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Variable Speed Control Moment
Gyroscope in an Inverted
Pendulum
The use of variable speed control moment gyroscope (VSCMG) is an effective way for
attitude stabilization of aerospace devices. It is possible to control the oscillation and
direction rate of change in rigid bodies in space due to the controlled change of angular
momentum rate. Thus, this paper proposes an atypical pendulum configuration controlled
by a VSCMG actuator. The idea of the VSCMG pendulum (VSCMGP) is to use both the
angular momentum variation in amplitude and direction to implement the control. The
controller is designed using Lyapunov theory to stabilize the pendulum in the inverted
position. The results illustrate the control using a VSCMG in an inverted pendulum show-
ing how the stabilization of an inverted pendulum is performed using two control actions.
Also, the comparison of the proposed pendulum with a classical configuration is
presented. [DOI: 10.1115/1.4044273]
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1 Introduction

The attitude control of aerospace devices has some challenges
to be overcome, for example, complex nonlinear motion equa-
tions, uncertainties, and disturbances that occur during operation.
Reaction wheels can be applied in other fields and in particular in
the control and stabilization of mechanisms due to its simple con-
figuration and its reliability to aerospace industry applications
[1–4]. This class of actuator is very common in systems that
require attitude change, and it can store angular momentum,
which may aid in stabilization and external disturbances torques
rejection. The most usual way to use a reaction wheel to produce
torque is from the angular velocity variation causing an angular
momentum variation in amplitude. In this scenario, it is possible,
from specific angular velocities, to control the oscillation and
direction rate of rigid bodies in space through the application of
torques in the reaction wheel. The fundamental physical principle
consists of the validity of the conservation of the angular momen-
tum and the equilibrium of its rate of variation with the involved
torques [5–11].

In particular, different types of pendulums can be tested and
controlled using reaction wheels as actuators [12–14]. Addition-
ally, the use of inverted pendulums to approximate the dynamics
of robots has been extensively studied [13–27]. For instance, the
introduction of the reaction mass pendulum, in which a three-
dimensional multibody pendulum has represented well the model
of a humanoid robot with variable body inertia [13,14], and many
other different configurations of inverted three-dimensional pen-
dulums have encouraged the development of control for human-
oids [15,16,19–21,25]. There are also other approximations of
pendulum configurations that represent different types of robots,
such as the wheeled inverted pendulum [17,22–24,27]. However,
to the best of our knowledge, an inverted pendulum has not been
controlled using the variable speed control moment gyroscope
(VSCMG) yet. In this way, control moment gyroscope—CMG is
a widely known form of control that has many applications, such

as the attitude control of aerospace devices, as satellites [28–33],
robots [34], and spacecraft [35,36]. There are also other uses of a
CMG, such as a personal balance assistance [37,38], for example.
A simple CMG consists of a rotating disk in a constant rate and in
a gimbal mechanism that can change its direction generating a
gyroscopic torque by the direction variation of angular momentum
[39,40]. CMGs have the advantage of a small angular variation in
the gimbal producing a high magnitude torque in the device to be
controlled [39]. However, CMGs with a constant speed in the
reaction wheel can present singularities in some specific angular
positions and then they may not be so effective. Therefore, to
avoid such singularities Schaub et al. [39] discuss the VSCMG in
which the favorable aspects of using reaction wheels are com-
bined with CMGs. In this case, the reaction wheel angular veloc-
ity can be adjusted and controlled for situations in which
singularities can occur and the gyroscopic torque can also be
applied [39–42]. For this reason, the VSCMG is a suitable method
to control an inverted pendulum with a reaction wheel.

In this sense, the main idea and contribution of this paper are to
propose a new configuration of a pendulum with a VSCMG mech-
anism coupled to it. The control torque is produced by the reaction
wheel and by the gyroscopic effect when the reaction wheel is
gimbaled, driving the pendulum from the downward position to
the inverted position. This paper is organized as follows: Sec. 2
presents the dynamic modeling of the new pendulum configura-
tion proposed. Section 3 shows the design of the controller using
Lyapunov control theory, and Sec. 4 shows the numerical results
for driving the pendulum to the inverted position and also when it
is subject to an external disturbance. Additionally, the comparison
with a well-known pendulum configuration, the reaction wheel
pendulum (RWP), is carried out. Finally, Sec. 5 shows the con-
cluding remarks of the paper and future work.

2 Dynamic Modeling

Figure 1 illustrates three frames used for modeling the variable
speed control moment gyroscope coupled to a pendulum. The
inertial frame is described by axes (x, y, z) and orthonormal basis
fn̂1; n̂2; n̂3g. The first moving frame (B), or body frame, is
described by axes (x1, y1, z1), and the orthonormal basis
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fb̂1; b̂2; b̂3g is rotating solidarity to the pendulum with the angle
h, assuming a negative rotation. The second moving frame (G), or
gimbal frame, is described by axes (x2, y2, z2) and orthonormal
basis fĝt; ĝg; ĝsg. This frame is responsible for rotating the gimbal

with angle c, which makes the reaction wheel move outside of the
plane; and for rotating the gimbal, a positive rotation is consid-
ered. The rotation matrix between the inertial frame and moving
frame B is described by
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b̂3
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The rotation matrix between the body moving frame B and the
gimbal moving frame G is given by
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In this new system there are three different angular velocities to

be evaluated: the pendulum angular velocity BxB=N ¼ _h b̂3, the

gimbal angular velocity BxG=B ¼ _c b̂2, and the reaction wheel

angular velocity BxW=G ¼ _w sin c b̂1 þ _w cos c b̂3. In this way, the

inertial angular wheel velocity is BxW=N ¼ _w cos c b̂1 þ _c b̂2

þ _h þ _w cos c
� �

b̂3.
Before calculating the angular momentum, it is necessary to

compute the inertia matrix. This is done for the pendulum, for the
gimbal, and the reaction wheel. The principal inertia directions of
the gimbal and the reaction wheel are in a different frame. So, it is

necessary to rotate these inertia matrices to the body frame B,
where the VSCMG pendulum is adequately modeled. The pendu-
lum inertia matrix in the body moving frame B is

B Ip½ � ¼
Ipx

0 0

0 Ipy
0

0 0 Ipz

2
4

3
5 ¼ Ip 0 0

0 0 0

0 0 Ip

2
4

3
5 (3)

where Ipx
¼ Ipz

¼ ml2=3
� �

¼ Ip and Ipy
¼ 0, since for the pendu-

lum the inertia of a rod was considered. For the gimbal inertia
matrix, it is necessary to rotate it to the body frame B. The inertia
matrix of the gimbal in the gimbal frame is given by

G Ig½ � ¼
Igt 0 0

0 Igg 0

0 0 Igs

2
4

3
5 (4)

moreover, the inertia matrix of the gimbal in the body frame B is

B Ig½ � ¼ BG½ � Ig½ � BG½ �T

¼
Igs sin2cþ Igt cos2c 0 Igs � Igtð Þcos c sin c

0 Igg 0

Igs � Igtð Þcos c sin c 0 Igt sin2cþ Igs cos2c

2
664

3
775 (5)

where [BG] is the rotation matrix between the body and gimbal
frame. It is worth noting that the reaction wheel is symmetric, and
the principal inertia directions of the gimbal and the reaction
wheel are equivalent. The inertia matrix of the reaction wheel can
be written in the gimbal moving frame G

G IW½ � ¼
Iwt 0 0

0 Iwt 0

0 0 Iws

2
4

3
5 (6)

Finally, the inertia matrix of the reaction wheel in the body frame
is

B IW½ � ¼ BG½ � IW½ � BG½ �T

¼
Iws sin2cþ Iwt cos2c 0 Iws � Iwtð Þcos c sin c

0 Iwt 0

Iws � Iwtð Þcos c sin c 0 Iwt sin2cþ Iws cos2c

2
664

3
775 (7)

The total angular momentum of the system (BH) is the sum of the

angular momentum of the pendulum (BHB), of the gimbal (BHG)

and the reaction wheel (BHW), given by

BH¼BHBþ BHGþ BHW (8)

that can be rewritten as

BH¼B Ip½ �BxB=N þ B Ig½ �BxG=N þ B IW½ �BxW=N (9)

where BxG=N ¼ BxB=N þ BxG=B. The time derivative of the angu-
lar momentum in frame B taken relative to the inertial frame N is

_H ¼
Nd

dt
H ¼

Bd

dt
BHð Þþ BxB=N � BH¼BL (10)

Finally, the motion equation is obtained by

A€h þ B€w þ C _c þD ¼ 0 (11)

where

A ¼ Iwt sin2cþ Iws cos2cþ Ip þ Igt sin2cþ Igs cos2c (12)Fig. 1 VSCMG pendulum
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B ¼ Iws cos c (13)

C ¼ _h cos c sin c 2Iwt þ 2Igt � 2Iws � 2Igsð Þ � _wIws sin c (14)

D ¼ �rmg sin h (15)

The motor torque equation for the gimbal is obtained by analyzing
it separately from the whole system. This can be done in the body
frame or the gimbal frame. However, if it is carried out in the gim-
bal frame, it is not required to rotate the gimbal matrix, which
leads to simpler equations. Thus, the angular momentum used to
obtain the motor torque equation for the gimbal is

GHGW ¼ G Ig½ �GxG=N þ G IW½ �GxW=N (16)

The motor torque equation of the gimbal can be obtained by per-
forming the following derivation of the angular momentum of the
gimbal and the reaction wheel in the gimbal frame, G, relative to
the inertial frame, N

_HGW ¼
Nd

dt
HGW ¼

Gd

dt
GHGW

� �
þ GxG=N�GHGW¼GLGW (17)

Thus, Eq. (18) is the motor torque equation for the gimbal, where
ug is the control torque produced by the gimbal

ug ¼ Igg þ Iwtð Þ€c þ Iws
_w _h sin c (18)

It is also essential to analyze the reaction wheel separately to
obtain its motor torque equation. As the direction in which this
torque is produced is ĝs, it is more convenient to perform the anal-
ysis in the gimbal frame. The angular momentum for the reaction
wheel is

GHW¼G IW½ �GxW=N (19)

By performing the derivation of the angular momentum of
the reaction wheel in the gimbal frame G relative to the inertial
frame N

_HW ¼
Nd

dt
HW ¼

Gd

dt
GHW

� �
þ GxG=N � GHW ¼ GLW (20)

the following reaction wheel motor torque equation is obtained:

us ¼ Iws
€h cos c� Iws

_h _c sin cþ Iws
€w (21)

where us is the control torque provided by the reaction wheel. The
simultaneous numerical integration of Eqs. (11), (18), and (21)
provides the motion of the VSCMG pendulum. Regarding the
notations, see Ref. [10].

3 Nonlinear Control

First, it is necessary to select a candidate to be a Lyapunov
function to design a feedback control law using the Lyapunov
control theory

V dh; d _h
� �

¼ d _h
2

2
þ K

dh2

2
(22)

where d _h ¼ _h � _hr; dh ¼ h� hr , and K is a scalar attitude feed-
back gain. To ensure stability, the derivative of the Lyapunov can-
didate function should be at least negative semidefinite, as

_V dh; d _h
� �

¼ d _h d€h þ Kdh
� �

(23)

In this way, _V dh; d _h
� �

is set to be equal to a negative definite
function, in this case

_V dh; d _h
� �

¼ d _h d€h þ Kdh
� �

¼ �Pd _h
2

(24)

By carrying out the derivative of the Lyapunov candidate func-
tion, it is possible to obtain the following stable closed-loop
dynamical system:

€h � €hr þ Pd _h þ Kdh ¼ 0 (25)

To find the control law, it is necessary to substitute the equation
of motion of the system into the closed-loop system. Nonetheless,
it is necessary to analyze the higher-order derivatives of the
Lyapunov candidate function in order to find out which kind of
stability it ensures [43]

€V dh; d _h
� �

¼ �2Pd _hd€h; €V dh; d _h ¼ 0
� �

¼ 0 (26)

So, it is essential to analyze the third derivative of V dh; d _h
� �

&V dh; d _h
� �

¼ �2Pd€h
2 � 2Pd _h&h (27)

&V dh; d _h ¼ 0
� �

¼ �2Pd€h
2

(28)

Analyzing _V dh; d _h ¼ 0
� �

when

d _h d€h þ Kdh
� �

¼ �Pd _h
2

(29)

d€h þ Kdh ¼ �Pd _h (30)

d€h ¼ �Kdh (31)

Substituting the result presented in Eq. (31) into Eq. (28)

&V dh; d _h ¼ 0
� �

¼ �2Pd �Kdhð Þ2 ¼ �2PK2dh2 < 0 (32)

The third derivative of V dh; d _h
� �

is negative definite, and because
the first nonzero V derivative is of odd order, the control law is
asymptotically stable.

3.1 Control Law. By substituting the motion equation shown
in Eq. (11) into the closed-loop dynamics presented in Eq. (25)
and solving for the desired control vector

B C½ � €w
_c

( )
¼ �D�A€hr þ PAd _h þ KAdh ¼ Lr (33)

The control law given by Eq. (33) can avoid many of the
conventional CMG singularities once that the RW rotor speed is

time-varying [10]. The state vector g ¼ €w _c
� �T

and the matrix

Q½ � ¼ B C½ � are used to simplify the notation. Thus, the steering
law presented in Eq. (33) can be rewritten as

Q½ �g ¼ Lr (34)

The inverse of [Q] matrix is computed to find the rates for the
reaction wheel and the gimbal. This can be done using the stand-
ard Moore–Penrose inverse to obtain a minimum norm solution.
However, assuming that a VSCMG should act as a classical CMG
away from singular configurations, a weighted pseudo-inverse is
used [44]. For the case of the VSCMG pendulum, [W] is a diago-
nal matrix

W½ � ¼ Ww 0

0 Wg

� �
(35)

where Ww and Wg are the weights related to the reaction wheel
and gimbal modes, respectively; these weights represent how
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active each mode is. The desired g can be found as done in Schaub
et al. [39]

g ¼
€w
_c

( )
¼ W½ � Q½ �T Q½ � W½ � Q½ �T

	 
�1

Lr (36)

To obtain the required performance from the VSCMG, the
weights are estimated to see how close to a single-gimbal singu-
larity the VSCMG is. By computing the nondimensional scalar
factor d, the proximity of the singularity can be evaluated as
below:

d ¼ 1

h2
C½ � C½ �T

	 

(37)

where h is the RW nominal angular momentum. If the parameter
d goes to zero, this indicates a singular configuration for the
CMG. The weight Ww can be defined as

Ww ¼ Wo
we�ld (38)

The parameters Wo
w and l are positive scalars to be chosen by the

designer. When the VSCMG is operating away from singularities,
it should behave as a CMG, i.e., the weights on the reaction wheel
mode are smaller than the one from the CMG mode. The weight
of Wg is held constant.

3.2 Torque Level Control Law. It is important to obtain a
torque level control command for the system that is being studied
since the steering law presented in Eq. (33) provides only kine-
matic directive. It is necessary to investigate a subservo control
law for the VSCMG pendulum steering law, i.e., develop the con-
trol for €w and _c.

To evaluate the motor torque ug, the gimbal angular accelera-
tion €c is needed. So, it is necessary to develop a feedback control
to obtain an expression for €c to yield a stable servodynamics. To
develop the gimbal rate servo, it is essential to determine €c such
that the actual gimbal rate _c approaches the desired gimbal _cd that
is determined through the VSCMG steering law presented in
Eq. (33). The servotracking error is defined as

D _c ¼ _c � _cd (39)

and the Lyapunov function selected is

V D _cð Þ ¼ 1

2
D _c2 (40)

where this function is a positive definite measure of the servo-
tracking error. Evaluating the time derivative of the Lyapunov
function and forcing it to be definite negative leads to

_V D _cð Þ ¼ D _cD€c � �KcD _c2 (41)

with Kc> 0. Solving Eq. (41) for the desired gimbal acceleration
yields

€c ¼ €cd � KcDc (42)

The feedforward term €cd may be evaluated by numerically differ-
entiating the desired gimbal steering law rates _cd . Substituting
Eq. (42) into Eq. (18) leads to the gimbal rate servo control torque

ug ¼ Igg þ Iwtð Þ €cd � KcDcð Þ þ Iws
_w _h sin c (43)

A servo for the reaction wheel acceleration control is also devel-
oped similarly. Let €wd be the desired reaction wheel acceleration
that results from the steering law presented in Eq. (33). The speed
tracking error for the reaction wheel is

D _w ¼ _w � _wd (44)

As done before for the gimbal, the following Lyapunov function
is chosen

V D _w
� �

¼ 1

2
D _w

2
(45)

This function is also a definite positive measure of the servotrack-
ing error. The time derivative of the Lyapunov function for the
reaction wheel feedback control is evaluated, and it is forced to be
definite negative, leading to

_V D _w
� �

¼ D _wD€w � �KwD _w
2

(46)

with Kw> 0, the following is obtained

€w ¼ €wd � KwD _w (47)

such that the new reaction wheel torque control is given by

us ¼ Iws
€wd � KwD _w
	 


þ Iws
€h cos c� Iws

_h _c sin c (48)

4 Numerical Results

This section shows the results obtained to control the VSCMG
pendulum in the inverted position. How this new system and its
controller react when the pendulum is subjected to external distur-
bances after controlled in the inverted position is also presented.

For the VSCMG pendulum, a reaction wheel with radius
R¼ 0.11 m, mass mw¼ 0.2151 kg, a pendulum length of
‘¼ 0.35 m with a mass of mp¼ 0.1 kg are considered. The gimbal
structure has a mass equal to mg¼ 0.082 kg, and its inertia was
obtained using SOLIDWORKS, where Igt¼ 0.0020441 kg/m2,
Igg¼ 0.0020466 kg/m2, and Igs¼ 0.0000054 kg/m2. The radius of

the center of mass is r ¼ mg‘=2þ mg‘þ mw‘
� �

= mp þ mg þ mwð Þ.
The following initial conditions for all the simulations were

assumed to be h 0ð Þ ¼ 180 deg; _h 0ð Þ ¼ 0; w 0ð Þ ¼ 0; _w 0ð Þ
¼ 100 rpm, c(0)¼ 90 deg and _c 0ð Þ ¼ 0.

For the controller designed, the gains used in the simulations
were K¼ 5, P¼ 5, Kc¼ 100, and Kw¼ 100. The weights for the
controller were Ww¼ 2, Wg¼ 1, and l¼ 10�9. In the control algo-
rithm, first, the initial conditions are set, i.e., the angular position
where it is intended to control the pendulum (h¼ 0 deg) and the
controller parameters. Afterward, Lr is obtained, such that the
desired rates for the gimbal and the reaction wheel can be
obtained. With these desired rates, the motor torques of the gimbal
(ug) and the reaction wheel (us) can be evaluated. Then, the inte-
gration of the complete model is performed, and the new states
are obtained.

Furthermore, the proposed inverted pendulum configuration
with a VSCMG is compared with the classical and well-known
RWP. The model of the RWP has been described in many papers,
and one can notice that if we lock the gimbal at c¼ 0 deg, the
VSCMGP becomes the classical RWP. This can also be addressed
in the equations that describe the motion of the system. Consider-
ing c¼ 0 deg, the equation of motion of VSCMG pendulum
becomes

Iws þ Ip þ Igsð Þ€h þ Iwsð Þ€w þD ¼ 0 (49)

The motor torque of the gimbal yields zero since the gimbal has
to be locked in the RWP. Moreover, the motor torque of the reac-
tion wheel becomes

us ¼ Iws
€h þ Iws

€w (50)

Equations (49) and (50) are the exact same equations of the RWP
that were proposed by Spong et al. [12] and describe its motion.
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For the simulations of the RWP, the same parameters presented
were used; the only difference is that the weight of the gimbal
mode Wg in the controller is set to be zero, since that for the RWP
the reaction wheel is not gimballed.

4.1 Numerical Results for Controlling the Pendulums in
the Inverted Position. Figure 2 presents the results for driving
the VSCMG pendulum and RWP from the downward position
(h¼ 180 deg) to the upward position (h¼ 0 deg). The pendulum
angular position for both configurations is close but the VSCMG
seems to have a better outcome.

Figure 3 depicts the gimbal rates for both systems studied. For
the RWP, the gimbal rate must be zero for all the simulation, as
observed. Analyzing the VSCMG pendulum, the gyroscopic tor-
que is more used in the beginning of the simulation to start mov-
ing the pendulum, and after some seconds, the torque is mainly
produced by the reaction wheel. Some differences between the
desired gimbal rate and the effective gimbal rate for the VSCMG
can be noticed because for the CMG torque ug, a saturation limit
of 2.5 N�m has been added, which makes the control more
realistic.

For both pendulum configurations, the reaction wheel angular
velocities are shown in Fig. 4, where after the pendulum reaches
the equilibrium in the inverted position the wheel speed is con-
stant, for all cases.

Additionally, the angular velocity of the reaction wheel of the
RWP reaches a higher value in the beginning of the simulation;
this occurs because in the RWP the torque is provided only by the
reaction wheel mode, and it does not have the contribution of the
CMG mode.

Figure 5 shows the contribution of each control action for the
VSCMG pendulum and the external torque caused by gravity. In
addition, the angular momentum variation can also be observed.
Here, the gyroscopic torque has a higher contribution in the start
of the simulation, and after some time, the control is performed
mainly by the reaction wheel mode.

Figure 6 shows the control actions, the external torque caused
by gravity and the variation of angular momentum for the RWP.
The gimbal control action is kept at zero, as expected, since the

Fig. 2 Pendulum angular position h(t), where indicates the
result for VSCMGP and –�– indicates the result for RWP

Fig. 3 Gimbal rate _c(t). indicates the effective gimbal rate,
and indicates the desired gimbal rate for the VSCMGP. –�–
indicates the effective gimbal rate, and indicates the desired
gimbal rate for the RWP.

Fig. 4 RW angular velocity _w(t). indicates the effective reac-
tion wheel angular velocity, and indicates the desired reac-
tion wheel angular velocity for the VSCMGP. –�– indicates the
effective reaction wheel angular velocity, and indicates the
desired reaction wheel angular velocity for the RWP.

Fig. 5 Control actions and torques. indicates the external
torque caused by gravity (D), indicates the composition of the

angular momentum variation ( _H 3 5A€h1B€w1C _c), -�- indicates

the reaction wheel control action (B€w) and indicates the
CMG control action (C _c)
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gimbal is not actuated for this configuration. Thus, the control is
performed only by the reaction wheel control action.

In this way, a higher action from the reaction wheel is necessary
in the beginning of the simulation. When analyzing the VSCMG
pendulum in Fig. 5, this is not observed because the actions are
distributed between the gimbal and reaction wheel. The RMS val-
ues of the control actions of VSCMG pendulum and RWP were
calculated, and they are presented in Table 1, where the compari-
son between pendulum configurations is discussed.

Figure 7 shows the angular momentum component around b̂3

for both pendulums, where after the pendulum is controlled in the
inverted position, it becomes a constant value, as expected,

because when the pendulum is balanced in the inverted position
gravity does not cause a torque, illustrating the conservation of
the angular momentum. This result is observed for both pendulum
configurations.

4.2 Numerical Results for Controlling the Pendulums in
the Inverted Position With an External Disturbance. Other
simulations were done when an external disturbance is applied
after the pendulum is controlled in the inverted position. Also, we
investigate how the RWP would react when subjected to a disturb-
ance so that this situation can also be compared between the pen-
dulum configurations. For all the simulations in this section,
the disturbance was applied at 12 s for 0.5 s with an amplitude of
Dist¼ 0.3 N�m. So, for this case, the pendulums angular positions
are presented in Fig. 8 where at approximately 12 s both pendu-
lums are removed from the equilibrium position due to the distur-
bances applied to the systems.

It is also interesting to note that the controller designed can
bring both pendulums back to the desired position (h¼ 0 deg)
after these systems are subjected to an external disturbance. How-
ever, comparing the results between the VSCMG pendulum and
the RWP, the angular displacement of the VSCMGP is slightly
smaller, which means that the system that employs two control
actions reacts better when subjected to a disturbance, whereas the
RWP angular displacement reaches a higher value. Since these
results are still close to each other, the performance indexes were
calculated for this situation, and they are presented in Table 2
showing that the VSCMG pendulum presented a better perform-
ance than the RWP.

Figure 9 shows the gimbal rates ( _c) for both pendulums, where
for the VSCMG pendulum the gimbal is used in the beginning of
the simulation and also when the disturbance is applied. Again,
there is a difference between the desired rate and the actual gim-
bal rate due to the saturation limit imposed on the CMG torque
(ug). For the RWP, the desired and effective gimbal rate is zero
since for this configuration the gimbal must be locked and the tor-
ques must be generated only by the reaction wheel. This result can
be observed in Fig. 9, where the gimbal rate for the RWP is also
presented.

Figure 10 shows the angular velocities of the reaction wheels
for both systems. After the disturbances are applied, the controller
needs to accelerate the reaction wheel to produce torque to com-
pensate for the disturbance applied to the pendulums. Since for
the RWP the torque is produced only by the reaction wheel, it
demands a higher acceleration for the reaction wheel to be able to
deal with the disturbance applied, whereas for the VSCMG

Fig. 6 Control actions and torques. indicates the external
torque caused by gravity (D), indicates the composition of the

angular momentum variation ( _H 3 5A€h 1B€w 1 C _c), -�- indicates

the reaction wheel control action (B€w) and indicates the
CMG control action (C _c)

Table 1 RMS of the control actions

Inverted Disturbance

Action VSCMGP RWP VSCMGP RWP

B€w 0.1345 0.1706 0.1631 0.2230
C _c 0.0418 0 0.0459 0

Fig. 7 Angular momentum BH around b̂3, where indicates
the result for VSCMGP and –�– indicates the result for RWP

Fig. 8 Pendulum angular position h(t) when subject to external
disturbance, where indicates the result for VSCMGP and –�–
indicates the result for RWP
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pendulum this acceleration is smaller, due to the fact that the
gyroscopic contribution is also added.

Analyzing the contribution of each control action presented in
Fig. 11 for the VSCMG pendulum subjected to a disturbance after
being controlled in the inverted position, both modes are used to
deal with the disturbance applied to the system even if a higher
value for the weight of the wheel mode (Ww) is considered

compared to the one related to the gimbal mode (Wg). However,
both control actions help to control the pendulum by employing
the gyroscopic torque and the torque produced by the reaction
wheel.

Figure 12 presents the control actions for the RWP. Here, just
the reaction wheel control action is used to control the inverted
pendulum, and there is no contribution from the gyroscopic torque
since the gimbal is locked for this case.

Since only one control action is used, the values reached by this
action are higher than the ones obtained for the VSCMG pendu-
lum presented in Fig. 11. The RMS values for the control actions
for the RWP were calculated, and they are presented in Table 1 to
be compared with the ones for the VSCMG pendulum, when these
systems are subjected to an external disturbance.

Figure 13 presents the angular momentum around b̂3 for both
systems, illustrating the change in the angular momentum after
the disturbance is applied. The conservation of the angular
momentum can also be seen since the pendulum was controlled in

Table 2 Performance indexes calculated to compare both pen-
dulum configurations

Inverted Disturbance

Index VSCMGP RWP VSCMGP RWP

ISE 10.09 12.01 10.42 12.65
IAE 4.57 5.10 5.44 6.34
ITAE 4.60 5.57 16.66 22.49
ITSE 6.57 7.58 10.92 15.92

Fig. 9 Gimbal rate _c(t) when subject to an external disturb-
ance. indicates the effective gimbal rate and indicates
the desired gimbal rate for the VSCMGP. –�– indicates the
effective gimbal rate and indicates the desired gimbal rate
for the RWP.

Fig. 10 RW angular velocity _w(t) when subject to external dis-
turbance. indicates the effective reaction wheel angular
velocity and indicates the desired reaction wheel angular
velocity for the VSCMGP. –�– indicates the effective reaction
wheel angular velocity and indicates the desired reaction
wheel angular velocity for the RWP.

Fig. 11 Control actions and torques when subject to external
disturbance. indicates the external torque caused by gravity
(D), - indicates the composition of the angular momentum vari-

ation ( _H 3 5A€h 1B€w 1 C _c), -�- indicates the reaction wheel con-

trol action (B€w) and indicates the CMG control action (C _c)

Fig. 12 Control actions and torques when subject to external
disturbance. indicates the external torque caused by gravity
(D), - indicates the composition of the angular momentum vari-

ation ( _H 3 5A€h1B€w1C _c), -�- indicates the reaction wheel con-

trol action (B€w) and indicates the CMG control action (C _c)
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the inverted position; then, a disturbance was applied; at last, the
angular pendulum position was controlled again, and the angular
momentum was conserved once again.

4.3 Comparison Between Performances. This section
presents a detailed analysis of the performance of the two pendu-
lum systems analyzed. This comparison is conducted to evaluate
how the new configuration proposed performs when confronted to
an existing one.

The results presented in Figs. 2 and 8 for the angular pendulum
position considering the two situations of both pendulum configu-
rations analyzed in this paper were close. Therefore, four perform-
ance indexes were calculated to evaluate the results for
controlling the angular pendulum position of the systems studied.
Usually, these indexes are minimized during the design of the
controller to guarantee the best performance, but they can also be
used to analyze the resulting performance of systems. The system
that presents the smaller indexes is the system with the best per-
formance. The first index evaluated was the integral of time multi-
plied by the absolute error (ITAE), given by

ITAE ¼
ðT

0

tje tð Þjdt (51)

where t is time, and je tð Þj is the absolute error. The other index
calculated was the integral of the square of the error (ISE)

ISE ¼
ðT

0

e tð Þ2dt (52)

where e(t) is the error. The integral of the absolute magnitude of
the error (IAE) was the third index evaluated

IAE ¼
ðT

0

je tð Þjdt (53)

The fourth index is the integral of time multiplied by the square
error (ITSE)

ITSE ¼
ðT

0

te tð Þ2dt (54)

The use of more than one index was applied to verify if, with
other metrics, the same result for the analysis of the performance
is obtained. Each index has a different characteristic, for example,

the ITAE emphasizes the steady-state error, and the IAE is com-
monly used to analyze computational simulations, among other
reasons [45]. The values of the indexes are presented in Table 2.
For both cases studied in this paper (that is, in the inverted posi-
tion and subjected to a disturbance) with the parameters chosen,
the VSCMG pendulum outperforms the RWP configuration.

Moreover, the RMS value of the control actions presented in
Figs. 5, 6, 11, and 12 is evaluated. The RMS value of a generic
signal (xrms) is given by

xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
x2

1 þ x2
2 þ � � � þ x2

n

� �r
(55)

Thereby, the RMS of the reaction wheel control action and the
gimbal control action were calculated for the two situations ana-
lyzed in this paper for both pendulum configurations. The RMS
values obtained are presented in Table 1.

Analyzing the RMS values obtained, the VSCMG pendulum
had lower values for the reaction wheel control action since for
such configuration the control actions are divided into two. For
the RWP, the control is performed only by the reaction wheel con-
trol action, and for both cases, the RMS values obtained were
higher than the ones from the VSCMG. This indicates that the
RWP had higher energy consumption.

5 Final Remarks

This paper presented a new configuration of a pendulum that
has a VSCMG mechanism stabilized in the inverted position. A
nonlinear controller using the Lyapunov control theory was
designed to perform the position control of this new configuration.
Thus, the use of two control actions, gyroscopic torque and the
torque provided by the reaction wheel, was beneficial to drive the
pendulum from the downward position to its upward position,
thus controlling it in the unstable equilibrium point. Additionally,
when this new system was subjected to an external disturbance,
the controller designed was able to return the pendulum to the
desired position by employing both control actions. Also, the reac-
tion wheel mode is more used than the CMG mode due to the fact
that the pendulum motion is restricted to the plane. Moreover, the
comparison between the VSCMG pendulum with a well-
established configuration in the literature, the reaction wheel pen-
dulum, was carried out. The results of the comparison have shown
that for the cases studied in this paper, the proposed pendulum
configuration had a better performance. So, future work includes
the study of an inverted spherical pendulum with a VSCMG
mechanism to assess more complex situations.
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Nomenclature

[BN] ¼ rotation matrix between frames B and N
[BG]T ¼ rotation matrix between frames B and G

_H ¼ time derivative of the angular momentum in the body
frame B taken relative to the inertial frame N

_HGW ¼ time derivative of the angular momentum of the gimbal
and reaction wheel in the gimbal frame G taken relative
to the inertial frame N

Fig. 13 Angular momentum BH around b̂3 when subject to
external disturbance, where indicates the result for VSCMGP
and –�– indicates the result for RWP
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_HW ¼ time derivative of the angular momentum of the reac-
tion wheel in the gimbal frame G taken relative to the
inertial frame N

BH ¼ angular momentum of the system in the body frame B
BHB ¼ angular momentum of the pendulum in the body frame

B
BHG ¼ angular momentum of the gimbal in the body frame B
BHW ¼ angular momentum of the reaction wheel in the body

frame B
GHGW ¼ angular momentum of the gimbal and reaction wheel in

the gimbal frame G
GHW ¼ angular momentum of the reaction wheel in the gimbal

frame G
B[Ip] ¼ pendulum inertia matrix in the body frame B
B[Ig] ¼ gimbal inertia matrix in the body frame B

B[IW] ¼ reaction wheel inertia matrix in the body frame B
BxB=N ¼ pendulum angular velocity in frame B relative to inertial

frame N
BxG=B ¼ gimbal angular velocity in frame G relative to body

frame B
BxW=G ¼ reaction wheel angular velocity in frame W relative to

gimbal frame G
BxW=N ¼ reaction wheel angular velocity in frame W relative to

inertial frame N
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