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Abstract
The study of inverted pendulum configurations has attracted the attention of researchers during many decades. One of the 
main reasons is that inverted-pendulum models have the feature of approximating the dynamics of many real-world mecha-
nisms. Therefore, this paper presents the detailed dynamic modeling and control of a novel spherical pendulum with a vari-
able speed control moment gyroscope. The dynamic model is obtained from the generic 3D pendulum, and the necessary 
assumptions to model the spherical pendulum are conducted in order to avoid singularities. Furthermore, a proportional-
derivative nonlinear controller based on Lyapunov theory is designed to use favorably the features of the variable speed 
control moment gyroscope to control the spherical pendulum combining the gyroscopic torque and the torque provided by 
the reaction wheel. The proposed dynamic model and nonlinear controller are evaluated through numerical simulations for 
two different scenarios, driving the pendulum to a sequence of attitude commands including the upright position and tracking 
a desired trajectory. The results have shown that the proposed model is nonsingular and that the control law has provided 
adequate rates controlling the pendulum in both scenarios.

Keywords Spherical pendulum · Nonlinear dynamics · Variable speed control moment gyroscope (VSCMG) · Control

1 Introduction

Inverted pendulum-like systems have many interesting char-
acteristics that drive the research development in dynamics 
and control throughout the last decades. Many of the features 
investigated on these systems rely on different real-world 
applications. Different benchmarks are considered in order 
to explore and understand different characteristics leading 
to the proposition of novel pendulum configurations which, 
in turn, represent various applications, for some examples, 
see [1–12]

Among the inverted pendulum-like configurations, we 
highlight the 3D pendulum discussed in [2]. Shen et al. [2] 
have analyzed the 3D pendulum configuration that consists 
of a rigid body fixed to a pivot and allows three rotational 
degrees of freedom. The gravity acts on this rigid body, and 
three control torques are considered, one for each direction. 
Moreover, they demonstrate that symmetry assumptions can 
lead this 3D pendulum configuration to the planar 1D pen-
dulum and to the 2D spherical pendulum.

Based on the control problems proposed in [2], Chatur-
vedi et al. [13] investigate stabilization problems for the 3D 
pendulum using a reduced model, proposing two different 
strategies, one based only on angular velocity feedback and 
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the other based on angular velocity and reduced attitude. 
Chaturvedi and McClamroch [14] formalize the asymp-
totic stabilization of the hanging equilibrium manifold 
and discuss the closed-loop dynamics of the 3D pendulum 
controlled by angular velocity feedback. Chaturvedi and 
McClamroch [15] derive a continuous controller based on 
novel Lyapunov functions suited for attitude stabilization 
problems in the special orthogonal group that takes into 
account saturation in the control torque. Chaturvedi et al. 
[16] have shown the stabilization in the case where the 3D 
pendulum is axially symmetric, and the center of mass lies 
on the axis of symmetry. The problems studied in [16] can 
be viewed as the stabilization of a Lagrange top or as the 
stabilization of a spherical pendulum, depending on some 
considerations. The results show that the stabilization in the 
hanging and inverted position is effective, although with 
very large control torques. More recently, a neural-network-
based fuzzy logic control of a 3D pendulum is considered 
in [17] and Yao [18] presents a robust adaptive finite-time 
attitude tracking control of the 3D pendulum. Real-time 
experiments are conducted, and external disturbances are 
applied to the system to verify its robust performance. There 
are some gaps in these works that must be bridged, such as 
different ways of actuating the 3D pendulum once the major-
ity of them assume three control torques directly applied to 
each of the rotational degrees of freedom.

Considering the concepts of the 3D pendulum, Gajamo-
han et  al. [19] have introduced the Cubli, which is a 
mechatronic cube that can jump up and balance using three 
orthogonal body-fixed reaction wheels. Muehlebach and 
D’Andrea [5] carry out the nonlinear analysis and control of 
the Cubli detailing this system’s main features. The authors 
have found a reduced description of the dynamics that is 
used for control design. The design of two nonlinear control 
strategies is presented, and the results have been verified 
experimentally.

Moreover, the use of the gyroscopic effect to aid in the 
control of inverted pendulum-like systems has also been 
deeply investigated. It is well known that control moment 
gyroscopes (CMGs) can produce high magnitude torque 
with a small variation in the gimbal angle, and this feature 
can be very useful for the control of many dynamical sys-
tems. Recently, single-wheel robot [20], bicycle [21, 22], 
wheeled inverted pendulum [23], sphere robots [24], balance 
assistance systems [25, 26], among others [27–30] have been 
studied in situations where the gyroscopic effect generated 
using CMGs is used to stabilize these systems aiding in their 
balancing so they can follow a desired trajectory or resist to 
external disturbances.

Therefore, many different applications of the gyroscopic 
effect taking advantage of the torque amplification capacity 
can be found in the literature as mentioned above. Although 
CMGs have many interesting characteristics that aid in the 

control of dynamic systems, it is known that they can reach 
singularities that can result on gimbal locks. An interesting 
alternative is to use variable speed control moment gyro-
scopes (VSCMGs). The use of VSCMG is a well-established 
way to stabilize spacecrafts [31]. In this case, it is allowed to 
control the spin rate of the wheel, not only the gimbal rate. 
Thus, the VSCMG provides two different control torques in 
a single actuator.

Trentin et al. [7] have discussed the use of a VSCMG to 
control an inverted pendulum comparing the results to the 
classical reaction wheel pendulum; however, the motion was 
restricted to the plane. Thus, the primary contribution of this 
paper is to extend the previous results and to propose a novel 
pendulum configuration controlled by a VSCMG actuator. 
This work couples the dynamic model provided by the 3D 
pendulum used to yield a spherical pendulum to the interest-
ing features of a VSCMG actuator. The focus of this paper 
is to obtain a nonsingular model of a spherical pendulum 
that can be stabilized in the upright position and track a 
desired reference. Some assumptions and remarks are made 
to properly obtain the model of an spherical pendulum from 
the 3D pendulum. To the best of the authors’ knowledge, this 
is the first investigation of the control of a VSCMG-actuated 
spherical pendulum. The dynamic model is derived using the 
modified Rodrigues parameters to describe the attitude and 
is based on the Newton–Euler method to obtain the equa-
tion of motion. Moreover, the control law is derived based 
on Lyapunov theory providing an adequate motion for the 
VSCMG. It is important to state that in the case presented in 
this study, the pendulum is allowed to rotate in two degrees 
of freedom. Many of the studies regarding gyroscopically 
controlled inverted pendulum restrict the motion to only 
one degree of freedom. Additionally, we explicitly show 
the control effort needed for controlling the pendulum in 
the inverted position. Some of the works do not present 
these values, which makes it very difficult to verify if the 
approach presented by them is possible to be tested in a prac-
tical experiment. In summary, the contributions of this work 
are: (1) the dynamic modeling of a novel VSCMG-actuated 
spherical pendulum, (2) the design of a control law suitable 
for such system, and (3) the evaluation through numerical 
simulation of the proposed model and controller.

The paper is organized as follows: Section 2 presents 
the complete derivation of a dynamic model of the pro-
posed VSCMG-actuated pendulum using modified Rodri-
gues parameters (MRPs), shows the assumptions to yield 
the spherical pendulum, and provides the error dynamics. 
Section 3 comprises the design of the control strategy that 
assures global asymptotic stabilization of the system. Sec-
tion 4 shows the numerical results obtained for two sce-
narios, controlling the spherical pendulum in a sequence of 
attitude commands and tracking a desired command. Finally, 
Sect. 5 draws the conclusions.
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2  Dynamic modeling

This section presents the notation used in the paper, the 
complete derivation of the model of a 3D pendulum with a 
VSCMG, shown in Fig. 1, and how this model can lead to 
a spherical pendulum. The modified Rodrigues parameters 
are used to describe the attitude of this new pendulum con-
figuration in a way to avoid singularities, once the shadow 
set property of the MRPs allows a complete three-dimen-
sional nonsingular attitude description [31, 32].

2.1  Notation

Denote the set of real numbers by ℝ , the special orthogo-
nal group by SO(3), and the 2-sphere by �2 . Denote the 
unit vectors as â , and the algebraic vectors are denoted 
in bold format, e.g, a ∈ ℝ

3 . Matrices are denoted by [A]. 
The relation between representations can be written as 
Bb = [BN]Nn , where [BN] ∈ SO(3) is the attitude matrix 
of B with respect to (w.r.t.) N and the superscript indicates 
the frame in which the vector is taken. Sometimes it is 
necessary to define a physical quantity in one frame w.r.t. 
another one. In this case, a subscript is added to the vector 
quantity, e.g., ab∕n . The ith component of a is denoted by 
ai . Now, consider two vectors a = {a1 a2 a3}

T and b taken 
in the same representation and denote the vector product 
by the matrix multiplication [a×]b , where the skew-sym-
metric matrix [a×] is defined as

2.2  Reference frames definitions and kinematics

Firstly, consider the following coordinate frames: the inertial 
one defined as N ≜

{
n̂1, n̂2, n̂3

}
 , the body-fixed frame given 

by B ≜

{
b̂1, b̂2, b̂3

}
 , the gimbal-fixed frame denoted by 

G ≜
{
ĝs, ĝt, ĝg

}
 ,  and consider the reference one 

R ≜
{
r̂1, r̂2, r̂3

}
 . Note that ĝg is aligned with b̂3 , as shown in 

Fig. 1. As seen from B, ĝs and ĝt are time varying; they are

where �(t) denotes the gimbal angle varying with time and �0 
is an initial gimbal angle. [BG] is defined as [BG] = [ĝs ĝt ĝg]

.
The 3D pendulum is a rigid body with three rotational 

degrees of freedom, fixed at a pivot point and subject to grav-
ity [2, 16, 18]. The angular velocity of the 3D pendulum in 
the body-frame w.r.t. inertial frame is �b∕n =

{
�1,�2,�3

}
 . 

The angular velocity of the gimbal in the G frame relative 
to B is given by G�g∕b = �̇� ĝg , and the reaction wheel angular 
velocity is G�w∕g = 𝛺ĝs . For simplicity, all quantities that 
do not present superscript are taken in the body frame B.

The MRP � ∈ ℝ
3 is defined as

where � ∈ (−2�, 2�) is the principal rotation angle, ê is the 
principal axis referring to the Euler’s principal rotation theo-
rem [31, 32]. The MRPs are singular at � = ± 2� . However, 
this singularity can be avoided if the MRP set is switched to 
its shadow set, thus leading to a complete nonsingular three-
dimensional attitude description [31]. Mathematically, when 
�
T
� > 1 , the MRP set is mapped to the shadow set given by

The kinematic differential equation of MRPs is [31]:

where �̇b∕n ∈ ℝ
3 denotes the rate of the MRP in the 

body frame taken w.r.t. inertial frame, and the matrix 
[B(�b∕n)] ∈ ℝ

3×3 is given by

(1)[a×] =

⎡
⎢⎢⎣

0 − a3 a2
a3 0 − a1
−a2 a1 0

⎤
⎥⎥⎦
.

(2)ĝs(t) = cos(𝛾(t) − 𝛾0)ĝs(t0) + sin(𝛾(t) − 𝛾0)ĝt(t0),

(3)
�̂t(t) = − sin(�(t) − �0)�̂s(t0)

+ cos(�(t) − �0)�̂t(t0),

(4)� ≜ tan
𝛷

4
ê,

(5)�
S ≜ −

�

�T�
.

(6)�̇b∕n =
1

4
[B(�b∕n)]�b∕n,

Fig. 1  Spherical pendulum actuated by a VSCMG
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Furthermore, it is necessary to define three inertia matri-
ces to model the 3D pendulum equipped with a VSCMG. 
The inertia matrix of the 3D pendulum [Is] contains the 
inertias of the body and of the VSCMG calculated relative 
to the overall center of mass. It is given in the B frame, 
and it is constant as seen from the B frame. The inertia 
matrix of the gimbal G[IG] is defined in the gimbal frame as 
G[IG] = diag (IGs, IGt, IGg) . The inertia matrix of the reaction 
wheel is already presented in the gimbal frame due to the 
disk symmetry denoted by G[IW ] = diag (Iws, Iwt, Iwt) . These 
two matrices need to be rotated to the body frame, where 
they are time-varying, yielding

Later on, it might be convenient sometimes to express the 
inertia matrices of the gimbal and of the reaction wheel 
as a single inertia matrix of the VSCMG denoted by 
G[J] = G[IG] +

G[IW ] . Moreover, the total inertia matrix [I] 
in the body frame can be expressed as

2.3  Equation of motion

To obtain the equation of motion of the 3D pendulum with 
a VSCMG, the angular momentum of the 3D pendulum 
hB , of the gimbal hG , and of the reaction wheel hW must 
be evaluated to yield the total angular momentum of the 
complete system around the center of mass

The angular momentum of the body is given by

The gimbal frame angular momentum is

where �g∕n = �g∕b + �b∕n . Using the definitions for the iner-
tia matrix and for the angular velocities, the angular momen-
tum of the gimbal frame can be written as

(7)
[B(�b∕n)] =[(1 − �

T
b∕n

�b∕n)[I3×3] + 2[�b∕n×]+

+ 2�b∕n�
T
b∕n

].

(8)

B[IG] =[BG]
G[IG][BG]

T ,

B[IG] =IGsĝsĝ
T

s
+ IGtĝtĝ

T

t
+ IGgĝgĝ

T

g
,

B[IW ] =[BG]
G[IW ][BG]

T ,

(9)B[IW ] =Iwsĝsĝ
T

s
+ Iwtĝtĝ

T

t
+ Iwtĝgĝ

T

g
.

(10)[I] = [Is] + Jsĝsĝ
T

s
+ Jtĝtĝ

T

t
+ Jgĝgĝ

T

g
.

(11)h = hB + hG + hW .

(12)hB = [Is]�b∕n.

(13)hG = [IG]�g∕n,

Here, we introduce the projection of �b∕n onto the G 
frame unit axes, where 𝜔s = ĝ

T

s
�b∕n , 𝜔t = ĝ

T

t
�b∕n , and 

𝜔g = ĝ
T

g
�b∕n . These relations help to simplify many steps 

of the derivation of this model, and they are also used in the 
design of the controller. They allow the angular momentum 
of the gimbal to be written as

The angular momentum of the reaction wheel is given by

where �w∕n = �w∕g + �g∕b + �b∕n . Analogously to what was 
done for the gimbal angular momentum, the reaction wheel 
angular momentum can be written as

The Euler’s equation is used to derive the equation of motion 
of the 3D pendulum with a VSCMG. The inertial derivative 
of the total angular momentum is calculated and equaled to 
the external torques acting on the system

where � = −mgrcm × [BN]n̂3 denotes the external torque that 
gravity exerts onto the system, where m is the mass of the 
system, g the acceleration of gravity, rcm ∈ ℝ

3 the center of 
mass vector, [BN] is the attitude matrix of the body frame 
w.r.t. inertial one, and n̂3 the inertial direction in which grav-
ity acts.

We recommend to evaluate the inertial derivatives of the 
gimbal frame’s angular momentum and the reaction wheel 
first. With these results, they are combined with the inertial 
derivative of the body angular momentum to yield the total 
inertial derivative of h . Thus, they are added together and 
equaled to the external torques acting onto the system to 
yield the equation of motion. To simplify the notation, from 
this point onwards � = �b∕n.

Note that the vectors ĝs, ĝt , and ĝg appear in the angu-
lar momentum of the gimbal and of the reaction wheel. 
Therefore, the inertial derivatives of these vectors must be 
evaluated

(14)
�G =

(
IGs��s��

T
s
+ IGt��t��

T
t
+ IGg��g��

T
g

)
�b∕n

+ IGg�̇���g.

(15)hG = IGs𝜔sĝs + IGt𝜔tĝt + IGg(𝜔g + �̇�)ĝg.

(16)hW = [IW ]�w∕n,

(17)hW = Iws(𝜔s +𝛺)ĝs + Iwt𝜔tĝt + Iwt(𝜔g + �̇�)ĝg.

(18)ḣ = �,

(19)̇̂gs =
B d

dt
(ĝs) + � × ĝs = (�̇� + 𝜔g)ĝt − 𝜔tĝg,

(20)̇̂gt =
B d

dt
(ĝt) + � × ĝt = −(�̇� + 𝜔g)ĝs − 𝜔sĝg,
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Additionally, it is important to evaluate the inertial deriva-
tives of the G frame body angular velocities

All the expressions developed here are used to derive the 
inertial derivatives of hW and hG . Thus, the inertial deriva-
tive of the hW is given by

Analyzing this result in the format of Euler’s equation 
ḣW = �W , where �W is the torque that the gimbal frame 
exerts on the reaction wheel, note that the torque compo-
nent around ĝs has to be produced by the motor that spins 
the reaction wheel. Thus, the reaction wheel motor torque 
is expressed as

Using the expressions defined from Eqs. (19)–(24), the iner-
tial derivative of the gimbal frame angular momentum is 
obtained as

Now, we need to analyze the gimbal and the reaction wheel 
together. For this end, let us write Euler’s equation as

Considering that �G is the torque vector exerted by the 3D 
pendulum onto the VSCMG and noting that the component 
around ĝg has to be provided by the motor responsible for 
gimbaling the CMG. The motor torque ug of the gimbal is 
given by

(21)̇̂gg =
B d

dt
(ĝg) + � × ĝg = 𝜔tĝs − 𝜔sĝt.

(22)�̇�s =
̇̂gT
s
� + ĝ

T

s
�̇ = �̇�𝜔t + ĝ

T

s
�̇,

(23)�̇�t =
̇̂gT
t
� + ĝ

T

t
�̇ = −�̇�𝜔s + ĝ

T

t
�̇,

(24)�̇�g =
̇̂gT
g
� + ĝ

T

g
�̇ = ĝ

T

g
�̇.

(25)

ḣW =��s(Iws(
.

𝛺+�̇�𝜔t + ��T
s

.

𝜔))

+ ��t([Iws(�̇�(𝜔s +𝛺) +𝛺𝜔g) + Iwt��
T
t

.

𝜔

+ (Iws − Iwt)𝜔s𝜔g − 2Iwt𝜔s�̇�) + ��g(Iwt(��
T
g

.

𝜔+�̈�)

+ (Iwt − Iws)𝜔s𝜔t − Iws𝛺𝜔t).

(26)us = Iws(�̇� + ĝ
T

s
�̇ + �̇�𝜔t).

(27)

ḣG =ĝs((IGs − IGt + IGg)�̇�𝜔t + IGsĝ
T

s
�̇

+ (IGg − IGt)𝜔t𝜔g) + ĝt((IGs − IGt − IGg)�̇�𝜔s

+ IGtĝ
T

t
�̇ + (IGs − IGg)𝜔s𝜔g) + ĝg(IGg(ĝ

T

g
�̇ + �̈�)

+ (IGt − IGs)𝜔s𝜔t).

(28)ḣG + ḣW = �G.

(29)ug = Jg(ĝ
T

g
�̇ + �̈�) − (Js − Jt)𝜔s𝜔t − Iws𝛺𝜔t.

Finally, the inertial derivative of the body angular momen-
tum is given by

Therefore, considering Eq. (18) and combining the inertial 
derivatives of hB , hG and hW , the equation of motion of the 
3D pendulum with a VSCMG is given by

In this format, the inertia matrices were combined as pre-
sented in Eq. (10). The expression presented in Eq. (31) can 
be more simplified if we consider Js ≈ Iws once the gimbal 
frame inertia IGs is usually very small and can be neglected 
when compared to Iws . Therefore, the equation of motion of 
the 3D pendulum with a single VSCMG is given by

The complete model of the 3D pendulum with VSCMG has 
to be solved. This model encompasses the kinematic differ-
ential equation given in Eq. (6), the equation of motion pre-
sented in Eq. (32), and the motor torque Eqs. (26) and (29).

2.4  Dynamic analysis

References [2] and [16] have shown that the 3D pendulum 
presents two equilibrium manifolds. The hanging equilib-
rium occurs when the center of mass of the pendulum is 
below the pivot. The inverted equilibrium occurs when the 
center of mass is directly above the pivot. Shen et al. [2] have 
proven that the hanging equilibrium is stable in the sense of 
Lyapunov and that the inverted is unstable.

2.5  Assumptions to model the spherical pendulum

As aforementioned, the objective is to control a spherical 
pendulum with a VSCMG. The alternative found to model 
this pendulum configuration was to derive a general model 
for a 3D pendulum and, based on the assumptions made in 
[2, 16], to obtain a spherical pendulum.

The assumptions considered to yield the spherical pen-
dulum are: (1) the rigid pendulum is axis symmetric; (2) the 
pivot is located in the axis of symmetry; and (3) the body has 
only two possible rotations. Therefore, the angular velocity 
�3 of the body around b̂3 is assumed to be zero. This leads 
to �̇�3 = 0.

(30)ḣB = [Is]�̇ + � × [Is]�.

(31)

[I]�̇ = − � × [I]� − ĝs(Js�̇�𝜔t + Iws�̇� − (Jt − Jg)𝜔t�̇�)

− ĝt
(
(Js𝜔s + Iws𝛺)�̇� − (Jt + Jg)𝜔s�̇� + Iws𝛺𝜔g

)

− ĝg(Jg�̈� − Iws𝛺𝜔t) + �.

(32)

[I]�̇ = − � × [I]� − ĝs

(
Js(�̇� + �̇�𝜔t) − (Jt − Jg)𝜔t�̇�

)

− ĝt

(
Js(𝜔s +𝛺)�̇� − (Jt + Jg)𝜔s�̇� + Js𝛺𝜔g

)

− ĝg(Jg�̈� − Js𝛺𝜔t) + �.
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2.6  Error dynamics

After deriving the mathematical model of the 3D pendu-
lum with a VSCMG and showing how to obtain a spheri-
cal pendulum from that model, now we need to obtain the 
error dynamics that is used in the controller design.

Let us first define the error attitude matrix as

where [RN]T is the attitude matrix of the reference frame 
R w.r.t. the inertial one. The error MRP �̃ can be extracted 
from the attitude error matrix as

where 𝜁 =
√

trace (D̃) + 1 and D̃ij denote the elements of 
the ith row and jth column of [D̃] . The attitude error kin-
ematic differential equation of the MRPs is given in the same 
form as presented in Eq. (6).

The angular velocity error is defined as

where �r ≜
R
�r∕n is the angular velocity command.

3  Controller design

This section presents the derivation of a feedback control 
law suitable for using the favorable aspects of the VSCMG 
to control the spherical pendulum. To design the control 
strategy, the following Lyapunov candidate function is 
selected

which is positive definite and radially unbounded once K is 
a positive attitude feedback gain and the inertia matrix [I] is 
a positive definite matrix.

The time derivative of the Lyapunov candidate function 
presented in Eq. (36) is given by

It is important to note that for this case the inertia matrix 
[I] is time-varying. This happens because of the CMG gim-
balling. Let us recall that the Lyapunov function is a scalar 
quantity, thus the derivative involves only the scalar com-
ponents. The derivatives of [I] and �̃ are evaluated as seen 
by the B frame. The derivative of the inertia matrix in the B 
frame is given by

(33)[D̃] = [BN][RN]T ,

(34)�̃ =
1

𝜁(𝜁 + 2)

⎡
⎢⎢⎣

D̃23 − D̃32

D̃31 − D̃13

D̃12 − D̃21

⎤
⎥⎥⎦
,

(35)�̃ = � − [D̃]�r,

(36)V(�̃, �̃) =
1

2
�̃
T [I]�̃ + 2Kln(1 + �̃

T
�̃),

(37)V̇(�̃, �̃) = �̃
T

(
[I]

B d

dt
(�̃) +

1

2

B d

dt
([I])�̃ + K�̃

)
.

Based on the Lyapunov theory, V̇  is required to be negative 
semi-definite in order to guarantee stability. Thus, the rate 
of the Lyapunov candidate function is forced to be negative 
semi-definite as

where [P] is a positive-definite gain matrix. Combining 
equations (37) with (39), we obtain following stability 
condition

Substituting the equation of motion of the 3D pendulum 
with a VSCMG, presented in Eq. (32), and the derivative 
of the inertia matrix, given by Eq. (38), into (40), and after 
some algebraic manipulations, the stability condition can 
be written as

For simplicity of notation, the following quantities are 
defined

Thus, the stability condition in a compact form similarly to 
the one adopted in reference [31] is

(38)
B d

dt
([I]) = �̇�(Js − Jt)(ĝsĝ

T

t
+ ĝtĝ

T

s
).

(39)V̇ = −�̃T [P]�̃,

(40)[I]
B d

dt
(�̃) = −K�̃ − [P]�̃ −

1

2

B d

dt
([I])�̃.

(41)

Js�̇�ĝs + Jg�̈� ĝg + �̇�(Js𝛺ĝt +
1

2
(Js − Jt)(𝜔tĝs + 𝜔sĝt)

+ Jg(𝜔tĝs − 𝜔sĝt) +
1

2
(Js − Jt)(ĝsĝ

T

t
�r + ĝtĝ

T

s
�r)) =

K�̃ + [P]�̃ + � − [�×][I]� − [I](�̇r − [�×]�)

− Js
(
𝛺𝜔gĝt −𝛺𝜔tĝg

)
.

(42)[D0] ≜[Jsĝs],

(43)
[
D1

]
≜

[
Js

(
(𝛺 +

1

2
𝜔s)ĝt +

1

2
𝜔tĝs

)]
,

(44)
[
D2

]
≜

[
1

2
Jt
(
𝜔tĝs + 𝜔sĝt

)]
,

(45)
[
D3

]
≜[Jg(𝜔tĝs − 𝜔sĝt)],

(46)
[
D4

]
≜

[
1

2
(Js − Jt)(ĝsĝ

T

t
+ ĝtĝ

T

s
)�r

]
,

(47)[B] ≜[Jgĝg].

(48)[D0]�̇� + [B]�̈� + [D]�̇� = �r,
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where [D] = [D1] − [D2] + [D3] + [D4] and the required 
torque vector �r is given by:

The proof of stability of this control law is analogous to 
the one presented in reference [31]. Note that the Lyapu-
nov function rate was set to be only negative semi-definite, 
thereby, from the stability condition, at this stage, we can 
infer that the proposed control scheme only assures global 
stability in the sense of Lyapunov. However, it is clear from 
Eq. (39) that the angular velocity error converge to zero as 
time evolves. To assure that the proposed control law is sta-
bilizing the system in global-asymptotic sense, the higher-
order derivatives of the Lyapunov function are investigated 
as done in previous works [7, 11, 31, 32], using the theo-
rem provided in reference [33], which states that if the first 
nonzero higher-order derivative of V, evaluated on the set 
of states such that V is zero, is of an odd order and negative 
definite, then the origin is asymptotically stable.

If �̃ is zero, then V̇  is also zero. Evaluating the second-
order derivative V̈  yields

Analyzing Eq. (50) when �̃ = 0 , it yields V̈ = 0 , nothing can 
be concluded regarding the stability. Thus, the third deriva-
tive is evaluated

For the sake of simplicity, ̇̃� is used instead of 
B d

dt
(�̃) . From 

Eq. (40), we have

Now, substituting Eq. (52) into Eq. (51) and assigning 
�̃ = 0 , we obtain

which is negative definite once [I] and [P] are positive 
definite matrices. Thus, the global asymptotic stability is 
guaranteed.

3.1  Control law

The gimbal and reaction wheel motor torques do not appear 
directly on the stability condition presented in Eq. (48). Only 
the rate and acceleration of the gimbal, and reaction wheel 
acceleration appear. To include the motor torques in the sta-
bility condition would yield equivalent control laws. How-
ever, some undesirable terms would show up that provides 
excessive gimbal rates. Besides, CMGs usually require the 

(49)
�r =K�̃ + [P]�̃ + � − [�×][I]� − [I](�̇r − [�×]�)+

− Js
(
𝛺𝜔gĝt −𝛺𝜔tĝg

)
.

(50)V̈ = −2�̃T [P] ̇̃�.

(51)V⃛ = −2�̃T [P] ̈̃� − 2 ̇̃�T [P] ̇̃�.

(52)̇̃� = −[I]−1K�̃.

(53)V⃛(�̃, �̃ = 0) = −2K2
�̃
T [I]−1[P][I]−1�̃,

gimbal rate as input [31]. The objective is to use favorably 
the torque produced by the reaction wheel and the torque 
amplification feature that the gyroscopic torque produces 
when the reaction wheel is gimballed.

To do so, the term [B]�̈� is dropped to avoid torque being 
generated mainly through this term since that in the [B] 
term, the inertia Jg is generally smaller than the ones in the 
spin direction Js . This leads to higher gimbal angular accel-
erations �̈� , which would make the CMG works as a reaction 
wheel and the torque amplification effect that the CMG pro-
vides would not be deeply exploited. Thereby, the stability 
condition can be rewritten as

To simplify the notation, the state vector � = {� �}T , and 
the matrix [Q] = [D0 D1] are introduced. Thus, Eq. (54) can 
be written as

Equation (55) provides the kinematic directive for the 
VSCMG, and some of the traditional CMG singularities 
can be avoided when the reaction wheel angular velocity 
is changed. To evaluate the desired rates for the gimbal and 
for the reaction wheel, the weighted pseudo-inverse matrix 
of [Q] is recommended to be used as done in references 
[31, 32]:

with [W] = diag (Ws,Wg) , where Ws is the weight of the 
reaction wheel mode and Wg is the weight of the gimbal 
mode. None specific criterion is used here, the designer 
should choose these weights, thus, allowing to specify how 
active each control action is. For instance, the control mode 
of the reaction wheel can be turned off and the reaction 
wheel speed held constant. Therefore, the VSCMG should 
act as a traditional CMG.

The control law as shown here does not use any mecha-
nism to avoid CMG singularities or to verify if the CMG 
configuration is close to a singularity. The only feature 
explored is that if the CMG cannot exert any torque to the 
pendulum, the reaction wheel can produce torque since the 
spin up or down of it is allowed in the VSCMG mechanism.

3.2  Torque level control

As stated before, the motor torques of the gimbal and of 
the reaction wheel do not appear in the designed control 
law. Therefore, the control law’s subservo control must be 
investigated to yield a torque-level control command once 
the control law provides only kinematic directive. Thereby, 

(54)[D0]�̇� + [D]�̇� = �r.

(55)[Q]�̇ = �r.

(56)�̇ = [W][Q]T
(
[Q][W][Q]T

)−1
�r,
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the servo control for the CMG and for the reaction is devel-
oped in this subsection.

Consider the motor torque equation of the gimbal pre-
sented in Eq. (29). A simplification is made to the motor 
torque equation of the gimbal, since �̇ is usually much 
smaller than the gimbal rates, this term is dropped. This 
simplification reduces the complexity of the servo control 
once �̇ and �̈� would have to be solved together to provide 
the gimbal motor torque. The gimbal motor torque equation 
is simplified to

To evaluate ug , the gimbal angular acceleration is needed. 
Equation (55) provides the desired gimbal rate �̇�d that when 
numerically differentiated yields �̈�d . Thus, stable servo 
dynamics are achieved by developing a feedback control to 
generate an expression for �̈� . So, the servo control for the 
gimbal has to determine �̈� while �̇� approaches �̇�d . The fol-
lowing Lyapunov function is chosed

being positive definite, and the tracking error is denoted 
by 𝛥�̇� ≜ �̇� − �̇�d . The derivative of the Lyapunov function is 
evaluated and forced to be negative define, yielding

where K� is a positive gain. The expression for the gimbal 
angular acceleration is given by

This expression is then substituted into Eq. (57), leading to 
the gimbal rate servo control torque

The servo control for the reaction wheel is developed analo-
gously. Consider the reaction wheel motor equation shown 
in Eq.(26). The same arguments are used to simplify the 
motor torque equation of the reaction wheel to

Carrying out the same procedure, the following reaction 
wheel torque control is obtained:

where K� is a positive gain and the velocity tracking error 
is �� ≜ � −�d.

An important remark is that the servo control needs to be 
faster than the attitude control loop, i.e., it needs to be updated 
at a higher frequency with appropriate gains and parameters. 

(57)ug = Jg�̈� − (Js − Jt)𝜔s𝜔t − Iws𝛺𝜔t.

(58)V(𝛥�̇�) =
1

2
𝛥�̇� ,

(59)V̇ = 𝛥�̇�𝛿�̈� = −K𝛾𝛥�̇�
2,

(60)�̈� = �̈�d − K𝛾𝛥�̇� .

(61)ug = Jg(�̈�d − K𝛾𝛥�̇�) − (Js − Jt)𝜔s𝜔t − Iws𝛺𝜔t.

(62)us = Iws(�̇� + �̇�𝜔t).

(63)us = Iws(�̇�d − K𝛺𝛥𝛺 + �̇�𝜔t),

Figure 2 illustrates the block diagram of the complete control 
set-up.

With the reference and actual rates, the attitude and angu-
lar velocity errors are evaluated. These two quantities and 
the actual states of the spherical pendulum with a VSCMG 
are used as inputs for the control law. At this stage, the 
designer has already decided which are the weights for the 
gimbal and for the reaction wheel. Thus, the control law 
calculates the desired gimbal rate �̇�d and �̇�d that constitutes 
�̇ . Then, the torque level control computes the motor torques 
for the gimbal and for the reaction that are necessary for the 
complete model integration. Afterward, the states are fed 
back and the process is restarted.

4  Numerical results

This section brings forward the numerical results to evalu-
ate the proposed spherical pendulum with a VSCMG. Here, 
two scenarios are investigated. First, we drive the spherical 
pendulum to a sequence of attitude commands. In the second 
scenario, we choose to track a desired reference.

Based on references [18, 31], the physical param-
eters used in the numerical simulations are m = 30.5 kg, 
[Is] = diag (5.3, 5.3, 14.5) kgm2 , G[J] = diag (0.13, 0.04, 
0.03) kgm2 , and rCM = (0, 0, 0.22) m. The gains used for the 
controller are K = 400 , [P] = diag (50, 50, 50) , K� = 2 , and 
K� = 1 . Furthermore, the weights are chosen as Ws = 2 and 
Wg = 1 . The script was coded in MATLAB using the Euler 
integration method with a time step of 0.001 s. For all the 
numerical simulations performed, we have used the initial 
conditions as Euler angles in the 1-2-3 sequence ( −25◦ , −25◦
,0) for the attitude which is converted to an attitude matrix 
from which the initial MRP is extracted. For the VSCMG, 
we consider �(0) = 30◦ and �(0) = 72 rad/s. To verify the 
robustness of the controller, we have considered a random 
disturbance torque with uniform distribution between −3 
and 3 Nm for both cases investigated.

Fig. 2  Block diagram of the control loop for the spherical pendulum 
with a VSCMG
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4.1  Controlling the spherical pendulum 
with a VSCMG in a sequence of attitude 
commands

This subsection presents the numerical results for driving 
the pendulum to a sequence of attitude commands includ-
ing the upright position. To do so, we set the commands in 
Euler angles in the 1-2-3 sequence, where the first attitude 
is (−15◦,−15◦, 0) , the second one is (0, 0, 0), the third one is 
(15◦, 15◦, 0) , and the final one is (0, 0, 0). Note that based on 
the reference system we have adopted, the attitude (0, 0, 0) 
represents the upright position. The changes in the attitude 
commands occur every 5 sec.

Figure 3 presents the controlled attitude given in terms of 
the MRPs, where we can note that before 5 sec the spheri-
cal pendulum is controlled in the first attitude command. 
Then, at 5 sec the reference is changed, and the pendulum 
is taken to the new desired attitude, which is repeated until 
the final attitude command, where the pendulum returns to 
the upright position.

Figure 4 shows the body angular velocity for this case. 
The same behavior is observed here, the angular velocities 
go to zero before 5 sec, in the sequel, the attitude com-
mand is changed every 5 sec and the controller is able to 
bring the body angular velocity back to zero every time. 
One important thing to note here is that the third compo-
nent is kept at zero for all simulation time. This is due to 

Fig. 3  Controlled attitude for a sequence of attitude commands, - - - 
indicates the reference

Fig. 4  Controlled body angular velocity for a sequence of attitude 
commands, - - - indicates the reference

Fig. 5  Attitude error for a sequence of attitude commands

Fig. 6  Angular velocity error for a sequence of attitude commands
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one of the assumptions carried out to yield the spherical 
pendulum where it is not allowed to rotate around b̂3.

Figures 5 and 6 depict the attitude and angular veloc-
ity errors, respectively. We can observe that the tracking 
errors using the proposed controller go to values very 
close to zero when the commanded reference is reached 
and a small oscillation due to disturbance applied can be 
observed.

Figure 7 illustrates the gimbal rates, where we can see 
that the gimbal presents smooth motions when the desired 
attitude commands are changed, exemplifying the torque 
amplification feature of the CMGs. Furthermore, note that 
when the pendulum reaches the equilibrium in the upright 

position, the gimbal angle ( � ) goes to a fixed position and 
stays there.

Figure 8 exhibits the reaction wheel angular velocity that 
also converge to a constant value after the pendulum reaches 
the upright position, which can be noted after 16 sec. We can 
also observe that the actual rates for the VSCMG are close to 
the desired rates generated by the control law for the gimbal 
as well as for the reaction wheel.

Figure 9 presents the motor torques for the reaction wheel 
and for the gimbal. Although these values might appear to 
have a large magnitude, they are consistent with the physi-
cal parameters used for the numerical simulations of the 
spherical pendulum with a VSCMG which are high values. 
The influence of the random disturbance torque can also be 

Fig. 7  Gimbal rates for controlling the pendulum in a sequence of 
attitude commands, - - - indicates the commanded gimbal rate

Fig. 8  Reaction wheel angular velocity for controlling the pendulum 
in a sequence of attitude commands, - - - indicates the commanded 
reaction wheel angular velocity

Fig. 9  Reaction wheel and gimbal motor torques for controlling the 
pendulum in a sequence of attitude commands

Fig. 10  Position of the center of mass for controlling the pendulum 
in a sequence of attitude commands. ◦ represents the initial condition 
and ∗ indicates attitude commands
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observed in the reaction wheel and gimbal motor torques 
where some oscillations can be noted. These small oscil-
lations are produced in order to the actuators to deal with 
the external disturbances applied to the system. The spikes 
depicted in both figures are due to the sudden change of the 
attitude command.

Moreover, for a better visualization of the result, the 
motion of the center of mass vector is presented in Fig. 10.

The MRPs are not very intuitive to evaluate the motion of 
a dynamic system although presenting very elegant proper-
ties. Therefore, analyzing Fig. 10 one can see that the initial 
condition chosen is not very far from the upright position 
and it is represented by a blue circle. This was done in order 
to avoid non-physical motions, i.e., motions that might be 
impossible to reproduce in practical experiments, taking into 
account the possible limitations of a future experimental set-
up. The attitude commands can also be observed in Fig. 10, 
depicted in red asterisks. From right to left, the pendulum 
leaves the initial condition and goes to the first attitude com-
mand, and then, to the second one in the center. After that, 
it goes to the one at the far left and it is driven back to the 
central one that represents the upright position. Thus, we 
can see that the spherical pendulum is taken to a sequence 
of attitude commands including the upright position using 
the favorable aspects of the VSCMG.

4.2  Tracking a desired reference

This subsection shows the results obtained for track-
ing a desired reference for the spherical pendulum with 
a VSCMG. In this case, we have set the desired refer-
ence as Euler angles in the 1-2-3 sequence given by 
(15◦ sin(2�fct − �∕2), 15◦ sin(2�fct − �), 0) with fc = 0.1 

Hz which is converted for MRPs. The controlled attitude 
given in terms of the MRPs is depicted in Fig. 11, where we 
can observe that the proposed control law makes the system 
follow the desired reference.

Figure 12 exhibits the body angular velocities for this 
case, where we can also note that the controller can track 
the desired angular velocity well.

Figure 13 illustrates the attitude error for tracking a 
desired reference using the proposed controller. Note that the 
attitude errors represented in terms of the MRPs converge to 
values close to zero after a few seconds.

Figure 14 presents the angular velocity errors that also 
converge to values close to zero after a few seconds. Small 
oscillations due to the random uniform disturbance torque 
applied can be noted in the angular velocity error.

Fig. 11  Controlled attitude for tracking a desired reference, - - - indi-
cates the reference

Fig. 12  Controlled body angular velocity for tracking a desired refer-
ence, - - - indicates the reference

Fig. 13  Attitude error for tracking a desired reference
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Figure 15 shows the gimbal rates for this case. Note that 
the gimbal has to move during the control process in order 
to produce the required torque once the reference is time-
varying. Furthermore, it is important to observe that for this 
case the gimbal motion is also smooth, which can be seen in 
the gimbal angle ( �).

The reaction wheel angular velocity is depicted in Fig. 16. 
The reaction wheel and gimbal motor torques for this cases 
are presented in Fig. 17. As aforementioned, one of the goals 
is to use the gyroscopic torque combined with the reaction 
wheel torque. Figures 15, 16, and 17 help us to visualize 
such phenomena. Besides, the reaction wheel works within 
reasonable rates, i.e., these rates can be reproduced in a prac-
tical experiment. Although large torques are demanded at 
the beginning of the simulation, it is imperative to take into 

account that the body, i.e., the pendulum has a large mass 
and a large inertia. The controller has also to deal with the 
torque caused by gravity. Thus, the motor torques of the 
gimbal and reaction wheel also yield reasonable values.

Once again for a better visualization of the results, we 
depict in Fig. 18 the position of the center of mass of the 
spherical pendulum with a VSCMG. Note that the pro-
posed approach can track a desired reference with adequate 
performance.

Fig. 14  Angular velocity error for tracking a desired reference

Fig. 15  Gimbal rates for tracking a desired reference, - - - indicates 
the commanded gimbal rate

Fig. 16  Reaction wheel angular velocity for tracking a desired refer-
ence, - - - indicates the commanded reaction wheel angular velocity

Fig. 17  Reaction wheel and gimbal motor torques for tracking a 
desired reference
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5  Final Remarks

This paper has introduced the complete modeling of a spher-
ical pendulum with a VSCMG, based on the 3D pendulum 
model. This was done taking into account some assumptions 
presented in the literature, which are to provide an axis-
symmetric inertia matrix for the 3D pendulum and to allow 
no rotation around b̂3 , i.e., �3 = 0 , which leads to �̇�3 = 0 . 
A nonlinear controller suitable for such dynamic system 
has been derived. The control law designed assures global 
asymptotic stability. Furthermore, the numerical results pre-
sented reasonable rates for driving the spherical pendulum 
to a sequence of attitude commands including the upright 
position as well as to track a desired reference. Favorable 
aspects of using a VSCMG are well employed in the con-
trol of the spherical pendulum using the gyroscopic torque 
combined with the reaction wheel torque. To the best of 
our knowledge, the VSCMG-actuated spherical pendulum 
has not been deeply studied as presented in this paper. Fur-
thermore, in the cases studied by this paper, the proposed 
model has provided a nonsingular model for the spherical 
pendulum and no CMG singularities were reached.
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