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Combining features of large space structures and free-flying formations has lead to the tethered Coulomb structure concept.
Utilizing Coulomb forces to repel a formation of spacecraft nodes that are connected with fine tethers can create large quasi-rigid
and lightweight space structures. There are numerous applications for a tethered Coulomb structure ranging from interferom-
etry and remote sensing to component deployment and inflatable structures. This paper presents the first results of the impact
of nodal attitude motions on the structure’s dynamics and required charge levels. Non-linear numerical simulations analyze the
complex and coupled relative motion, while analytical natural frequency expressions are developed for small deflections. Quan-
titative analysis shows that increasing the inflationary Coulomb forces can stiffen the entire structure to resist deformations. It
is shown that for realistic charge levels the tethered Coulomb structure maintains both shape and taught tethers. This is demon-
strated on a two-node system subject to initial angular rate errors and differential solar radiation pressure. Further, a simple
double-tether system is shown to offer increased stiffening properties and resistance to perturbations.

Nomenclature
a, b, c = generic functions
Abraid = tether braid cross sectional area (m2)
As = reflective surface area (m2)
α = rotational oscillatory motion amplitude factor (N1/2)
α10 = rotational oscillatory motion amplitude factor for 10 m

separation (N1/2)
CR = surface reflectivity constant
E = modulus of elasticity (Nm−2)
Fc = Coulomb force (N)
Fs = tether spring force (N)
FSRP = solar radiation pressure force (N)
i = node index
I = mass moment of inertia (kgm2)
kc = vacuum Coulomb constant (Nm2C−2)
ks = tether linear spring constant (Nm−1)
ks10 = nominal spring constant for 10 m separation (Nm−1)
Le = tether length (m)
δL = tether stretch from nominal (m)
Le = equilibrium tether length (m)
Lo = nominal tether length (m)
λd = debye length (m)
m = node mass (kg)
PSR = solar radiation pressure (Nm−2)
φ = double-tether attachment point half angle (rad)
q = node charge (C)
Q = combined charge product (C2)
r = node spherical radius (m)
θ = node angular rotation (rad)
V = node voltage (V)
ωT = translational motion natural frequency (rads−1)
x = node separation (m)
δx = increase in node separation from equilibrium (m)
xe = node equilibrium separation (m)
xo = node nominal separation (m)

I Introduction
The use of spacecraft for remote sensing, interferometry, and

telescopic operations is a growing area of research with large base-
lines sought to increase power, sensor accuracy and resolution.
Large space structures and free-flying spacecraft formations are
two active development approaches to address this need.
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Large space structures offer a rigid and fixed configuration pro-
ducing a precise sensor array platform for highly accurate obser-
vations. However, there are challenges to overcome prior to large
space structures becoming standard operating systems, including
large mass, volume and cost constraints to get to orbit, the need for
on-orbit construction or complexities and reliability of deployable
components. Inflatable and deployable systems can offer a low-
mass, high mechanical packaging efficiency and potentialy low
cost solution that can been used for applications such as antennas
and booms.1, 2, 3 An ongoing area of research is the development
and test of deployable components and material membranes for
large space structures.4

An alternate method of providing the same characteristics of a
large space structure is to use a cluster of spacecraft flying in a
desired formation. The proposed NASA Goddard Stellar Imager5

and the NASA JPL study on the proposed Terrestrial Planet Finder
(TPF)6 are two missions that intend to operate a formation of space-
craft creating a sensor baseline in the kilometer range. One of
the leading applications of a large space interferometer is observa-
tions from Geostationary Earth Orbit (GEO). A study by Wertz of
a GEO-based free-flying formation indicates that an Earth surface
resolution of 0.5-2 m is achievable.7 The Eyeglass concept is an-
other investigation into a GEO-based Earth surveillance platform
with a 25-100 m aperture telescope. The diffractive lens is de-
signed to be folded in a sequence similar to an origami layout and
will be deployed in orbit.8, 9 King and Parker in Reference 10 inves-
tigate the use of Coulomb forces to control a free-flying formation
of spacecraft to develop a 20-30 m size array for interferometry at
GEO.

One of the biggest challenges of a free flying formation in Earth
orbit is controlling the non-linear and strongly coupled relative or-
bits and achieving the desired cluster geometry. With the use of
conventional chemical thrusters there is a limitation of propellant
and consequently mission lifetime to maintain a desired formation.
With close formations and sensitive instrument missions there are
also plume impingement concerns. Two formation control con-
cepts mitigating high fuel expenditure and plume impingement are
electromagnetic11 and flux pinning, both of which require high op-
erational power levels.12 Coulomb thrust is a recent and novel
method to control the separation distance of spacecraft operating
in close formations that does not have plume impingement con-
cerns, is virtually propellant-less, and requires only Watt-levels of
power.10, 13, 14

One potential solution to achieving a low-mass large space struc-
ture is with the Tethered Coulomb Structure (TCS) concept pro-
posed in Reference 13. The TCS provides a hybrid combination
of features from space structures and free flying spacecraft forma-
tions. The TCS concept utilizes a formation of spacecraft nodes
that are held together with a 3D network of light-weight physical
tethers. This is in contrast to other Coulomb spacecraft research
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which investigates the use of virtual tethers using electrostatic
forces.15, 16 With the TCS concept each spacecraft node has the
ability to increase its electrostatic potential through the use of a
charge control device that emits either electrons or low mass ions.
With each node having the same charge polarity they will repel
from each other and induce a tensile force on each tether. This
Coulomb repulsive force essentially inflates the spacecraft struc-
ture while the shape and size is maintained by the tethers. An
illustration of a four node TCS is shown in Figure 1.

The TCS concept offers a number of advantages for the develop-
ment of large space structures. Costs are kept low by launching the
formation in a compact configuration that is inflated in orbit using
the Coulomb forces. Similarly, a deployable component or antenna
could essentially be inflated and held quasi-rigid from the space-
craft body using Coulomb force repulsion. Due to the micro- to
milli-Newton levels of Coulomb force it is only necessary to have
a network of small membrane-like tethers. This significantly re-
duces the TCS mass compared to traditional structural components
and does not require on-orbit construction. It is also envisioned
that structures as large as hundreds of meters are feasible by con-
necting multiple charged nodes with relative short and thin tethers
(tens of meters). Another key benefit of the concept is its ability
to vary the shape and size of the TCS configuration by varying the
tether lengths. This allows adaptability and variation for changing
mission requirements.

There exists a variety of applications for space tether systems
and studies typically utilize a spinning system,17, 18 a gravity gra-
dient or an atmospheric drag orientation to maintain tension.19, 20

A unique advantage of the TCS concept is that tension is provided
with Coulomb forces regardless of the orbital orientation and can
be used to overcome differential gravitational accelerations and ex-
ternal perturbations.

Controlling a free-flying spacecraft formation with Coulomb
forces or traditional methods is an interesting dynamical challenge.
On going research in this field includes equilibrium conditions of
Coulomb craft,21, 22 implementation of feedback stabilized virtual
Coulomb structures with two craft,23, 15, 16 and the control of three
craft.24, 25 The navigational and dynamical motion complexities of
operating tightly controlled free-flying formations are significantly
simplified with the TCS concept.

The TCS concept, with its many advantages, still requires fur-
ther research to address the challenges; such as low-tension tether
dynamics and deployment mechanisms, the dynamics of charged
quasi-rigid structures with independently rotating nodes and vari-
able TCS shape goals, the electrical power requirements to main-
tain non-equilibrium charge levels, as well as the ability to maintain
a delicate TCS structure during orbital maneuvers such as semi-
major axis corrections. The intent of this paper is to investigate how
increased nodal charge reduces attitude motions through enhanced
rotational stiffness and the associated surface potentials required.
The concern is that a node rotation due to small deployment errors,
external torques or differential perturbations could cause the teth-
ers to wind up or loose tension. This is an advancement over the
previous TCS modeling that used point mass nodes (ignoring nodal
attitude motions) and focused on how the overall structure motion
and shape changes can be used to stabilize the TCS orientation.13

Results are generated by numerically simulating the full non-
linear equations of motion for any general three-dimensional TCS
size or shape using any number of spacecraft nodes. This algorithm
development is shown in the Appendix. The presented research
results are a vital step for the future analysis of more complex sys-
tems and higher fidelity modeling of the TCS relative motion.

Throughout this study one core aspect is determining the con-
ditions that cause periodic slack tethers. Of interest is the amount
of tether slackness that occurs with nominal configurations. It is
desired that tethers do not reach a sufficiently slack state to cause
tether damage or interference between nodes. However, the pres-
ence of slightly slack lines during short-term oscillations are not a
strong concern.

The primary focus of this study is quantifying the ability of the
Coulomb force to stiffen the overall TCS structure and resist de-
formation. To meet this objective, firstly, a study of the forces

acting on a TCS system at GEO is given. A two-node numerical
simulation is used to explore the capability of using charge to re-
sist compression from differential external disturbance forces. The
same two-node setup is then used to demonstrate the complex 3D
non-linear motions that are anticipated.

The equations of motion of this two-node system are reduced to
two degrees of freedom (2DOF). This system is linearized to iso-
late translational and rotational motions and analysis of the natural
frequencies is conducted. This gives a measure of the rotational
stiffness and the effects of varying model parameters.

Numerical simulations are then used to quantify the systems
ability to resist initial angular rate errors. These non-linear sim-
ulations feature dynamic tethers modeled as simple, mass-less,
proportional and undamped springs. Further, to enhance the ori-
entational stiffening capabilities of the Coulomb inflationary force,
a TCS configuration with a redundant double-tether connection is
investigated. This includes development of a 2DOF model and lin-
earization analysis as well as comparing rotational stiffness to the
single-tether system through numerical analysis.

II Tethered Coulomb Structure Forces
This section develops the fundamental forces acting on a TCS

system. The dynamic model considered includes translational and
rotational degrees of freedom of each TCS node, Coulomb forces
for inflation, and fixed, deployed tether lengths to maintain a con-
stant average size and shape. The TCS shape will undergo small
variations due to flexing of the tethers and motion of the nodes.
The complex coupled motions of a representative two-node TCS
system are highlighted with an example simulation.

II.A Coulomb Force
The Coulomb force is the controllable actuator for the TCS sys-

tem. This force is generated from the interaction of two charged
bodies. The charge can either occur naturally from the space
plasma, or be driven by a charge control device which continually
emits charged particles. In space, the Coulomb force is reduced by
shielding from the free-flying charged particles of the local plasma.
The extent of this shielding is characterized by the Debye length
λd.26 The resulting space Coulomb force Fc that is generated be-
tween two craft of charges q1 and q2 is defined by:

|Fc| = kc
q1q2
x2

e−x/λd

„
1 +

x

λd

«
(1)

where x is the spacecraft separation distance and kc = 8.99 ×
109 Nm2C−2 is the vacuum Coulomb constant. The Debye length
is based on the temperature and density of the local plasma. At
GEO the plasma is sufficiently hot and sparse to generate Debye
lengths ranging from 80 -1000 m with an average of approximately
200 m.10 This allows the use of Coulomb thrust when operating
with spacecraft separations of dozens of meters at GEO.14, 27 Low
Earth orbit Debye lengths are typically cm level, making the use of
Coulomb thrust challenging.

For TCS applications, the Coulomb force is chosen to be re-
pulsive to provide an inflationary force to maintain tension on
the tethers. This is achieved through a positive charge product,
Q = q1q2, with either both positive or negative qi values. This
study uses spherical spacecraft bodies where a charge level q re-
quires a surface potential computed with the relationship:

q =
V r

kc
(2)

where V is the voltage and r is sphere radius. Note that this study
does not consider non-homogeneous charge distributions that can
occur from induced charge effects of two neighboring conducting
objects. Such effects are very small for separations greater than 5
sphere radii x > 5r. Also omitted from this study is the combined
charge effect of having finite spheres in close proximity. The con-
sequence is that for separations less than 10 sphere radii x > 10r,
the craft would require a slightly higher surface potential to com-
pensate for the minimal force reduction.
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Figure 1: Illustration of the tethered Coulomb structure concept

II.B Tether Force
The tethers are modeled as linear stretch springs that, when in

a compressed state, go slack and no force is produced. Conse-
quently they only produce a force that opposes the repulsion of the
Coulomb force. The magnitude of the force is governed by the
equation:

|Fs| =

ksδL δL > 0,

0 δL ≤ 0.
(3)

where ks is the linear spring constant and δL is the stretch in the
tether length between two nodes. A linear spring tether is a suit-
able model for this study that is analyzing the relationship between
translational and rotational motions with an emphasis on overall
structural stiffening and disturbance rejection. The TCS algorithm
is developed to allow future investigations to use more complex
tether models which consider geometric deformations of the low-
tension tether. However, the linear axial-stiffness model with nom-
inal material property values provides an approximate measure of
how well the two-node TCS could resist differential rotations.

One option for a spacecraft tether material is AmberStrand R©a.
The property values of this reference material are used for all
simulations in this paper. AmberStrand R© is an electrically con-
ductive hybrid yarn made up of a metal coated polymer that offers
a flexible, low-mass and high strength tether. Tests conducted at
the University of Colorado at Boulder on a braid of three twisted
Amberstrand R© fibers resulted in the tether properties shown in Ta-
ble 1.

Table 1: AmberStrand R© properties for 3 twisted fibers

Parameter Value Units

Modulus of elasticity (E) 9.5×109 N/m2

Cross sectional area (Abraid) 5.6×10−7 m2

Linear mass density 1.44 g/m

The modulus of elasticity is measured in the elastic region of
tensile test results. The modulus of elasticity is related to a linear
spring constant in the elastic region of the stress-strain curve with:

ks =
EAbraid

Lo
(4)

where E is the modulus of elasticity, Abraid is the cross sectional
area of the braid of three twisted fibers, and Lo is the un-stretched
tether length.

II.C Solar Radiation Pressure
At GEO, where the TCS concept is to be operated, solar radi-

ation pressure (SRP) can play a significant role as a disturbance

aSyscom Advanced Materials, Inc. www.amberstrand.com, 1/15/2010

force on the inertial orbital motion of satellites.28 For the TCS ap-
plication the primary concern here is the effect of any differential
SRP forces on short-term dynamics. A simplified Solar Radiation
Pressure (SRP) model is used to quantify the capability of the TCS
system to compensate for a constant external perturbation. The
magnitude of the SRP force acting on a spacecraft is governed by
the relationship:29

FSRP = PSRCRAs (5)

where PSR is the solar radiation pressure, CR is the surface reflec-
tivity constant of the spacecraft, and As is the surface area.

II.D Sample Force Magnitudes
To appreciate the expected force magnitudes a TCS structure

will encounter on orbit, consider a two-node tethered system. With
nodes of radius 0.5 m, separated by 5 m center to center and
charged to a surface potential of 30 kV the expected force levels
are shown in Table 2. This is an achievable charge level. SPEAR-1
demonstrated controlled charge to 46 kV.30, 31 The Coulomb force
is computed between two isolated point charges. The solar radi-
ation pressure is computed for one node at 1 Astronomical Unit
(AU) from the sun where the solar radiation pressure is 4.56×10−6

N/m, and the surface reflectivity is 1. The differential gravity gra-
dient force is computed assuming the nodes are aligned along the
nadir line at GEO altitude, each with a mass of 50 kg.

In the absence of external perturbations (such as SRP or gravity
gradients) there exists a force equilibrium between the Coulomb
and tensile forces. For two nodes at 30 kV potential, with a desired
separation (xo = 5 m), and using Amberstrand R© tether material
need only stretch 0.75 µm to reach this equilibrium separation (xe).

Table 2: Expected force magnitudes for a two-node TCS sepa-
rated by 5 m

Force Value Units

Coulomb (Fc) 1.0 mN
Tether (Fs) 1.0 mN
SRP (FSRP ) 3.6 µN
Differential gravity 4.0 µN

II.E Numerical Simulation: TCS Compression Due to
External Disturbance Force

The force magnitudes of the primary disturbances at GEO, dif-
ferential SRP and differential gravity, are three orders of magnitude
less than the Coulomb control forces. The intent of the following
study is to quantify the capabilities of a two-node TCS configu-
ration to resist deformation from an external perturbation, in this
case, differential SRP.

Consider two spacecraft nodes connected with a single-tether.
The solar radiation pressure is added as a bias force that is com-
pressing the system along the direction of the tether line as shown
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Figure 2: Two-node Solar radiation pressure model

in Figure 2. The SRP force is acting on both nodes, but increasing
the size of node 1 produces a differential SRP that attempts to com-
press the nodes. The concern is whether the Coulomb forces are
large enough to maintain tether tension in this setup. The parame-
ters of the study are shown in Table 3 and the simulation algorithm
used is shown in the Appendix.

Table 3: Case 3 Simulation Parameters

Parameter Value Units

Spacecraft Area Ratios 1-10
Spacecraft node radius (r) 0.5 m
Spacecraft separation (xo) 10 m
Solar pressure (1 AU) 4.56×10−6 Nm−2

Surface reflectivity 1

The nodes are separated by 10 m. If the Coulomb forces are
found to be sufficient to maintain tension for this challenging larger
separation distance, then TCS systems of shorter separation dis-
tances should not be significantly compressed by differential SRP.
The sunlit surface area of node 1 is increased linearly in multiples
from one to ten, where one is the nominal surface area correspond-
ing to a 0.5 meter radius circle. An increase in the surface area will
cause the homogeneously distributed charge to also increase for a
fixed nodal potential. This would further increase the stiffening ca-
pabilities of the TCS system. To maintain a worst-case scenario,
this model does not incorporate any change in the Coulomb force
as the surface area of node 1 is increased. To isolate the differen-
tial solar radiation pressure effects, this simulation is setup to not
induce attitude rotations and omits gravity forces.

The numerical simulation is set up with the craft initially at their
undisturbed equilibrium states. The contour plot of Figure 3 shows
what the worst-case percentage of the buffer between equilibrium
distance and un-stretched distance is compromised by the SRP dis-
turbed relative motion. This value is calculated using:

% =
Le −min(L)

Le − Lo
100 (6)

This percentage value indicates how close the tether length is from
becoming slack as a function of both charge and the surface area
ratio between the craft. The top left portion of the figure indicates
that the crafts relative motion compresses to the point of causing
the tether to go slack at times.
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Figure 3: Tether distance from becoming slack under varying
SRP disturbances

As indicated in Figure 3 an increase in charge will stiffen the
system to resist differential perturbations. For shorter separation
distances of less than 10 meters the system is further stiffened

reducing the voltage requirements to resist the same disturbance
force levels. Note that even with a very large TCS node size ratio
of 10 and 25 kV potential, the compression due to this worst-case
alignment of the differential SRP disturbance would only cause ap-
proximately a 20% compression of the equilibrium distance buffer.
For TCS separation distances on the meter-level, considering near
equal nodal sizes, the differential SRP will have a minimal im-
pact on the TCS shape. Based on the results of this simulation it
is appropriate to omit the effects of differential perturbations such
as SRP and gravity to analyze short-term dynamical motions. For
long term dynamic studies, that are not performed here, the imple-
mentation of the full model in the appendix is used.

III Two-Node Simulation Parameters
The intent of this paper is to provide insight into the dynamics

and design parameters of the TCS concept. These studies are based
upon the translational and rotational motion of a representative
two-node system. The two-node system is subjected to initial an-
gular rate errors that represent deployment or disturbance torques.

Simulations are computed with the full three-dimensional equa-
tions of motion including attitude dependance, as detailed in the
Appendix. For practical reasons, the simulations are stopped if an
attitude reaches a tether wrap up state (±90 degrees for single-
tether). A common set of TCS parameters for each simulation
case is shown in Table 4. The three un-stretched separations of
xo = 2.5, 5, and 10 m are measured from node center to center.

Table 4: Simulation Parameters Common For All Test Cases

Parameter Value Units

Spacecraft node mass (m) 50 kg
Spacecraft node radius (r) 0.5 m
Spacecraft potential range (V ) 5-50 kV
Spacecraft separations (xo) 2.5, 5, 10 m

Initial attitude rate errors
“
θ̇(0)

”
1-120 deg/min

To demonstrate the complex coupling between translational and
attitude motions of tethered, charged nodes an example simulation
is shown. Figure 4 shows the relative motion of a two-node system
in deep space. Each node has an initial angular rate of 45 deg/min
about different axes. The nodes maintain a fixed potential of 30 kV
and there are no gravity or SRP forces acting. The nodes have an
un-stretched separation of 5 m, radius of 0.5 m and mass of 50 kg.
Figure 4 demonstrates the relative oscillatory motion of the two
nodes along with attitude of node 1 and the corresponding tether
force levels.

Figure 4 indicates the complex dynamics that result from a two-
node, single tether TCS system under the influence of solely an
initial angular rate. While this numerical simulation can handle
general translational and rotational motion of N nodes, the results
yield an overwhelming amount of data, making it difficult to gain
any insight. This numerical demonstration highlights the need to
reduce the complexity of the system. It is beneficial to isolate the
motions of the TCS system and appreciate its true capabilities. For
this reason, the following studies in this paper reduce a generic
TCS system to its fundamental translational and rotational motions.
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Figure 4: Complex 3D example of a two-node relative motion,
attitude and single-tether tension (initial angular rates of 45
deg/min)

IV Single-Tether Configuration Modeling
This section documents the dynamic model of a representative

two-node, single-tethered TCS system. This two-node model is re-
duced to two degrees of freedom and linearized to obtain insight
into expected motions about equilibrium. The linearization allows
specific analysis of individual translational and rotational motions.
The models are developed in this section in the absence of gravi-
tational and solar radiation pressure perturbations. The two-degree
of freedom models developed here also provide verification of the
full 3D model and simulation results.

IV.A Two Degree of Freedom Model
A simplified two degree of freedom TCS model is developed

to provide insight into how TCS node rotation impacts the charge
requirements and related stiffness capabilities. This TCS model
features two nodes attached with a single-tether as shown in Fig-
ure 5.

By constraining the nodes to asymmetrically rotate by an angle
θ the tether remains parallel to the line of sight vector resulting in
one dimensional translational motion with the Coulomb and Tether
forces (Fc & Fs) directly opposing each other. This reduces the
model to one rotational degree of freedom and one translational.
This motion is desirable as it allows analysis of the effects of
each motion in isolation. Any alternate symmetries cause two di-
mensional translational motions that are also inherently coupled to
rotational motions. The Coulomb force for this model is assumed
to have no shielding from the plasma environment due to the very
small meter-level separation distances. This is a reasonable as-
sumption given the force magnitude is reduced only 0.03% at a
separation of 5 meters in a nominal 200 m Debye length plasma.

The translational equation of motion of this system is:

ẍ =
2kcQ

mx2
− 2ks

m
[x− xo + 2r(1− cos θ)] (7)

where xo is the un-stretched node separation and m is the node
mass. With the tethers attached at fixed locations on the spheri-
cal surfaces any rotation will result in a torque on the node. This
is modeled to examine the correlations between translational and
rotational motions. The attitude is governed by the rotational equa-
tion of motion:

θ̈ = −rks
I

[x− xo + 2r(1− cos θ)] sin θ (8)

where I is the mass moment of inertia of the node. For this 2DOF
model the mass of each node is equal and the mass moment of iner-
tia of a solid disk is used. Future studies can vary these properties
to analyze the effect of mass and its distribution on the dynamics
of the system.

IV.B Single-Tether Linearized model
To focus on the dynamical motion of the nodes, the 2DOF model

is linearized. Equation (7) has an equilibrium condition at a sep-
aration, x = xe and an attitude θ = 0. At this equilibrium, the
translational equation of motion is reduced to

ẍ = 0 =
kcQ

x2
e

− ks(xe − xo) (9)

which can be arranged to a cubic relationship between the equilib-
rium distance xe and the associated charge product Q:

kcQ = ks(xe − x0)x
2
e (10)

Of the three xe solutions only the real solution is practical. At
this equilibrium separation distance the Coulomb and tether forces
are equal and the nodes remain stationary (with no external distur-
bances). One interesting consequence of this equilibrium distance
is that it is independent of the system mass.

The 2DOF model given in Eqs. (7) and (8) is linearized about
the equilibrium condition to produce a reduced system model to
study the dynamic behavior of oscillations about the equilibrium
states. Linearizing the translational motion for small departures
(δx = x− xe) results in:

δẍ ≈ − 2

m

»
2kcQ

x3
e(Q)

+ ks

–
δx (11)

This approximate translation description is decoupled from the an-
gular rotation and is the form of the stable, undamped harmonic
oscillator equation. The natural frequency of this oscillatory trans-
lational response is given by:

ωT =

s
2

m

»
2kcQ

x3
e(Q)

+ ks

–
(12)

The rotational equation of motion is linearized to the form:

θ̈ ≈ −rks
I

[xe(Q)− xo] θ (13)

This linearized rotational equation of motion also decouples and
is of the form of the stable undamped harmonic oscillator equa-
tion. The natural frequency of this oscillatory rotational response
is given by:

ωR =

r
rks
I

[xe(Q)− xo] (14)

While these linearized models are only valid for small oscillations,
they can be used to offer insight into the response of the system
about its equilibrium state.

V Linearized Model Analysis
Using the linearized system model, two case studies are used to

analyze motions and sensitivity to nodal parameters. Ultimately,
it is possible to gauge the expected stiffness of the TCS, with the
linearized models of Equations (11) and (13) and the system prop-
erties of Table 4.

V.A Natural Frequency Response
The natural frequency of the linearized translational and rota-

tional motions of Equations (12) and (14) gives a measure of the
TCS stiffness. Figure 6 shows the natural frequency of the lin-
earized translational motion for three separation distances. For
the voltage range analyzed, the natural frequency of the response
changes less than 0.1%, indicating that it is essentially independent
of the spacecraft charge. The translational stiffness is largely deter-
mined by the tether material stiffness. As the separation distance
between the nodes decreases, the frequency of the system response
increases as a result of the shorter (stiffer) tethers and enhanced
Coulomb force magnitudes.
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Figure 6: Natural frequency of linearized translational motion

Figure 7 shows the natural frequency of the linearized rotational
motion, Equation (14), for three separation distances. In con-
trast to the translational stiffness which is essentially decoupled
from the magnitude of the electrostatic inflation force (assuming
AmberStrand R©-like materials), the rotational stiffness or natural
frequency is directly related to the TCS node potentials. The rota-
tional natural frequency has a near-linear dependance on potential
for the range of charges used in this study. In essence, the rotational
motion will be stiffened through enhanced charge levels. Only
for potentials much larger and unrealistic for spacecraft charging
(>2000 kV) does the response become non-linear.

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

Voltage (kV)

F
re

q
u

en
cy

 (
ra

d
/s

)

 

 

2.5 m

5 m

10 m

Figure 7: Natural frequency of linearized rotational motion

Note that the translational natural frequency is at least two orders
of magnitude greater than the corresponding rotational motion. For
these uncoupled linearized equations and the system parameters
analyzed this implies that a TCS is naturally superior at constrain-
ing translational motion. Based on this outcome, the primary focus
of this study is on the nodal rotational responses.

V.B Sensitivity of Rotational Motion to Tether Material
AmberStrand R© is the example tether material used for this

study. The use of an alternate tether material would change the
material stiffness (spring constant). The linearized model is used
to analyze the effect on the resulting rotational node motion by
varying this tether material stiffness. Equation (13), which is the
form of a stable oscillator, has the solution θ(t) = A sin(ωRt+β)
where β is the phase offset and the amplitude of the rotational re-
sponse oscillation, A is defined as:

A = θ̇(0)

r
2mr

5

s
1

ks (xe(Q, ks)− xo)| {z }
α

= θ̇(0)

r
2mr

5
α

(15)

Here θ̇(0) is the initial angular rate and θ(0) is assumed to be

zero. The amplitude A is proportional to α, which is a function
of the tether stiffness ks and node charge product Q. Note that
xe depends on ks so amplitude is not inversely proportional to
the spring constant. For 10 m separated nodes tethered with the
nominal AmberStrand R© braid the resulting spring constant value
is ks10 = 591. This spring constant value corresponds to an am-
plitude factor α10. This study investigates the impact of a range
of material properties on the rotational stiffness. This is performed
by varying the spring constant value from ks10 × 10−8 through
ks10×10. The resulting amplitude multiplication factor α of Equa-
tion (15) is normalized by the nominal α10 value and plotted in
Figure 8.
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Figure 8: Effect of varying tether spring constant on the am-
plitude of linearized angular oscillations

This study indicates that changes in the tether spring constant
have a minimal effect on the amplitude of angular rotations com-
pared to the nominal 10 m separation (ks10) response. It requires
a spring constant that is reduced by 1×10−8 times the value of the
10 m separated case and nodes of 50 kV to increase the maximum
angular rotation by only 2.5. Any tether material with a realistic
spring constant or anything stiffer than the example tether material
will result in the same rotational motion response, an important
finding of the linearized analysis.

V.C Extent of Linearization Range
The previous section used linearized equations to analyze ex-

pected motions about equilibrium conditions. Numerical simula-
tions using the 2DOF equations are used to quantify the extent of
accuracy of these linear approximations. This is achieved by calcu-
lating the period of oscillation of the system response to deviations
from equilibrium both with the translational and rotational equa-
tions of motion.

Figure 9 shows the period of oscillation of the two-node sys-
tem initialized with a translational offset δx from equilibrium xe.
The period of oscillation is compared to that predicted from the
linearized system of Equation 12. The nodes are offset in both the
compression and stretch directions (xe± δx) and give different pe-
riods of oscillation. This figure indicates that the range of accuracy
of the linearized translational equation is only ± 1× 10−3 mm.

Similarly, the period of oscillation of the two-node system ini-
tialized with a rotational offset δθ from the equilibrium angle of
zero is shown in Figure 10. The period of oscillation is compared
to that predicted from the linearized system of Equation 14. Due
to symmetry the nodes are offset only in the positive θ direction.
This figure indicates that the range of accuracy of the linearized ro-
tational equation is ± 8× 10−2 degrees. Beyond this linear range
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Figure 9: Comparison of oscillation periods for linearized
translational equation to non-linear simulation

the rotational oscillations abruptly change periods as the tether now
becomes marginally slack at times causing the nodes to to lose their
smooth rotations.

The conclusion of this study is that the linearization analysis
only holds for very small departures from the respective equilibri-
ums. The non-linear nature of the TCS dynamics dominate, leading
to the need for numerical simulations for further analysis.
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Figure 10: Comparison of oscillation periods for linearized ro-
tational equation to non-linear simulation

VI Numerical Simulation: Rotational Stiffness
Capabilities

The linearized analysis gave an indication of the translational
and rotational motions and their dependence on two key system
parameters, craft potential and tether material. Due to the very non-
linear nature of TCS dynamics, further analysis of the rotational
motion is conducted to demonstrate the TCS stiffening properties
and capability to resist angular rate errors.

After deployment the TCS nodes will not be perfectly at rest
with respect to each other. This analysis uses the full 3D non-linear
equations of motion (see Appendix) to demonstrate the ability of
the Coulomb force to stiffen the structure and resist deformation
due to a small initial angular rate. Three two-node, single-tether
configurations of different separation distances are simulated with
assymmetric initial angular rotations. Here both nodes perform
the same (but opposite) rotation and consequently have one dimen-
sional translational motion, to focus on rotational dynamics.

Figure 11 shows the maximum attitude angle that is reached by
the nodes for each of the separation distance cases. This is shown
as a function of the spacecraft surface potential and each data line
corresponds to the initial angular rate error. No material damping
is considered in this study as the focus is on the initial rotational re-
sponse and issues with tethers wrapping up on nodes after a single
oscillation. The weak material damping would only impact long-
term oscillation amplitudes.

The solid lines in Figure 11 indicate that the tether remains taut
for the simulation duration, where as the dashed regions have the
tether reach a slack state. For many of these conditions the tether
may go slack only a small fraction of the simulation time and is
typically much less than a millimeter from the un-stretched tether
length. Given that there are only infrequent times of slight slack-
ness, this is not a significant concern. It is anticipated that passive
or active damping be added to the TCS system to assist the transient
response to reach a taut tether equilibrium state. Future research in-
vestigating the use of active motion damping or passive damping
with viscous materials at the tether attachment points is envisioned.
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Figure 11: Maximum attitude reached as a function of initial
attitude rate error

For the three separation cases analyzed the conditions that cause
the angle of rotation to go above 27◦ results in a tether that will
periodically go slack. Interestingly this rotation amplitude limit
appears to be independent of the initial conditions considered or
the node separations. The cause of this correlation is currently un-
known and under investigation.

A reduction in the spacecraft separation distance results in two
key changes on the system as shown in Figure 11. Firstly, the tether
spring constant increases and secondly the spacecraft will be closer
together, increasing the Coulomb force for an equivalent charge
level. This increases the stiffening of the rotational motion, as pre-
luded by the earlier linear analysis. This simulation now quantifies
the enhanced ability of a stiffened TCS to resist deformation due
to an initial angular rate error on the nodes. Figure 11(a) shows
that a 10 meter nodal separation with 35 kV potentials requires an
initial nodal rotation rate less than 10 deg/min, a small value. Oth-
erwise, the tethers will periodically go slack, or the nodes could
wrap up with the tethers. In contrast, Figure 11(c) shows that re-
ducing the separation to 2.5 m and maintaining a 35 kV potential
will constrain a 45 deg/min angular rate. At these separations rates
as high as 120 deg/min can be tolerated without nodal wrap up.
Shorter separation distances yield significant increases to the rota-
tional stiffness of the TCS nodes.

VII Double-Tether Rotational Stiffness
Capabilities

Having a TCS system that incorporates a redundant set of tethers
between the nodes, with the attachment points distributed across
the nodes surface, is a method of increasing the rotational TCS
node stiffness. The following numerical simulation results quantify
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by how much the rotational TCS node stiffness can be increased if
a double-tether setup is employed.

VII.A Two Degree of Freedom Model
The double-tether TCS concept is shown in Figure 12 on a two-

node system. The intent of the redundant double-tether is to add
rigidity and resistance to deformation for the TCS. The system is
modeled with assymmetric motions so that it can once again be
reduced to two degrees of freedom to gain analytical insight.

The translational equations of motion of the symmetric double-
tether system is:

ẍ =
2kcQ

mx2
− 4ks

m
[x− xo + 2r cosφ(1− cos θ)] (16)

where φ is the half angle between the tether attachment points. The
rotational equation of motion is given by:

θ̈ = −2rks sin θ

I

n
cosφ(x− xo) + 2r

h
cos θ + cos2 φ

− 2 cos θ cosφ
io

(17)

The rotational equation of motion is significantly more complex
than the single-tether setup. However, linearizing the double-tether
motions about the equilibrium states, still produces a decoupled set
of equations. The translational motion for small departures about
the equilbrium (δx = x− xe) is:

δẍ ≈ − 4

m

»
kcQ

x3
e(Q)

+ ks

–
δx (18)

This linearized translational motion is of the form of a stable un-
damped harmonic oscillator. It is also equivalent to the single-
tether case of Equation (11) with an additional factor of two. This
further increases the natural frequency and stiffness of the transla-
tional response. The rotational equation of motion is linearized to
the form:

θ̈ ≈ −2rks
I

ˆ
(xe(Q)− xo) cosφ+ 2r(1− cos2 φ)

˜
θ (19)

This linearized rotational equation of motion decouples from the
translational motion and is a stable undamped harmonic oscilla-
tor equation. Unlike the single-tether rotational motion of Equa-
tion (13) this linearization features dependance on the tether at-
tachment angle φ. Figure 13 plots the rotational natural frequency
of Equation (19) as a function this tether attachment angle and po-
tential. This figure shows how stiffening is significantly increased
with the tether angle φ. This geometric stiffening is a consequence
of the larger moment arm acting on the node. The data in this fig-
ure is generated with nodes of 0.5 m radius separated by 2.5 m. It
should be noted that with zero tether separation (φ = 0) the double-
tether rotational natural frequency is equivalent to the single-tether
system shown in Figure 7.
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Figure 13: Natural frequency of linearized rotational motion of
double-tether model

Figure 7 showed for the single-tether case that increasing charge
increases the natural frequency of the rotational response. This also
occurs with the natural frequency of the double-tether shown in
Figure 13, however has less contribution than the geometric stiff-
ening. Utilizing a double-tether will increase the ability to resist
nodal angular rotations.

VII.B Double Tether System Response to Angular Rate
Errors

In this simulation case the double-tether response to angular rate
errors is compared to that of a single-tether configuration. A two-
node configuration with a separation of 2.5 m is analyzed. The
simulation is performed using the full 3D and non-linear coupled
equations of motion. The parameters of the symmetric simulation
are shown in Table 5.

Table 5: Double Tether Simulation Parameters

Parameter Value Units

Initial attitude rate errors
“
θ̇(0)

”
5,10 deg/min

Spacecraft node radius (r) 0.5 m
Spacecraft separation (xo) 2.5 m
Tether attachment point angle (φ) 20 deg

Using two initial angular rate errors for each tethered system the
resulting maximum attitude angle reached is shown in Figure 14
on a y-axis log plot. There is a noticeable difference in the systems
responses. The double-tethered system performing better at reduc-
ing maximum rotation due to initial rate errors. This indicates that
the resulting moment arm from the double-tether configuration sig-
nificantly increases the system’s response to angular rates. While
the double-tether system has the advantage of producing a stiffer
system, it is also prone to having a tether go slack as shown by
the dashed lines in the figure. The tether is only marginally and
momentarily slack at times of closest approach between the nodes.
Once again, during these times the tether is slack less than 1 mm
over its entire length. In contrast, during this simulation case the
single-tether system remains taut for any charge above 10 kV, at
a cost of reaching higher attitude angles. Another consideration
with the double-tether TCS is that the nodes are inherently closer
to wrap up due to the tether connection angle. A comparison be-
tween the resistance to absolute angular rotation versus the close
proximity to wrap up must be considered.
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Figure 14: Double-tether vs single-tether attitude response to
angular rate errors

The results of this simple double-tether simulation indicate that
a TCS system can be significantly stiffened beyond an equivalent
single-tether system. This offers enhanced capabilities to resist
torque disturbances or deployment motions. An additional advan-
tage is the safety provided by having two tethers between nodes. In
case one tether is severed, the remaining tether would still maintain
the TCS shape, although with reduced accuracy.

VIII Conclusions and Future Work
The novel TCS concept offers unique on-orbit advantages. Large

space structures are envisioned that can be launched in a low-mass
and compact configuration and deployed and resized once on-orbit.
To advance the concept, this study analyzes the coupling between
relative translational and rotational motions of the tethered space-
craft nodes. A baseline two-node TCS system is the focus of this
study.

Numerical results obtained with the full three dimensional non-
linear equations of motion indicate that external perturbations such
as SRP or differential gravity have minimal influence on the short-
term dynamics. For obtainable kilo-volt level potentials the TCS
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Figure 12: Two-node system with double-tether

system will sufficiently inflate and resist deformation from external
forces. This is shown firstly through simplified, linearized models,
that give an analytical expression for the natural frequency of iso-
lated translation and rotational motions. The natural frequency is
an indication of the stiffness of the system and the rotational mo-
tions offer lower values and are the focus of this study. The TCS
rotational response to initial angular rate errors is also quantified
and shown to significantly improve with the use of an additional
tether.

This versatility of the numerical simulation and ability to exam-
ine any generalN -node TCS system will be advantageous in future
TCS studies where more complex networking is considered. This
two-node study considers a worst-case situation where the tether
network provides minimal rotational stiffening. Multi-tether con-
nections to a node, such as with a three-node triangular system, will
provide increased rotational stiffness. This concept is illustrated in
this study by investigating the multi-tether connection among two
nodes. Future studies will investigate three dimensional TCS con-
figurations as well as incorporate low-tension behavior models.
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Appendix - Three Dimensional TCS Modeling
The simplified 2DOF TCS models offer insight into transla-

tional and rotational motion. Shown here is the development of the
full three dimensional non-linear equations of motion that can ac-
commodate general TCS spacecraft configurations. The algorithm
simulates the TCS in deep space, or under the gravitational attrac-
tion of orbit and incorporates external disturbance forces, such as
SRP. Although not performed in this study, the intent of this algo-
rithm is to fully explore the capabilities and operating regimes of
the TCS along with a study of its dynamic behavior under realistic
disturbance environments. The algorithm can perform TCS relative
motion studies accommodating any number of nodes and tethers in
any initial orbit configuration.

The location of each spacecraft node, Ri, is defined in an Earth
centered inertial (ECI) frame. At epoch, the body frame alignment
and nominal separation distances of each node is defined. The
equations are shown here for nodes connected with just a single-
tether that has a fixed attachment point on the spherical surfaces. It
is not necessary to have a tether connecting each node as a tether
connection matrix, [Kij ], defines which nodes are connected. The
tethers are modeled as linear springs and can stretch from either
the nodal relative motion or from attitude rotations as shown in
Figure 15. The resulting tensile force acting on node i from the
tether connected to node j is:

Tij = ksδLij τ̂ij (20)

where τij is the vector defining the tether connecting node i to j.
When the tether length is shorter than desired, the tether goes slack
and there is no force acting on the corresponding nodes.

Node 1 Node 2

L12
δL12

x12

p12

p21

τ 12

Figure 15: Two-node example of attitude change and increased
tether length

VIII.A Translational Equation of Motion
Using the Coulomb force of Equation (1), tensile force and the

gravitational force, the resulting equations of motion of each node
is calculated using:

R̈i = − µ

|Ri|2
R̂i +

NX
j=1

Kij
Tij
mi

+

NX
j=1

kcqiqj(−x̂ij)
mix2

ij

e−xij/λd

„
1 +

xij
λd

«
+ FSRP i 6= j (21)

where µ = 3.986× 1014 m3s−2 is the gravitational coefficient for
Earth, mi is the spacecraft node mass, N is the total number of
nodes in the TCS model. Kij is a scalar based on the adjacency
matrix which is 0 if no tethers connected or 1 if any tethers are
connected. Note that these charges do not influence the relative
motion. They simply provide an inflating force, relative to the sys-
tems center of mass, that increases the tether tensions. In addition,
the Coulomb force is calculated based on a point charge approx-
imation, even though the nodes have a distributed surface charge.
The motion of each node is propagated in time using a variable step
Runge-Kutta algorithm.

VIII.B Nodal Rotational Equation of Motion
The attitude of each spacecraft node is also propagated by com-

puting the torque acting on the node from each tether:

BΓi =

NX
j=1

“
Kij
Bpij × [BI]iITij

”
, i 6= j (22)

Where pij is the body fixed vector that defines the location of the
tether connection point on node i that connects to node j and [BI]i
is the direction cosine matrix of the attitude of node i relative to the
inertial frame. The angular acceleration of each node is defined in
the body frame with Euler’s rotational equations of motion:32

[I]ω̇i = −ωi × ([I]ωi) + Γi (23)

The attitude of each node is represented with the modified Ro-
drigues parameters (MRP) which are integrated using the differ-
ential kinematic equation:

σ̇i =
1

4

h
(1− σ2

i )[I3x3] + 2[σ̃]i + 2σiσ
T
i

i
ωi (24)
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The MRP set will go singular with a rotation of ±360◦. To ensure
a non-singular description, the MRP description is switched to the
shadow set whenever |σ| > 1.32
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