and position. By extracting direction and distance, range
and position information is extracted from planet images. The shape of the partially
illuminated moon alone permits the estimation of the direction vector to the sun using
just a star tracker [38]. With the knowledge of the body in sight, its ephemeris, and its
size, determination of both the spacecraft’s orbit and attitude can be achieved. These
methods require minimal image processing power, are relatively fast to implement,
and provide a wealth of extractable information from images. The use of OpenCV has
helped accelerate module design. For these reasons they will be the baseline methods
used in simulating autonomous OpNav.

However, other OpNav methods yield better navigation results. Measurements
derived from landmark observations [13], point distribution methods [39], or
crater detection [40] are some of the many feature tracking methods which pro-
vide promising results. The real-time component of this framework creates a realistic

7https://celestiamotherlode.net/catalog/mars.php
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Fig. 8 Vesta shape model uploaded into the visualization

environment to quantify and run more computationally extensive algorithms. Future
work will include higher-fidelity star-maps in order to do star-horizon detection [35],
amongst other methods that have been described in the literature.

This software framework allows for rapid and high-fidelity testing, and can cen-
tralize progress from other fields within astrodynamics. In the aerospace field this
has been seen with ORB-SLAM development [41, 42] and cross-correlation meth-
ods [31, 43]. These hold great promise for small body autonomous orbiting and have
already proven to be useful on missions such as ESA’s Rosetta and ongoing missions
such as OSIRIS-REx. Although implementing such methods in Basilisk are currently
advanced goals, this architecture allows for these additions. Vizard allows users to
upload shape models for any celestial body as seen in Fig. 8 with Vesta.8 This pro-
vides the opportunity to train and test shape model reconstruction methods by using
fully coupled spacecraft attitude and orbital dynamics.

Centroid tracking and apparent diameter measurements are the baseline OpNav
methods in this design. In parallel, developments for feature tracking will be added
in along with more image processing capabilities.

Camera Models and Validation

In order to realistically model OpNav scenarios, the images generated by the visual-
ization software must be on par with the method in use. Unity provides a large set of
lighting libraries that can simulate self-shadowing and model lighting on imported
shape-models. This allows for the generation of complex lighting scenes. By exten-
sion, it allows for the reading in of partially lit planets, showing crescent lighting.
This lighting is seen in the visualization in Fig. 11a. In order to speed up the simula-
tion as much as possible, Unity camera models are used to simulate a realistic camera

8https://nasa3d.arc.nasa.gov/detail/asteroid-vesta
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Fig. 9 Pinhole camera model

model which is a pinhole model seen in Fig. 9. A Basilisk camera model can be cre-
ated as well in order to add more complicated errors. Lens-flaring or lens-distortion
[44] can distort images and can be compensated for in post-processing. [45] Though
not a method in Unity 2018, the modularity of the software package allows for such
additions.

Figure 10 shows the visualization compared to true data taken by the Epic camera
on DSCOVR. On the left is an image taken from Lagrange 1 on October 23rd at
4:35:25 UTC. The image is obtained from the Epic website9 which also provides the
camera specifications. These are provided in Table 1, and were used as such in the
Unity camera model. Sensor size and field of view lock in the focal length, and that
resolution and sensor size lock in the pixel size. Therefore all the needed information
is provided regarding the camera.

Regarding the spacecraft position, the source provides distance between DSCOVR
and Earth, DSCOVR-Sun distance, Earth-Sun distance, as well as the Sun-Earth-
Craft angle. These values are provided in Table 2. It is important to note that they
do not provide a unique possible position for the spacecraft. The spacecraft therefore
lies on a circle off the Sun-Earth direction by 7.28 ◦. Since the exact position is not
made public, the simulation placed the spacecraft exactly on the Earth-Sun direction,
with the expectation of seeing some differences. The Earth and Sun were placed in
the simulation using Spice,10 which provides the Sun and Earth’s ephemerides, as
well as Earth’s rotation in the inertial frame.

Figure 10 illustrates that the actual mission image and the synthetic Vizard image
look very similar as the Earth has the same apparent location and size in the photo,
and the continents are lined up correctly as well. Only a slight shift can be seen in the
Earth’s relative position: Australia seems to be more to the South-West on the real

9https://epic.gsfc.nasa.gov/?date=2018-10-23
10https://naif.jpl.nasa.gov/naif/
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Fig. 10 Comparing Vizard images to real data

image. This is certainly due to the 7.28◦ error in the camera’s position. Besides this,
the only significant differences are seen in the contrast and texture quality. It would
seem that the colors seen by epic are more matte. This can be improved and modeled
in the visualization as no color sensitivity is modeled, but for the purpose of centroid
and apparent diameter, the results are sufficiently accurate.

A simple CAD algorithm provides a center point at the pixel coordinates
(1023.71, 1023.03) and an apparent radius of 859 pixels for the real data. By running
the same algorithm the simulation predicted a planet center at (1023.50, 1027.68),
and a radius of 854 pixels. This represents a relative error of 0.46% pixels on the cen-
ter’s position and 0.58% error on the radius. These are relatively small errors given
the uncertainty in the spacecraft ephemeris information.

Image Processing Methods

The biggest advantage of the software framework presented is its modularity. Certain
state-of-the-art limb-fitting algorithms for pose-estimation are on-board capable [11]
and can be implemented into Basilisk and used in the simulation. This allows for
speed tests as well as better general performance understanding. In this manuscript,

Table 1 Epic camera paramters

Parameter Field of View [◦] Resolution [pixels] Sensor Size [mm]

Value 0.62 2048 × 2048 [30.72 , 30.72 ]
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Table 2 DISCOR position

Parameter Earth-S/C [km] Sun-S/C [km] Sun-Earth [km] Sun-Earth-S/C angle [◦]

Value 1,405,708 147,451,774 148,846,039 7.28

OpenCV11 is chosen as a computer vision library. This saves development time by
utilizing a robust software library with widely tested functionality.

The transformation used here is a Hough transform for circle finding, which exists
in many derivative forms [46, 47]. Figure 11 displays the transformations that an
image from the visualization is put through in order to extract apparent diameter and
centroid information. The raw image is turned into grey-scale (Fig. 11b) before being
fed into the HoughCircles function. This function then blurs and thresholds (Fig. 11c)
the image within a call to the Canny edge detection transform (Fig 11d). This is then
the image used in order to accumulate votes [48] on the existing circles in the image.
Figure 11e shows overall good performance by the algorithm. Other examples using
images of the Moon and Encaladus are shown in Fig. 12. It can be seen in some of
the images in Fig. 12 that although the algorithm is generally quite robust, sometimes
the radius of the planet is underestimated. This is seen notably in Fig. 12c. Image
processing imperfections emphasize the necessity to output a measure of uncertainty
with the Hough transform.

Attitude Guidance and Control Example

In this section, an example scenario is developed in order to illustrate the Basilisk-
Vizard capabilities. A spacecraft is on orbit around Mars and seeks to align its camera
bore-sight with the planet center. It takes images periodically for attitude guidance
and control, and uses the Hough algorithm to extract the center and the apparent
diameter of the planet being observed. The pixel data is pre-processed before being
used to determine the planet direction. Initial conditions for the simulation are given
in Tables 3 and 4, while simulation and flight software parameters are given in
Tables 5 and 6. All modules listed are currently available on the Basilisk bitbucket
repository12 with additional documentation. The main assumption in these models is
that the reference is static, in this case that the planet does not move in the camera
frame. Although this is an erroneous assumption, it can be desirable to see how it
holds, when it breaks, and what are the parameters (camera image rate, field-of-view,
orbit elements) for each of these cases. This scenario puts this assumption to the test.

The Pixel and Line Transformation module performs the simple transformation
from pixel data to spacecraft relative position. This scenario feeds raw measurements
of the planet center (xc, yc) in pixels to the guidance module, with the knowledge of

11https://opencv.org
12https://bitbucket.org/avslab/basilisk
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Fig. 11 Extracting center and apparent diameter from visualization image using OpenCV

Fig. 12 Hough circle finding on several real images (Courtesy NASA/JPL-Caltech)

Table 3 Spacecraft Initial States

σBN ωBN Orbital elements (a, e, i,�, ω, f )

[
0 0 0

]T [
0 0 0

]T

18000km, 0, 20◦, 25◦, 190◦, 100◦

Table 4 Camera parameters

σCB BrC [m] Resolution [pixels] Sensor Size [mm]

[
0 0 0

]T [
0 0.2 0.2

]T [
512 512

]T [
10 10

]T
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Table 5 Simulation parameters

Simulation Modules Instantiated Necessary parameters at initialization

Spacecraft Hub Inertia [I ] = diag(900, 800, 600) kg·m, mass M = 750kg

Gravity Effector/Eclipse December 12th 2019 at 18:00:00.0 (Z), μmars = 4.28284 · 1013km3/s2

Simple Navigation Star Tracker Attitude error σatt = 1/3600◦, Rate error σrate = 5 · 10−5◦/s

Reaction Wheel Effector 4 Honeywell HR16 Wheels*

Wheel orientations Elevation Angles 40◦, Azimuths angles 45◦, 135◦, 225◦, 315◦

Positions in B [m]
[

0.8, 0.8, 1.79070
]T [

0.8,−0.8, 1.79070
]T

[
−0.8,−0.8, 1.79070

]T [
−0.8, 0.8, 1.79070

]T

https://aerospace.honeywell.com

the camera. Notably the pixel size is given by X = SensorSizex

Resolutionx
and Y = SensorSizey

Resolutiony
in

mm/pixel.

CrBN = −
[

X
f

·
(

xc − Resolutionx

2 + 1
2

)
Y
f

·
(

yc − Resolutiony

2 + 1
2

)
1

]
(1)

where CrBN is the relative vector of the camera bore-sight with respect to the celestial
center, where the left superscript represents the frame the vector is projected onto.
f is the camera field of view, and the transformations on the measurements also re-
center the pixels [35, 49, 50]. Since the measurements in this scenario are given raw
to the guidance module and without consideration of covariance, this completes the
measurement transformation.

OpNav Point Guidance

This simulation specifically uses the OpNav-Point module for guidance. The atti-
tude guidance module has the goal of aligning a commanded camera-fixed spacecraft
vector ĥc with the measurement vector h. Here, ĥc is the camera bore-sight, and so

Table 6 Flight software parameters

Flight software modules instantiated Necessary parameters at initialization

Image Processing param1 = 300, param2 = 20, minDist = 50

(arguments for HoughCirlcle method1) minRadius = 20, dp = 1, maxRadius = 409

OpNav Point minAngle = 0.001◦, timeOut = 100s

ωsearch = [0.06, 0.0,−0.06]◦/s,C hc = [0., 0., 1]m
Pixel Line Transform Planet Target is Mars

MRP Feedback RW K = 3.5 , P =30 (no integral feedback)

RW motor Torque Control axes are B
[

b1, b2, b3

]

https://docs.opencv.org/
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Fig. 13 OpNav Pointing Scenario

the attitude tracking errors seek to align the camera towards the target and achieve
relative pointing.

In the following developments, all vectors are assumed to be taken with respect to
a camera-fixed frame C if a frame is not specified. The attitude of the camera relative
to the target reference frame R is written as a principal rotation from R to C. The
target R is defined simply by the vector ĥc and body frame vectors. The body frame
is defined as B : {b̂1, b̂2, b̂3}.

At the start of the simulation, the camera does not have the planet in sight. In this
situation, a search rate is requested: Bωsearch. Once the planet is found, and measure-
ments are provided, the requested rate is zeroed to keep the spacecraft at rest. The
module also has the ability to request a rotation about the camera bore-sight for stabil-
ity. This module is designed for simplicity and robustness. In order to be independent
from a orbit determination solution, the inertial reference frame acceleration ω̇R/N

is set to zero. This means the guidance will need to constantly adjust to a moving
reference. Figure 13 pictures the spacecraft once Mars has been found and is being
tracked.

Similarly to a sun-safe point guidance law, this module does not establish a unique
target-pointing reference frame. Rather, it simply aligns ĥc with h, which is an under-
determined 2 degree of freedom condition. If these two vectors are nearly collinear,
numerical instabilities can occur, hence the minAngle variable set by the user.

The associated principal rotation vector ê and angle � between ĥc and h are

ê = h × ĥc

|h × ĥc|
� = arccos

(
h · ĥc

|h|

)
(2)

If � is less then the module parameter minAngle, it is assumed that no valid planet
heading vector is available and the attitude tracking error σC/R is set to zero. For
valid planet headings, this rotation from R to C is written as a set of MRPs through

σC/R = tan

(
�

4

)
ê (3)
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The set σC/R is the attitude error of the output attitude guidance message. If the
spacecraft is to be brought to rest, ωR/N = 0, then the tracking error angular velocity
vector is computed using:

ωB/R = ωB/N − ωR/N ω̇R/N = 0 (4)

The attitude guidance message must specify the inertial reference frame acceleration
vector. This is set to zero and is the assumption that needs to be justified as it can be
poorly representative of reality.

This concludes the module description, which is summarized in the following
algorithm. The details of the implementation are currently available on the Basilisk
open source package in the folder fswAlgorithms/attGuidance/opNavPoint/.

OpNav Relative Pointing Results

Running this scenario using the Basilisk-Vizard interface shows interesting control
results, which test the validity of the assumption stated previously. The spacecraft
finds the planet after 40mins of searching with a slow search rate defined in Table 6.
The assumption of holding the target frame static in the inertial frame holds well with
dense measurements. Furthermore, with a fast run-speed, it is easy to test different
setups and tailor the simulation to a specific goal or requirement. The control plots
once the planet is in sight are pictured here: Figure 14 shows the attitude error norm
and rate tracking error once the planet is found, for a constant 1minute gap between
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Fig. 14 Attitude Control Results

consecutive images. Although the attitude error in Fig. 14a shows that the algorithm
is constantly surprised by the new images, the error stays close to 10−3. Figure 14b
shows that the rates mirror this lag with the X and Y components oscillating to con-
trol the spacecraft onto the target. Finally, Fig. 15 shows the true pixels as crosses,
alongside the pixels measurement by the HoughCircle transform as dots. It is impor-
tant to note that this simple transform is performing well as its estimates are very
close to expected values, which are computed with the true and noiseless spacecraft
attitudes and positions. Furthermore, the measurements show the gap that is seen in
Fig. 14a: each new measurement appears off-center. This is due again to a changing
reference frame that the guidance module needs to constantly keep up with. Despite
this, the planet stays in frame throughout the control and pixel offsets, as long as they
are representative of the truth and do not hinder orbit determination. In a situation

Fig. 15 OpNav Pointing Scenario Measured Pixels vs Expected Pixels
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akin to the New Horizons Pluto fly-by, this simulation can provide a test environment
for autonomous pointing algorithms.

Conclusions

This software architecture provides a testbed for a modern simulation framework
to research visual navigation and control applications, including optical navigation
and other novel navigation methods. Through the closed loop, coupled interaction
between the simulation and the visualization, scenarios provide high-fidelity data
at fast rates. Amongst other future endeavors, this architecture opens the door to
Machine Learning techniques and Monte Carlo analysis. The open source nature of
the project allows for continuous validation from the community, and contributions
from developers around the world. Using a simulated camera, optical navigation
methods, and the closed loop visualization-simulation interaction, these visual con-
trol spacecraft scenarios are tested in a relative pointing scenario. The simulation
framework allows a user to make, test, and verify a hypothesis with ease, showcasing
the ability for fast and robust analysis.
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