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a b s t r a c t 

A coupled ferrohydrodynamic interface-tracking model is introduced for the analysis of 

the equilibrium, linear stability, and modal response of magnetic liquid interfaces in sur- 

face tension-dominated axisymmetric multiphase flows. The incompressible viscous mass 

and momentum balances are solved together with the steady-state Maxwell equations by 

following a monolithic solution scheme. The method is fully implicit, allowing to reach a 

steady-state solution in a single time step. In addition, the time-dependent evolution of 

the interface subject to variable external inputs can also be simulated. The geometry is 

particularized for the study of the free surface oscillations of a ferrofluid in a cylindrical 

tank under the influence of an inhomogeneous magnetic field in microgravity. Five regions 

are used to discretize the simulation domain, which combines analytical and elliptic map- 

pings. Magnetic-field-free results are validated by the literature. The modal response of the 

fluid-magnetic system agrees with measurements from the European Space Agency (ESA) 

Drop Your Thesis! 2017 The Ferros experiment and improves previous quasi-analytical esti- 

mations. This new framework of analysis can be applied to the study of a wide variety of 

microfluidic and low-gravity fluid systems. 

© 2022 Elsevier Inc. All rights reserved. 

 

1. Introduction 

Several systems in physics and engineering employ highly susceptible magnetic liquids to touchlessly control the behav- 

ior of multiphase flows. This intersection is particularly prolific in milli/microfluidic and space applications, where surface 

tension overcomes gravity and only a limited range of actuation mechanisms is available. Magnetic liquids have been em- 

ployed in bubble and droplet studies [1–3] , T-junctions [4–6] , mass transfer [7–11] , thermomagnetic convection [12,13] ,

micropropulsion systems [14,15] , or energy harvesters [16–18] , among others. These works are characterized by the strong 

coupling between fluid and magnetic problems, that forces their simultaneous (or, at least, iterative) solution. However, 

the relative immaturity of ferrohydrodynamic simulation frameworks and a certain misunderstanding on how such systems 

should be treated commonly leads to inappropriate modeling approaches, as discussed in Ref. [3] . 

Recent works have addressed the numerical simulation of coupled ferrohydrodynamic problems. A classification of these 

efforts may consider two key characteristics: solution procedure and multiphase flow modeling approach. In the first cate- 

gory, and excluding implementations where the fluid-magnetic coupling is ignored or heavily simplified, partitioned schemes 
∗ Corresponding author. 
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that iteratively solve the fluid-magnetic equations seems predominant [19–25] . In contrast, monolithic approaches solve all 

equations simultaneously within a global nonlinear system and have also been implemented using the finite elements 

method [26–28] . Although monolithic approaches deal with the inversion of a large Jacobian, require more memory, and 

renounce to the modularity of partitioned schemes, they are also more robust and generally more computationally efficient 

than iterative implementations, particularly for complex multiphysics problems [29–32] . From the multiphase flow modeling 

perspective, the Lattice Boltzmann [23,25,33,34] , level set [24] , phase field [35] , and volume of fluid methods [20,28] , or a

combination of the previous [21] have been employed. The last three can be categorized as interface-capturing, meaning 

that an auxiliary function is introduced in a fixed spatial domain to determine the location of the interface. Although their

versatility has made them extremely popular in the multiphase flow community, interface-capturing methods face signifi- 

cant challenges when dealing with the formulation and implementation of surface tension [36] . This includes the mitigation 

of numerical diffusion at the interface, the computation of surface normals and curvatures, or the imposition of a discrete 

balance of surface tension and pressure gradient terms [37] . In contrast, interface-tracking methods employ meshes that 

follow the fluid surface by advecting with the flow a discrete set of points distributed along the interface. This approach

avoids numerical diffusion, provides a seamless implementation of surface tension forces, and leads to simpler boundary 

conditions, which makes it particularly appropriate for capillary and low-gravity fluid problems. However, the transforma- 

tion employed to transition from the uniform computational domain to the deformed mesh complicates the final expression 

of the governing equations and limits their applicability to relatively simple geometries [38] . 

Interface-tracking methods for coupled, capillary ferrohydrodynamic systems remain, to the best knowledge of the au- 

thors, completely unexplored. Their development would be highly desirable for the study of a wide variety of fundamental 

and applied problems, ranging from bubble and droplet studies to microfluidic and low-gravity systems. This paper extends 

the interface-tracking framework introduced in Ref. [38] to address for the first time the equilibrium, linear stability, modal 

response, and time-dependent deformation of ferrohydrodynamic capillary liquid interfaces. A robust and numerically stable 

implementation is achieved by employing a fully implicit monolithic approach that solves both problems with essentially 

the same code. Its implicit nature allows using arbitrarily large time steps on each Newton-Raphson iteration. Symbolic 

functions and collocation matrices are employed to evaluate the Jacobian of the discretized system of equations and take 

advantage of the sparsity of the resulting matrix, leading to significant gains in flexibility and computational efficiency with 

respect to previous approaches, as demonstrated in Ref. [38] . 

One of the unique capabilities of the model is its ability to easily compute the modal shapes and frequencies of ferro-

hydrodynamic interfaces. The validation of this feature is complicated by the fact that previous experiments were mostly 

concerned with the equilibrium and dynamic evolution of ferrofluid interfaces rather than their modal response. An excep- 

tion is the European Space Agency (ESA) Drop Your Thesis! 2017 The Ferros project, that studied the axisymmetric sloshing 

of water-based ferrofluids when subjected to an inhomogeneous magnetic field in microgravity [39–41] . Although the ax- 

isymmetric and lateral sloshing of ferrofluids were also studied during the United Nations Office for Outer Space Affairs 

(UNOOSA) DropTES 2019 experiment StELIUM [42–44] , statistical significance was not achieved for the axisymmetric modes 

[45] . Therefore, the configuration of the Drop Your Thesis! 2017 experiment is adopted in this work. 

From a technical perspective, the ESA Drop Your Thesis! 2017 experiment The Ferros was conceived to test new mag- 

netic propellant management devices for in-space propulsion [41] . Propellant sloshing is one of the paramount low-gravity 

fluid dynamic problems due to its inherent complexity and impact on the operation of space vehicles [46–48] . In an at-

tempt to address this problem, Papell invented ferrofluids, defined as colloidal suspensions of magnetic nanoparticles in a 

carrier liquid, in the early 1960s [49] . Although the idea of using magnetic liquids for slosh control remained dormant for

decades, it has been revisited several times since the late 1990s [50–59] . A quasi-analytical model was recently introduced

to study the equilibrium and modal response of ferrofluid interfaces in microgravity [22] . The model has been shown to

offer an excellent estimation of the lateral modal frequencies in the aforementioned UNOOSA DropTES 2019 campaign [45] , 

but over-predicted the axisymmetric sloshing frequencies of the ESA Drop Your Thesis! 2017 experiment [41] . An additional 

(technical) motivation for this work is thus to shed light on this disagreement and develop a tool that provides the equilib-

rium, global stability, modal response, and time-dependent evolution of the capillary ferrohydrodynamic interfaces that may 

find application in space propulsion. 

In this paper, the problem under study is formulated in Section 2 , the numerical method is described in Section 3 , and

numerical results are discussed and compared with the literature in Section 4 . 

2. Problem formulation 

2.1. Problem geometry 

The system under analysis, represented in Fig. 1 , consists of a partially filled cylindrical tank subject to an inhomogeneous

axisymmetric magnetic field. Such field is imposed by either a coil or a magnet. The tank has radius R , height h B , and holds

a volume V of an incompressible magnetic liquid with density ρ , specific volume ν = ρ−1 , shear coefficient of viscosity η,

and surface tension σ at temperature T . The static contact angle between the liquid and the wall is θc . The free space is

filled by a non-reactive inviscid gas at pressure p g . A vertical inertial acceleration g is also applied to the tank. 

The system is studied by means of a coupled ferrohydrodynamic model that is able to compute the (i) axisymmetric 

meniscus, (ii) global stability properties, (iii) axisymmetric oscillation modes, and (iv) time-dependent evolution of the free 
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Fig. 1. System under analysis. 

 

 

 

 

liquid surface. Although this framework of analysis can be applied to a variety problems, the experimental setup imple- 

mented for the ESA Drop Your Thesis! 2017 The Ferros project [39–41] is chosen for verification and validation. The geometry

is particularized in Section 4.1 . 

2.2. Stress tensor and force distributions 

The magnetodynamic state of an incompressible continuous medium is described by means of the viscous Maxwell stress 

tensor, given by [60–63] 

T = T p + T ν + T m 

, (1) 

where the pressure, viscous, and magnetic terms are T p = −p ∗ I, 

T ν = η
[∇ v + ( ∇ v ) T 

]
, (2b) 

T m 

= −μ0 

2 

H 

2 I + BH, (2c) 

and where 

p ∗ = p(ν, T ) + μ0 

∫ H 

0 

∂ 

∂ν
[ νM ] dH 

′ (3) 

is the composite pressure , which includes hydrostatic p(ν, T ) and magnetopolarization terms. In these expressions, B =
μ0 (H + M) , H, and M are the flux density, magnetic, and magnetization fields, μ0 is the permeability of vacuum, I = δij e i e j 
is the unit dyadic in the Cartesian e i reference system, and v is the fluid velocity. For symmetrical fluids, the magnetization

and magnetic fields are aligned and follow the relation 

M = χ vol ( H ) H, (4) 

with χvol (H) being the volume magnetic susceptibility. Alternating magnetic fields at sufficiently high frequencies or fluids 

with very large vortex viscosity values may render Eq. (4) inappropriate due to the transient misalignment between M and 

H [64] . However, as shown in Section 4.3 , this is not a concern for the problems considered in this work. 

The forces per unit volume exerted on the medium in the absence of electric fields are computed as the divergence of

the stress tensor given by Eq. (1) , resulting in [63] 

f = f p + f ν + f m 

, (5) 

with 

f p = ∇ · T p = −∇p ∗, (6a) 
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f ν = ∇ · T ν = ∇ ·
{
η
[∇ v + ( ∇ v ) T 

]}
, (6b) 

f m 

= ∇ · T m 

= μ0 M∇H = μ0 ( M · ∇ ) H. (6c) 

If the viscosity coefficient is constant, the viscous term reduces to 

f ν = η∇ 

2 v . (7) 

Surface forces appear in the gas-liquid interface as a consequence of the discontinuity in the stress tensor. Those forces 

are balanced according to the ferrohydrodynamic incompressible viscous boundary condition . Assuming a contact between a 

ferrofluid and a non-magnetic, inviscid gas, the condition is expressed in normal ( n ) and tangential ( t) components as [63] 

n : p ∗ − 2 η
∂v n 
∂x n 

+ p n − p g = 2 σH, (8a) 

t : η

(
∂v n 
∂x t 

+ 

∂v t 
∂x n 

)
= 0 , (8b) 

with n being the external normal vector, p n = μ0 M 

2 
n / 2 the magnetic normal traction , H the mean curvature of the interface, 

v n and v t the normal and tangential velocity components, and x n and x t the distances along the normal and tangential 

directions, respectively. Further details on the derivation of the magnetic system of forces can be found in the Appendix A . 

2.3. Governing equations for a magnetic, viscous, incompressible fluid 

The ferrohydrodynamic mass and momentum conservation equations that derive from the stress tensor in Eq. (1) are 

[63] 

∇ · v = 0 , (9a) 

ρ
D v 
Dt 

= ρg + f p + f ν + f m 

, (9b) 

with D denoting the material derivative, and t the time. This system of equations is subject to an appropriate set of boundary

conditions. Particular attention should be payed to those described by Eq. (8), which exhibit the fluid-magnetic coupling 

through p n . 

Applications involving unequilibrated ferrofluid solutions, for which M × H � = 0 , should also incorporate the effects re-

sulting from particle rotation. An additional term is then added to the viscous stress tensor T ν , and the angular momentum

and magnetic relaxation equations also have to be taken into account [62,63] . As previously noted, symmetrical fluids are

considered in this paper, and therefore M × H = 0 . 

The terms f p and f m 

are defined by the fields H, B , and M, which have to be computed at each time step by solving the

magnetic problem. Assuming a static magnetic configuration without surface currents and electric fields, the magnetostatic 

equations that determine such fields are [65] 

∇ · B = 0 , (10a) 

∇ × H = J e , (10b) 

where J e is the volume density of electric current. The magnetic boundary conditions are 

n · [ B ] = 0 , (11a) 

n × [ H ] = K e , (11b) 

with K e denoting the electric surface currents, and [-] the difference across the interface. Although surface currents are not 

considered in this work, they will play a relevant role in the virtual magnet substitution procedure described in Section 3.3.1 .

Therefore, the normal component of B and the tangential component of H are continuous across the interfaces. 

3. Numerical method 

The theoretical framework described in Section 2 is particularized for the cylindrical reference system { e r , e φ, e z } depicted

in Fig. 1 . The equations presented in this section are therefore the ones solved by the numerical framework. Five regions and

their corresponding interfaces conform the simulation domain, as shown in Fig. 2 : A (liquid), B (air inside the container),

C (air over the container), D (air below the container), and E (surrounding air). The subdivision between regions B and C

is not strictly necessary; however, adding a buffer area on top of B allows expanding the simulation domain while easily

controlling the mesh density. The magnetic source (e.g. a coil or magnet) is included in E as a subdomain E c . 
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Fig. 2. Numerical simulation domain with mapped regions and interfaces. The dashed rectangle denotes the virtual coil domain. 

 

 

 

 

3.1. Axisymmetric Navier-Stokes equations 

The mass and momentum conservation equations defined by Eq. (9) should be expressed in the cylindrical reference 

system after considering the axisymmetry of the problem. This results in 

∂(ru ) 

∂r 
+ 

∂(rw ) 

∂z 
= 0 , (12a) 

ρ

(
∂u 

∂t 
+ u 

∂u 

∂r 
+ w 

∂u 

∂z 

)
= −∂ p ∗

∂r 
+ η

(
∂ 2 u 

∂r 2 
+ 

∂ ( u/r ) 

∂r 
+ 

∂ 2 u 

∂z 2 

)
+ μ0 

(
M r 

∂H r 

∂r 
+ M z 

∂H r 

∂z 

)
, (12b) 

ρ

(
∂w 

∂t 
+ u 

∂w 

∂r 
+ w 

∂w 

∂z 

)
= ρg − ∂ p ∗

∂z 
+ η

(
∂ 2 w 

∂r 2 
+ 

1 

r 

∂w 

∂r 
+ 

∂ 2 w 

∂z 2 

)
+ μ0 

(
M r 

∂H z 

∂r 
+ M z 

∂H z 

∂z 

)
, (12c) 

where r ( z) is the radial (axial) coordinate, and u ( w ) is the radial (axial) velocity component. The axisymmetry of the 

magnetic problem is taken into account in the previous expressions, so that J e has only azimuthal components, and M and

H lack from them, resulting in H = H r e r + H z e z , and M = M r e r + M z e z . For practical reasons, vertically magnetized magnets

will be considered. 

3.2. Magnetic potentials for axisymmetric problem 

Equations (10a) and (10b) are rewritten as a function of H, resulting in 

∇ · H = −∇ · M, (13a) 

∇ × H = J e . (13b) 

Therefore, H has scalar sources in the magnetized regions and vector sources in the coil. According to Helmholtz’s theorem, 

H can be expressed in terms of scalar and vector magnetic potentials. Taking into account the axisymmetry of the problem, 

H r = −1 

r 

∂�

∂z 
− ∂�

∂r 
, H z = 

1 

r 

∂�

∂r 
− ∂�

∂z 
, (14) 

where � is the scalar potential generated by scalar sources and the stream-like function � = rA φ(r, z) /μ0 is directly related

to the azimuthal component A φ(r, z) of the vector magnetic potential created by the electric current. The magnetic problem
840 
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is then formulated and solved in terms of � and � after noting that 

∇ · H = −
[
∂ 2 �

∂z 2 
+ 

∂ 2 �

∂r 2 
+ 

1 

r 

∂�

∂r 

]
, (15) 

∇ × H = −1 

r 

[
∂ 2 �

∂r 2 
+ 

∂ 2 �

∂z 2 
− 1 

r 

∂�

∂r 

]
e φ. (16) 

In the domain A, M = χvol (H) H and Eq. (13a) becomes 

∂ 2 �

∂z 2 
+ 

∂ 2 �

∂r 2 
+ 

1 

r 

∂�

∂r 
= 

1 

1 + χ vol (H) 

(
H r 

∂χ vol 

∂r 
+ H z 

∂χ vol 

∂z 

)
, (17) 

where χvol also depends on � and � through the magnetization law 

χ vol (H) = 

2 a M 

πH 

arctan (c M 

H) + 

2 b M 

πH 

arctan (d M 

H) + e M 

, (18) 

with a M 

, b M 

, c M 

, d M 

, and e M 

being a set of fitting parameters [41] . For domains B-E, Eq. (13a) is simplified to ∇ · H = 0 due

to the absence of inhomogeneous magnetization fields. It should be noted, however, that magnets may be considered in the 

subdomain E c . When such subdomain is occupied by a coil, 

J e = 

NI 

S c 
e φ, (19) 

with N being the number of wire turns, I the current flowing through each of them, and S c the cross section of the coil.

Consequently, Eq. (13b) adopts the form 

−1 

r 

[
∂ 2 �

∂r 2 
+ 

∂ 2 �

∂z 2 
− 1 

r 

∂�

∂r 

]
= 

NI 

S c 
. (20) 

For domains A–D (and E, when E c is occupied by a magnet), J e = 0 , and the previous expression simplifies to ∇ × H = 0 . If

a magnet with uniform, vertical magnetization field is considered in E c , the condition M = M m 

e z is imposed at such region

and the stream-like function has trivial solution � = 0 . 

3.3. Boundary conditions 

An axisymmetric boundary condition is applied at r = 0 for both fluid and magnetic problems, while the wall-liquid

interaction is described by the non-penetration and no-slip boundary conditions. This results in 

3 : u = 0 , 
∂w 

∂r 
= 0 , (21a) 

11 : u = w = 0 , (21b) 

14 : u = w = 0 . (21c) 

The interfacial conditions described by Eq. (8) are particularized at the free fluid surface 15 by following a parametriza-

tion of the form z in = G (s, t) and r in = F (s, t) , resulting in the normal balance 

p ∗ + p n − p 0 = 

σ

F 

(
∂F 

∂s 

)−1 
∂ 

∂s 

⎡ 

⎣ 

F ∂G 
∂s √ (

∂F 
∂s 

)2 + 

(
∂G 
∂s 

)2 

⎤ 

⎦ + 2 η
∂u 
∂r 

(
∂G 
∂s 

)2 + 

∂w 

∂z 

(
∂F 
∂s 

)2 −
(

∂w 

∂r 
+ 

∂u 
∂z 

)
∂F 
∂s 

∂G 
∂s (

∂G 
∂s 

)2 + 

(
∂F 
∂s 

)2 
, (22a) 

tangential balance [ (
∂G 
∂s 

)2 −
(

∂F 
∂s 

)2 
] (

∂w 

∂r 
+ 

∂u 
∂z 

)
+ 2 

∂F 
∂s 

∂G 
∂s 

(
∂u 
∂r 

− ∂w 

∂z 

)
(

∂F 
∂s 

)2 + 

(
∂G 
∂s 

)2 
= 0 , (22b) 

and the kinematic and geometric compatibility equations (
u − ∂F 

∂t 

)
∂G 

∂s 
−

(
w − ∂G 

∂t 

)
∂F 

∂s 
= 0 , (22c) 

∂G ∂ 2 G 

2 
+ 

∂F ∂ 2 F 
2 

= 0 , (22d) 

∂s ∂s ∂s ∂s 
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where s is the arc length coordinate along the interface. The contact angle θc is imposed at the wall ( s = 1 ) through 

∂F 

∂s 
tan 

(
π

2 

− θc 

)
+ 

∂G 

∂s 
= 0 , and F = R. (22e) 

The magnetic boundary conditions derive from Eq. (11) after considering the axisymmetry of the problem and noting 

that the liquid is magnetized. Two conditions can be imposed per block and boundary, which leads to four equations per

internal connection and two per external boundary. The internal boundary conditions are 

11 , 14 , 15 : �1 = �2 , �1 = �2 , (23a) 

H t, 1 = H t, 2 , B n, 1 = B n, 2 , (23b) 

10 , 12 , 13 : �1 = �2 , �1 = �2 , (23c) 

∂�1 

∂r 
= 

∂�2 

∂r 
, 

∂�1 

∂r 
= 

∂�2 

∂r 
, (23d) 

16 : �1 = �2 , �1 = �2 , (23e) 

∂�1 

∂z 
= 

∂�2 

∂z 
, 

∂�1 

∂z 
= 

∂�2 

∂z 
, (23f) 

where, in order to ensure the continuity of the magnetic field at 10, 12, 13 and 16, the continuity of the potentials � and

� and their derivatives across the internal boundary are imposed. The continuity of the derivative along the boundary is 

implicitly enforced by the continuity of the potential. In the fluid-air interfaces 11, 14, and 15, H t and B n are expressed as

a function of the potentials and the normal and tangent vectors, and the analytical expressions are equaled at both side of

the interface. It should be noted that the continuity of the potentials across a magnetized domain or a coil is a consequence

of the magnetic field formulation shown in Eq. (14) . The opposite would lead to a singularity (i.e. a nonphysical solution).

This also motivates the modeling of such magnetic sources as subdomains of region E, named E c , where either the source

term J e is considered in Eq. (20) (and not in the rest of the domain), or a vertical magnetization value is imposed. 

Two conditions are applied to the external contours. In the axis, 

2 − 5 : � = 0 , 
∂�

∂r 
= 0 , (24) 

which results in H r = 0 (see Eq. (14) ) and imposes a reference value for � . The potential � is truncated at the external

contours (1,6-9) by imposing its analytical solution, which can be easily found as the superposition of magnetic potentials 

induced by virtual circular loops located in the region of interest. This can be expressed as [65] 

�(r, z) | 1 , 6 −9 ≈ NI 

N i N j 

N i ∑ 

i =1 

N j ∑ 

j=1 

�i, j (r, z) | 1 , 6 −9 , (25a) 

�i, j (r, z) | 1 , 6 −9 = 

1 

πk i, j 

√ 

r i r 

[(
1 −

k 2 
i, j 

2 

)
K(k i, j ) − E(k i, j ) 

]
, (25b) 

with N being the number of turns of the actual coil, I its current intensity, k 2 
i, j 

= 4 r i r / 
[
(r i + r ) 2 + (z − z j ) 

2 
]

an intermediate

parameter, r i ( z j ) the virtual loop radius (height), N i ( N j ) the number of virtual loops in the radial (vertical) direction, and 

K(k ) ( E(k ) ) the complete elliptic integral of first (second) kind computed with Matlab’s ellipke function. The potential is

shown to converge with errors below 0.001% for N i = N j = 15 , which are adopted for the analysis. 

The sources of scalar potential � are the magnetically polarizable liquid in A and an hypothetical magnet in E c . Its value

at the external contour can be approximated by the contribution of the dipole terms of the magnet and magnetized liquid,

and so the condition 

�(r, z) | 1 , 6 −9 ≈ �dip (r, z) | 1 , 6 −9 (26a) 

is imposed, with 

�dip (r, z) | 1 , 6 −9 = 

N k ∑ 

k =1 

m k 

4 π

(z − z k ) 

[ r 2 + (z − z k ) 2 ] 3 / 2 

∣∣∣
1 , 6 −9 

, (26b) 
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where the N k magnetized domains are characterized by the dipole moments m k = m k e z located at r k = z k e z . The dipole

associated with the magnet can be calculated beforehand, but the position and magnitude of the one deriving from the 

magnetized liquid needs to be computed by integrating M in the domain A. Although this Dirichlet boundary condition 

exhibits excellent numerical stability properties, a Neumann condition with higher spatial convergence rate may be imposed 

instead by considering the radial and axial derivatives of �. The unicity of the solution should then be imposed by setting

the value of � in an arbitrary point of the external boundary. However, this implies that different conditions are applied

along the same line, leading to slight numerical errors in the potential field. 

It should be noted that, if the system only includes magnets and magnetized liquids, the boundary condition given 

by Eq. (25a) becomes unnecessary, since �1 , 6 −9 = 0 . Similarly, it is possible to impose �1 , 6 −9 ≈ 0 when a weakly magne-

tized liquid and a coil are considered. For very large simulation domains the more practical magnetic insulation condition 

�1 , 6 −9 = �1 , 6 −9 = 0 may be imposed. 

3.3.1. � − � uncoupling and virtual magnet substitution 

From the structure of Eqs. (17) and (20) and the magnetic boundary conditions in Eqs. (25a) and (26a) , the uncoupling

between � and � becomes evident. Both fields are computed separately, and � does not depend on the deformation 

of the ferrofluid volume in the domain A. In other words, � could be calculated at the beginning of the simulation and

then implemented as an invariant source term in substitution of Eq. (13b) . This is advantageous from the computational

perspective, as the number of variables of the system is reduced and specific domains or subdomains are no longer needed.

The only purpose of the boundary domains B-E would then be to ensure the convergence of � to the true solution by

imposing the dipole approximation given by Eq. (26b) sufficiently far away from the ferrofluid. However, this approach also 

limits the scope and flexibility of the simulation framework, particularly for 3D problems without analytical solutions for � . 

For this reason, both magnetic potentials are solved numerically in this work. 

Although Eq. (25a) provides an exact boundary condition for any axisymmetric current distribution, the � field induced 

by magnetized media has to converge to the dipole approximation given by Eq. (26a) . Consequently, if E c is occupied by a

magnet, larger simulation domains are required to guarantee convergence. It would be desirable, from a computational per- 

spective, to have an exact boundary condition also in that case, limiting the dipole approximation to the magnetized region 

A. To overcome this issue, it should be noted that the B m 

flux produced by a magnet can be described by two equivalent

magnetic virtual currents: (i) a volume term J m 

= ∇ × M m 

distributed in the magnet volume, where M m 

is the magnetiza-

tion field, and (ii) a surface term K m 

= n × [ M m 

] , with n denoting the normal to the interface and [ M m 

] the magnetization

jump across it. 

For a vertically magnetized cylindrical magnet with uniform magnetization M m 

= M m 

e z , the equivalence results in a sys-

tem of electrical currents with a volume density term J e = 0 in E c and a surface density term K e = M m 

e φ at the lateral wall.

If the magnet has a height h , the equivalent electrical system can be modeled as a homogeneous distribution of N j → ∞
circular loops in the lateral wall with current M m 

h/N j . The magnetic field induced by this equivalent system is H e = (B e /μ0 ) ,

with B e being the magnetic flux produced by the circular loops, which is identical to B m 

. Because the magnet induces a field

H m 

= (B m 

/μ0 ) − M m 

inside the magnetized volume, and H m 

= (B m 

/μ0 ) outside, H e is identical to H m 

outside E c . In other

words, the virtual magnet substitution procedure provides an exact analytical solution outside the magnet volume, leading 

to important computational advantages and faster model development. 

3.4. Discretization of the simulation domain 

The numerical procedure used in this study is a variation of the interface-tracking method developed by Herrada and 

Montanero for multiphase flows [38] . As shown in Fig. 2 , the simulation domain is divided into five blocks that implement

different discretization methods. 

The blocks A, B, C, and D are mapped onto the square computational domains A: [0 ≤ s ≤ 1] × [0 ≤ ηA ≤ 1] , B: [0 ≤ s ≤
1] × [0 ≤ ηB ≤ 1] , C: [0 ≤ s ≤ 1] × [0 ≤ ηC ≤ 1] and D: [0 ≤ s ≤ 1] × [0 ≤ ηD ≤ 1] by means of the analytical mappings 

r A = F (s, t) , z A = G (s, t) ηA , (27a) 

r B = F (s, t) , z B = G (s, t) + [ h BC − G (s, t)] ηB , (27b)

r C = F (s, t) , z C = h BC + (h top − h BC ) ηC , (27c) 

r D = F (s, t) , z D = h bot (1 − ηD ) , (27d) 

where h top = 0 . 15 m ( h bot = −0 . 1 m) denotes the top (bottom) height of the domain, and h B = 0 . 1 m defines the transition

height between B and C. 

The domain E is built following the same approach, but in addition to concentrating points next to the domains A-D

and adapting to their deformation, this block also has the functionality of defining the subdomain E c and concentrating 

points close to its boundaries. In an early version of this work, these requirements were addressed by means of a meshfree
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discretization of domains D and E. However, that approach resulted in the ill-conditioning of the nodes that interfaced with 

blocks A-C, an excessive numerical error, and reduced tolerance to fluid deformation [66] . In the present framework, instead,

nonsingular transformations of the form 

r E = F E (s E ) , z E = G E (s E , ηE , t) , (28) 

mapped onto the square computational domain [0 ≤ s E ≤ 1] × [0 ≤ ηE ≤ 1] are implemented in E. The radial and vertical

position of the points are fixed with the exception of the subdomain between A-D and E c , which follows the quasi-elliptical

mapping [67] 

F E = F ∗E , (29a) 

g 22 
∂ 2 G E 

∂s 2 
E 

+ g 11 
∂ 2 G E 

∂η2 
E 

− 2 g 12 
∂ 2 G E 

∂ s E ∂ ηE 

= 0 , (29b) 

with boundary conditions 

8 ′ : ∂G E 

∂s 
= 0 , (30a) 

10 − 13 : G E = G A −D , (30b) 

7 : G E = h top , (30c) 

9 : G E = h bot , (30d) 

where 8’ denotes the line parallel to 8 that touches the left wall of E c , F 
∗

E 
is an imposed radial distribution, and the coeffi-

cients take the form 

g 11 = 

(
∂G E 

∂s E 

)2 

+ 

(
∂F E 
∂s E 

)2 

, (31a) 

g 22 = 

(
∂G E 

∂ηE 

)2 

+ 

(
∂F E 
∂ηE 

)2 

, (31b) 

g 12 = 

∂G E 

∂ηE 

∂G E 

∂s E 
+ 

∂F E 
∂ηE 

∂F E 
∂s E 

. (31c) 

Because the boundaries with A-D and the rest of E are fixed, this subdomain adopts the role of a sliding mesh, ensuring the

connectivity between the magnetic source and the liquid and proper adaptation to fluid deformation. 

All the derivatives appearing in the governing equations are expressed in terms of s , η, and t . Then, the resulting equa-

tions are discretized in the s direction using fourth-order finite differences with n s and n s E stretched points. In the η direc-

tion, fourth-order finite differences are also employed with n ηA 
, n ηB 

, n ηC 
, n ηD 

, and n ηE 
stretched points. This discretization

strategy gives rise to meshes that automatically adapt to any variation of the free liquid interface. The results presented in

this work are obtained using n s = 101 , n s E = 99 , n ηA 
= 101 , n ηB 

= 41 , n ηC 
= 21 , n ηD 

= 61 , and n ηE 
= 221 . The employment of

fourth-order finite differences over a second-order approach leads to lower truncation errors with marginal implementation 

efforts and a reasonable computational penalty. Most importantly, it allows reducing the number of points in the simulation 

domain. Further details on the finite differences implementation can be found in the Appendix B . 

To compute the steady-state solution, all the equations of the system are solved together in a monolithic scheme with a

Newton-Raphson approach. Second-order backward differences are used to compute the time derivatives (see Appendix B ), 

and since the method is fully implicit, the time step is chosen to be sufficiently large to ensure that a steady state is reached

in a single iteration. This value is set to 100 s. If the time-dependent interface deformation is explored instead, a time step

of 0.01 s is employed to guarantee convergence to the solution (see Section 4.5 ). One of the main characteristics of this

procedure is that the elements of the Jacobian matrix are obtained by combining analytical functions and the collocation 

matrices of all subdomains. This allows taking advantage of the sparsity of the resulting matrix to reduce the computational 

time on each Newton-Raphson iteration, which converges when the norm of the state error vector dx is smaller than 10 -3 . It

should be noted that the norm of the solution is at least of order 1 [38] , and hence the 10 -3 threshold ensures convergence,

as observed in the results. On the other hand, the Newton-Raphson method exhibits quadratic convergence rates close to 

the final solution, which speeds up the computation 

As a reference, the computation of a single Newton-Raphson iteration using an Intel Core i7-7820HQ CPU at 2.90 GHz 

with 32 Gb RAM takes between 60 and 120 s with the base mesh employed in this work. A single time step usually takes

between 3 and 15 iterations to converge. The non-magnetic interface tracking method on which this work is based has 

already been shown to overcome existing models in terms of computational efficiency in Ref. [38] . 
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Fig. 3. Eigenfrequencies spectrum for I = 10 A. The first three dynamic modes are labeled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Sloshing modes and free surface stability 

The numerical procedure employed to compute the meniscus and time-dependent interface deformation is essentially 

the same that is used to determine the linear modes of the system [38] . The time derivatives are computed assuming that

the time-dependent perturbation of any variable κ(r, z, t) is of the form 

κ(r, z, t) = κb (r, z, t) + εδκ(r, z, t) e −iωt (ε � 1) , (32) 

with κb (r, z, t) denoting the steady-state solution, ε a small coefficient of perturbation, δκ(r, z, t) the spatial dependence of

the eigenmode for that variable, and ω = Re (ω) + i Im (ω) the eigenfrequency. The spatial dependence of the eigenmode is

the solution of the generalized eigenvalue problem 

J 

(p,q ) 
b 

δκ(q ) = iωQ 

(p) 
b 

, (33) 

where J 

(p,q ) 
b 

is the Jacobian of the system evaluated at the steady-state solution κ(q ) 
b 

, and Q 

(p,q ) 
b 

accounts for the time

dependence of the problem (i.e. contains the time-dependent terms of the Jacobian). The resulting generalized eigenvalue 

problem is solved using the MATLAB EIGS routine. An example of the eigenfrequencies obtained with this method for I = 10

A is shown in Fig. 3 . A free-edge condition with fixed contact angle is assumed in this process (i.e. the vertex A-B-E can move

freely in the vertical direction, but keeping a constant θc ). However, different implementations may consider a stuck-edge 

approach or more complex hysteresis mechanisms [22] . 

The dominant eigenmode is related to the largest growth factor Im (ω) . If such growth factor is negative, the damping

ratio of the mode can be computed as ζ = −Im (ω ) / | ω | , with | ω | being the norm of the eigenvalue. If Im (ω) is positive, the

meniscus becomes asymptotically unstable. This result is of particular importance for low-gravity magnetic liquid positioning 

applications, as it can be used to size the magnetic actuators of the system [68] . Further details on the computation of the

eigenfrequencies and eigenmodes of the system can be found in Ref. [38] . 

4. Numerical results 

4.1. Case of analysis 

The ESA Drop Your Thesis! 2017 experiment The Ferros [41] , that studied the axisymmetric oscillations of a ferrofluid 

solution in microgravity, is taken as a baseline for the analysis. The experiment is particularly well suited for the validation

of the numerical framework introduced in this work because it (i) reports the first two axisymmetric modal frequencies 

of a continuous interface, (ii) exposes the ferrofluid to strong surface tension forces, and (iii) employs an inhomogeneous 

magnetic field. These three conditions conform the most general case of capillary ferrohydrodynamic flow and, to the best 

knowledge of the authors, are not present in any other published experiment. 

The experimental setup, represented in Fig. 4 , is composed of a mobile and a fixed structure. The former slides over the

latter by means of two linear actuators, and holds two identical assemblies with equivalent experiments separated 368 mm. 

Each assembly includes a cylindrical vessel similar to the one represented in Fig. 1 that holds the liquid while a N = 200

turns copper coil with 94.25 mm mean radius imposes a static magnetic field. An axisymmetric free surface oscillation is 

first induced in microgravity by ZARM’s drop tower catapult, that launches the experiment from the bottom of the facility, 

and then by a percussion mechanism that displaces the mobile structure vertically along the rails following a sinusoidal 

profile in the middle of the flight. The oscillations of the center of the fluid surface are recorded by a visualization system

located on top of each container. The setup was launched five times at ZARM’s drop tower in November 2017 with varying

current intensities. The catapult mode produces 9.3 s of microgravity conditions with a maximum residual of 10 -5 ms -2 

Further details on ZARM’s drop tower can be found in Ref. [69] . 

Both transparent liquid tanks have an inner diameter of 11 cm, a height of 20 cm, and are filled up to 5 cm with 475 ml

of a 1:10 water solution of the commercial Ferrotec EMG-700 ferrofluid. The properties of the solution in the containers, 

that employ 10 nm particles, are reported in Table 1 . 
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Fig. 4. From left to right, ZARM’s drop tower, drop capsule, and setup of the ESA Drop Your Thesis! 2017 The Ferros experiment [41] . The setup has a mobile 

structure (red labels) with two identical assemblies that include (a) cylindrical ferrofluid containers, (b) magnetic coils, and (c) detection systems. The 

structure slides over a fixed frame (blue labels) with (d) a stepper engine actuator, and (e) two linear modules, as indicated by the orange arrow. 

Table 1 

Physical properties of the ferrofluid solution employed in the ESA Drop Your Thesis! 2017 experiment with their standard 

deviations [41] . 

Tank ρ (g/ml) μ (cP) σ (mN/m) θc ( ◦) 

Upper 1.012 ± 0.008 1.445 ± 0.005 62.39 ± 1.02 67 ± 6 

Lower 1.020 ± 0.002 1.448 ± 0.007 61.7 ± 0.95 55 ± 4 

Fig. 5. Measured magnetization curve of the 1:10 vol EMG-700 ferrofluid solution. 

 

 

The magnetic properties of the ferrofluid solutions were measured after the experimental campaign with a MicroSense 

EZ-9 Vibrating Sample Magnetometer. Figure 5 represents their magnetization curve, characterized by an initial susceptibil- 

ity χ = 0 . 181 and saturation magnetization M s = 3160 ± 100 Am 

-1 . The curve is fitted with Eq. (18) , resulting in a M 

= 459 . 70

Am 

-1 , b M 

= 2747 . 15 Am 

-1 , c M 

= 5 . 73 · 10 −6 mA 

-1 , d M 

= 1 . 03 · 10 −4 mA 

-1 , and e M 

= 0 . Further technical details on the experi-

mental setup and the ESA Drop Your Thesis! 2017 experiment The Ferros can be found in Refs. [40,41] . 

4.2. Verification 

The ferrohydrodynamic simulation framework here introduced extends the capillary model presented in Ref. [38] by 

considering the magnetic interaction. After verifying that the fluid-dynamic results in the absence of magnetic fields are 

consistent with previous works, the verification and validation processes focus on the magnetic modules. 

4.2.1. Field-free solution 

The dynamic response predicted by the interface-tracking framework on which this work is based has already been 

validated with experiments on liquid bridges at the International Space Station [38] . For completeness, however, an extended 

verification is here presented for the axisymmetric liquid sloshing problem. The dimensionless variables 

Bo = 

ρgR 

2 

σ
, �2 

1 = 

ρR 

3 [ Re (ω 1 )] 2 

σ
, Oh 

2 = 

η2 

ρσR 

, 
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Fig. 6. Real fundamental axisymmetric frequency as a function of the contact angle and gravity level compared with analytical results from Yeh [70] . 

Fig. 7. Numerical results for the dimensionless frequency as a function of the Ohnesorge number and contact angle compared with envelope data from 

Gerstmann and Dreyer [71] . 

 

 

 

 

 

 

 

 

that correspond to the Bond number, the dimensionless real fundamental frequency, and the Ohnesorge number, respec- 

tively, are employed in the validation together with the previously defined damping ratio ζ in consistency with the original 

sources of data. 

Figure 6 depicts the dimensionless real fundamental axisymmetric frequency of the tank described in Section 4.1 for a 

range of contact angles and Bond numbers. An inviscid liquid is employed to run the simulations, which are then compared

with the analytical model developed by Yeh in Ref. [70] . The results are in perfect agreement and demonstrate that the

implementation of the inviscid non-magnetic terms (in particular, surface tension) are appropriate. 

Next, the modal response of the liquid is explored for different contact angles and Ohnesorge (viscosity) levels in Fig. 7

and compared with free-edge envelope computations from Gerstmann and Dreyer [71] . Following their discussion, gray 

patches define parametric spaces where surface oscillations are observable, which are bounded by analytical approxima- 

tions for small Oh at θc = 0 ◦ ( �min 
1 = 3 ), θc = 90 ◦ ( �max 

1 
= 7 . 5 ), and transition limits of the form �1 = a + b ln ( Oh ) . The

dark and light gray areas denote the viscous damping and boundary layer-dominated regimes, respectively. The second is 

characterized by the the enlargement of the boundary layer and the increase of the frequency with the Ohnesorge number 

caused by the reduction in the effective liquid radius. The interested reader is referred to Ref. [71] for a comprehensive dis-

cussion of these effects. In the context of this section, however, the main conclusion is that numerical results are in perfect

agreement with the reference study, validating the implementation of viscous terms and no-slip boundary conditions at the 

walls of the tank. 

The dependence of the damping ratio ζ with the Ohnesorge number and contact angle is finally reported in Fig. 8 and

compared with the envelope computed by Gerstmann and Dreyer [71] . Again, the results are in perfect agreement and

reproduce the transition from linear to non-linear regimes as Oh increases. 

The previous results have been expressed in dimensionless variables for consistency with the sources of data. However, it 

is important to note that the ferrohydrodynamic model introduced in this work is dimensional. There is an inherent benefit 

in using dimensionless variables in low-gravity fluid mechanics (and, in general, capillary) problems, but this practice is far 

less beneficial in the ferrohydrodynamic framework due to the dependence of the solution on the magnitude, direction, and 

distribution of the inhomogeneous magnetic force. An excellent review of analytical low-gravity fluid mechanics methods is 

given by Myshkis and coworkers in Ref. [47] . 

4.2.2. Magnetic model 

The magnetic field H is first compared in Fig. 9 with a finite elements Comsol Multiphysics magnetic model. The model 

takes the equilibrium ferrofluid interface and, assuming the same materials, computes the magnetic field without solving 
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Fig. 8. Numerical results for the damping ratio as a function of the Ohnesorge number and contact angle compared with envelope data from Gerstmann 

and Dreyer [71] . 

 

 

 

 

 

 

the Navier-Stokes equations. Further details on its implementation can be found in the Appendix C . Both solutions are in

excellent agreement, reflecting the appropriate implementation of Eqs. (10) and (11) and their axisymmetric formulations in 

Section 3.2 . Similar levels of agreements are observed when the coil is substituted by a vertically magnetized magnet but,

as described in Section 3.3.1 , larger simulation domains are needed. 

Figure 10 compares the magnetic force density for I = 20 A with the control model in Comsol Multiphysics. The distribu-

tions are virtually identical, which verifies the implementation of the magnetic force in Eq. (6c) . The force depends on the

spatial derivatives of the magnetic field is then highly sensitive to irregularities in H and M. In the figure, however, such

irregularities are only observed in the finite elements Comsol Multiphysics model, reflecting the high stability of the fourth- 

order finite differences scheme employed in this work. The irregularities in the Comsol solution are just a consequence of 

the gradient computation step and do not reflect an underlying problem with the simulation. The implementation of the 

magnetic force term in the momentum balance is verified in Fig. 11 . According to Eq. (9b) , the steady state pressure lines

must be coincident with the constant H 

2 lines for a linearly magnetized liquid. After implementing a constant magnetic 
Fig. 9. Magnetic field comparison for I = 20 A. 
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Table 2 

Intermediate results for representative positions in domain A as a function of the applied current intensity. 

I [A] r [cm] z [cm] φ [A] ψ [A ·m] H [A/m] F m [N/m 

3 ] p ∗ [Pa] η [mPa ·s] 

10 1 1 0.52 -13.38 9612.92 32.77 1.80 1.447 

5 1 14.50 -7.64 12481.52 331.13 7.20 1.448 

5 5 9.81 11.64 8036.53 193.77 -0.78 1.446 

15 1 1 0.78 -17.11 14630.95 63.03 4.69 1.448 

5 1 21.76 -9.64 18907.84 593.66 14.64 1.449 

5 5 14.72 14.68 12076.60 385.32 -0.66 1.448 

20 1 1 1.04 -19.58 19725.66 96.22 8.09 1.449 

5 1 29.01 -10.93 25390.19 865.30 22.81 1.450 

5 5 19.62 16.69 16135.73 605.11 -0.51 1.449 

Fig. 10. Force density module comparison for I = 20 A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

susceptibility χvol = 0 . 1 , the comparison between both plots reflects the expected behavior. Here and in the rest of the

manuscript, the pressure is referred to the value at the B side of line 15. 

Finally, quantitative intermediate results are reported in Table 2 for different locations inside domain A as a function of 

the applied current intensity. The reader may find this useful as a reference for future works. 

4.2.3. Equilibrium and virtual magnet substitution 

The previous section verifies that (i) the magnetic model produces the desired magnetic field, (ii) such field results in 

the appropriate magnetic force, and (iii) the magnetic force is properly implemented in the system. The next logical step 

consists on comparing the equilibrium solution with previous models 

In the magnetic sloshing problem, the equilibrium free surface profile - or meniscus - defines the steady-state solution 

of the system. Such profile experiences very small deformations in the ESA Drop Your Thesis! 2017 - The Ferros experi-

ment, making it unsuitable for comparison, and so a different setup is chosen. The model and case of analysis introduced

in Ref. [22] are analyzed employing the virtual magnet substitution approach introduced in Section 3.3.1 . A 5 cm radius

cylindrical tank filled up to 5 cm with the ferrofluid described in Section 4.1 is exposed to the magnetic field produced

by a 28 mm radius, 3 mm height disc magnet with a 5 mm hole in its center. This magnet is located 1 mm below the

bottom of the container, and is magnetized at M m 

= 1500 kAm 

-1 along the z-direction. The resulting B field corresponds to

the one produced by an internal virtual surface current K e,i = −M m 

e φ at r = 2 . 5 mm, and an external virtual surface current

K e,e = M m 

e φ at r = 28 mm. 20 equispaced circular loops with currents of 375 A are employed on each side to compute the

� potential of this equivalent system. 

Although the assimilation of virtual magnetization currents as electric currents cannot be adopted in the computation 

of the magnetic field H inside the magnet, an exact solution is still obtained in the external domain. Indeed, the magnetic

field represented in Fig. 12 (a), obtained with the virtual magnet substitution procedure, is in excellent agreement with 

the previous quasi-analytical magnetic sloshing model [22] shown in Fig. 12 (b). In the second case, the magnetic problem

is solved by iterating with the Comsol Multiphysics magnetic model described in the Appendix C . Both solutions show

a characteristic protuberance at the center of the meniscus, which results from the tendency of the liquid to follow the

constant Bo mag (or H) lines when surface tension is weakest. Previous works have predicted and reported this behavior 

[22,72] . 
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Fig. 11. Comparison of presssure and magnetic field lines for a paramagnetic fluid with χ vol = 0 . 1 at I = 1 A. 

Fig. 12. Comparison of magnetic fields and meniscus produced by a 3 mm height, 27.5 mm external radius magnet with a central 5 mm radius hole 

located 1 mm below the container. The virtual magnet substitution method described in Section 3.3.1 is employed. 

Fig. 13. Comparison of first two fundamental modes for I = 20 A. 
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Fig. 14. First two axisymmetric natural sloshing frequencies compared with a previous quasi-analytical model [22] and experimental measurements ob- 

tained during the ESA Drop Your Thesis! 2017 campaign [41] . 

 

 

 

 

 

 

4.2.4. Modal shapes 

Figure 13 compares the shape of the first two axisymmetric modes obtained using the procedure described in 

Section 3.5 with predictions from the quasi-analytical model in Ref. [22] for I = 20 A. The plot shows the normalized modal

vertical displacement Z of the surface as a function of the non-dimensional radius r/R . An excellent overall agreement is ob-

served, but small disagreements are produced due to the inherent differences between both methods. While the procedure 

here presented is based on the numerical solution of an eigenvalue problem, the quasi-analytical solution relies on a set of

suitable primitives and admissible functions that are employed in Ritz’s method. 

4.3. Dynamic response 

As discussed in Section 4.1 , the geometry and physical properties of the ESA Drop Your Thesis! 2017 experiment The Fer-

ros [41] are subsequently adopted in the validation of the dynamic response of the model. Among the potential validation

metrics, the natural free surface oscillation frequencies arise as the easiest to measure and the most relevant for the de-

velopment of mechanical analogies [46] . Furthermore, they condense the effect of the magnetic settling force in the fluid 

system. 
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Fig. 15. Fundamental axisymmetric frequency as a function of the applied destabilizing inertial acceleration for magnetic ( I = 22 A) and non-magnetic 

( I = 0 A) cases. 

Fig. 16. Time evolution of the center of the free surface after the application of magnetic (top) and inertial (bottom) step loads in microgravity. The modal 

fits reported in Eq. (34) and Table 5 are superposed. 

 

 

 

 

 

 

 

 

 

 

 

The first two axisymmetric free surface oscillation frequencies are reported in Fig. 14 for the upper and lower containers

of the setup depicted in Fig. 4 as a function of the coils current intensity. Predictions from the numerical framework are

compared with results from a previous quasi-analytical inviscid magnetic surface oscillations model [22] and with experi- 

mental data [41] . The experimental setup has a second coil that is not modeled in the simulation domain (see Figs. 2 and

4 ), but since its contribution increases the fundamental oscillation frequency in just a 0.45%, it is considered negligible.

Two comparison metrics can be extracted from Fig. 14 : the vertical shift between curves, and their slope. The former is at-

tributed in Ref. [41] to the accumulation of errors in the non-magnetic parameters of the system. This conclusion is backed

up by (i) the large uncertainties reported in Table 1 for contact angles and surface tension coefficients, (ii) the strong depen-

dence of the natural oscillation frequencies on such parameters, explored in Fig. 6 , (iii) the linearity of the current-frequency

curve, and (iv) the field-independent experimental shift of ∼ 0 . 9 ∼0.9 rads -1 between the fundamental frequencies of upper

and lower containers. This constant shift points to the field-free frequency upon which the magnetic response is built, and 

hence to the non-magnetic parameters that determine it. It also shows that such initial uncertainty has little or no effect

on the frequency-current response of the system because both lines are practically parallel, as quantified in the next para- 

graph. This is further supported by the fact that the magnetic force is too weak to produce significant deformations on the

interface, and thus any potential surface tension or contact angle discrepancy will be unable to alter the magnetic response 

if the meniscus geometry is kept essentially frozen. 
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Fig. 17. Streamlines after the application of magnetic (5–20 A) and inertial (0.53 ms -2 ) step loads in microgravity. Successive time points reflect the first 

node (0), minimum ( T / 4 ), second node ( T / 2 ), and maximum ( 3 T / 4 ) of the displacement of the center of the surface, as indicated in Fig. 16 . 
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Table 3 

Complex fundamental axisymmetric frequencies as a function of mesh density in region A ( n s × n ηA 
) for different current inten- 

sities. 

Re( ω 1 ) [rad/s] Im( ω 1 ) [rad/s] 

91 × 91 101 × 101 111 × 111 91 × 91 101 × 101 111 × 111 

0 A 4.3179 ( + 0.0269%) 4.3168 4.3159 (-0.0216%) -0.0506 ( + 0.0046%) -0.0506 -0.0507 ( + 0.1878%) 

5 A 4.5862 ( + 0.0243%) 4.5851 4.5842 (-0.0191%) -0.0510 ( + 0.1241%) -0.0509 -0.0510 ( + 0.1013%) 

10 A 5.2454 ( + 0.0210%) 5.2443 5.2435 (-0.0157%) -0.0518 ( + 0.4098%) -0.0516 -0.0515 (-0.1069%) 

15 A 6.0486 ( + 0.0197%) 6.0474 6.0466 (-0.0139%) -0.0526 ( + 0.7670%) -0.0522 -0.0520 (-0.3681%) 

20 A 6.8627 ( + 0.0193%) 6.8614 6.8605 (-0.0132%) -0.0534 ( + 1.1809%) -0.0528 -0.0525 (-0.5821%) 

Table 4 

Complex second axisymmetric frequencies as a function of mesh density in region A ( n s × n ηA 
) for different current intensities. 

Re( ω 2 ) [rad/s] Im( ω 2 ) [rad/s] 

91 × 91 101 × 101 111 × 111 91 × 91 101 × 101 111 × 111 

0 A 10.8173 ( + 0.0518%) 10.8117 10.8074 (-0.0403%) -0.1078 ( + 2.0552%) -0.1056 -0.1043 (-1.2539%) 

5 A 10.9659 ( + 0.0509%) 10.9603 10.9560 (-0.0395%) -0.1083 ( + 2.1204%) -0.1060 -0.1046 (-1.3018%) 

10 A 11.3980 ( + 0.0499%) 11.3924 11.3880 (-0.0383%) -0.1096 ( + 2.3165%) -0.1071 -0.1056 (-1.4433%) 

15 A 12.0173 ( + 0.0498%) 12.0113 12.0068 (-0.0376%) -0.1114 ( + 2.6019%) -0.1085 -0.1067 (-1.6841%) 

20 A 12.7226 ( + 0.0506%) 12.7162 12.7115 (-0.0374%) -0.1132 ( + 2.9240%) -0.1100 -0.1079 (-1.8967%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the vertical frequency shift, the frequency-current slopes reflect the magnetic response of the system. The ex- 

perimental slope of the fundamental frequency at the upper container is 0.158 rads -1 A 

-1 with [0.138,0.178] rads -1 A 

-1 95%

confidence interval (CI), while in the lower vessel it results in 0.170 rads -1 A 

-1 with [0.121,0.219] rads -1 A 

-1 95% CI. These CIs

do not include the 0.187 rads -1 A 

-1 slope of the analytical model at the upper vessel, but include the 0.186 rads -1 A 

-1 value

of the lower tank. On the contrary, the numerical model presented in this work matches almost perfectly the experimen- 

tal slopes, with 0.161 rads -1 A 

-1 for the upper container and 0.167 rads -1 A 

-1 for the lower. As expected from the field-free

analysis presented in Fig. 6 , the non-magnetic solution ( I = 0 A) is also in excellent agreement with the quasi-analytical

model. 

The second fundamental axisymmetric modes are also reported in Fig. 14 for those cases where they are observable. The 

amplitude of the second mode is much smaller than the first, and so harder to detect. Because in some experiments the

second mode could not be recovered, the number of data points is significantly smaller. In addition, its higher oscillation 

frequency and complex shape makes it more sensitive to disturbances in the contact line. This explains the horizontal bias 

in the plots and why the experimental slopes of 0.136 rads -1 A 

-1 with [0.049, 0.222] rads -1 A 

-1 95% CI (upper container) and

0.202 rads -1 A 

-1 with [0.054, 0.349] rads -1 A 

-1 95% CI (lower container) have such wide CIs. As pointed out in Ref. [41] , this

large uncertainty effectively renders any comparison with the theoretical slopes statistically meaningless. Still, results are 

given for completeness. 

The differences between inviscid quasi-analytical [22] and numerical results cannot be explained by the effects of liq- 

uid viscosity, that accounts for just a 0.6% reduction of the real frequency component. The remaining discrepancy may be 

attributed to the differences in modal shapes shown in Fig. 13 , but there is a deeper reason that could cause it. While

Ref. [22] applies a first-order perturbation to an equilibrium solution while considering a constant magnetic environment, 

the monolithic numerical framework here introduced linearizes the full fluid-magnetic solution around the equilibrium state. 

Therefore, the magnetic terms are also linearized and contribute to the modal response. If any, this is an important reason

for choosing monolithic approaches over partitioned schemes when studying coupled ferrohydrodynamic problems. 

Recent works have also observed the increase in the imaginary component (damping) with the applied magnetic field 

[44] . However, the damping ratios measured in Ref. [41] for the ESA Drop Your Thesis! 2017 campaign are one order of

magnitude larger than in Fig. 14 . The same damping bias is observed at the UNOOSA DropTES 2019 StELIUM experiment

[44] . Because the viscosity of the ferrofluid employed in both experiments was measured with a rheometer under zero-field 

conditions, the reader may be tempted to attribute this effect to the magnetic interaction. Magnetic nanoparticles, like any 

magnetic dipole, tend to align with the magnetic field. Although the reorientation is assumed instantaneous in this work, 

this may not be true for ferrofluids with high vortex viscosity or subject to high-frequency alternating magnetic fields. Such 

liquids exhibit an apparent increase in the shear viscosity coefficient η [64] . However, the application of Shliomis’ shear 

model [73] to the problem under study results in a viscosity variation of just ∼1% at 10 6 Am 

-1 , justifying the adoption

of the symmetrical constitutive relation in Eq. (4) . The larger experimental damping may instead be caused by interfacial

effects induced by the surfactant. Similar disagreements have been reported in previous experiments with water and hex- 

adecane in Refs. [74] and [75] , suggesting a large susceptibility of the effective viscosity of low viscosity liquids to surface

contamination. 

Real and imaginary frequency components are reported in Tables 3 and 4 for different current intensities and block A 

mesh densities. It should be noted that the configuration of block A determines the density of the rest of the simulation do-
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Table 5 

Fitting parameters defined in Eq. (34) for the time evolution of the center of the free surface reported in Fig. 16 for different step loads. 

Step load a 1 [m] Im( ω 1 ) [rad/s] Re( ω 1 ) [rad/s] b 1 [-] a 2 [m] Im( ω 2 ) [rad/s] Re( ω 2 ) [rad/s] b 2 [-] k 0 [m] 

5 A 5.158 ·10 −5 -0.0532 4.576 -0.0035 2.2645 ·10 −5 -0.1180 10.916 -0.0634 0.0444 

10 A -1.1093 ·10 −3 -0.0567 5.233 -0.0181 1.2449 ·10 −4 -0.1073 11.345 -0.0611 0.0445 

15 A -5.462 ·10 −4 -0.0515 6.045 -0.0334 3.2057 ·10 −4 -0.1213 11.988 -0.0928 0.0448 

20 A -1.063 ·10 −3 -0.0543 6.843 -0.0135 -0.5423 ·10 −3 -0.1469 12.640 -0.0252 0.0451 

0.53 ms -2 -4.866 ·10 −3 -0.0553 7.428 -0.0466 -0.6506 ·10 −3 -0.1624 14.952 -0.1785 0.0487 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

main. The convergence of the base mesh ( 101 × 101 nodes) is demonstrated for real and imaginary components with errors

below 0.05% and 1.9%, respectively. Furthermore, the error decreases with increasing densities, showing that the solution is 

mesh-independent. The imaginary terms are more sensitive to the mesh density, as they depend on the discretization of 

the boundary layer at the walls of the container. This motivates, in first instance, the adoption of the non-uniform nodal

distribution in block A shown in Fig. 2 . 

4.4. Global stability 

Understanding the stability properties of capillary interfaces is essential for numerous physical systems, from liquid 

bridges [75,76] to conduit geometries [77,78] . The classical literature, motivated by the development of propellant manage- 

ment devices for space applications, has devoted significant attention to this problem since the 1960s [46,47] . In low-gravity

sloshing the stability is closely related to the concept of critical load , defined as the inertial acceleration that destabilizes a

given interface. This is an important parameter for the design of propellant tanks [79] . Although the stability problem has

been comprehensively studied since the Apollo era, its magnetic equivalent remains practically unexplored [68] . 

Figure 15 depicts the evolution of the fundamental axisymmetric frequency of the ESA Drop Your Thesis! 2017 problem as 

a function of the inertial acceleration g along the axis of the container. The transition to an unstable equilibrium regime is

characterized by the sudden change of sign and the drop to zero of the imaginary and real components, respectively. While

the non-magnetic interface breaks for a critical load of 0.1441 ms -2 , a value that is in agreement with analytical results

from Myshkis and coworkers [47] , the magnetic force stabilizes the system and pushes the limit up to 0.518 ms -2 . This

represent a 359.5% critical load increase, and exemplifies how magnetic polarization forces may be employed to enhance 

the controllability of space propellants. Greater gains should be expected for systems employing high-density permanent 

magnets, like the magnetic sloshing control device proposed in Ref. [22] . 

4.5. Time-dependent analysis 

To conclude the presentation of numerical results, Fig. 16 depicts the time-dependent vertical displacement z c of the 

center of the free surface after the application of 5, 15, and 20 A step loads in microgravity. The response of the surface

to a ∼ 0 . 53 ∼0.53 ms -2 step acceleration in the absence of magnetic fields is shown for comparison. This value corresponds

to the mean magnetic acceleration exerted by the coil on the interface at 20 A, which drives the dynamic response of the

system according to the quasi-analytical model described in Refs. [22] and [45] . If the position of the center is fitted with a

function of the form 

z c = 

2 ∑ 

i =1 

[
a i e 

Im ( ω i ) t cos ( Re ( ω i ) t + b i ) 
]

+ k 0 (34) 

where a i , b i , ω i , and k 0 are the fitting parameters for mode i , the results reported in Table 5 are obtained. It should be

noted that ω i are estimations of the complex eigenfrequencies of the system. As expected, they match the real ( Re (ω i ) )

and imaginary ( Im (ω i ) ) magnetic frequency components computed in Table 3 and 4 with minimum errors. Those errors are

caused by the inherent difficulties in observing the second eigenmode when superposed to other waves. This result verifies 

the implementation of the eigensolver described in Section 3.5 and the consistency of the solution. 

As the magnetic step load increases in magnitude, so does the dynamic response of the interface. The 5 and 10 A excita-

tions keep the wave amplitude below ∼0.25 mm, but this value jumps to ∼0.5 and ∼1.5 mm for 15 and 20 A, respectively.

It is important to note that the 0.53 ms -2 inertial load produces a wave that is three times larger than the 20 A counterpart

that is supposed to resemble. The reason should be found in a slightly larger inertial load, reflected in its higher eigenfre-

quencies in Table 5 , and the curved magnetic field contours at the interface shown in Fig. 9 , that differ significantly from the

horizontal equipotential lines of the inertial field. Since the horizontal equipotentials are further away from the field-free 

meniscus, once the excitation is applied the interface will acquire higher potential energies and produce larger amplitude 

oscillations. 

Finally, Fig. 17 shows the streamlines associated with the cases covered in Fig. 16 . Successive time points reflect the

approximate first node (0), minimum ( T / 4 ), second node ( T / 2 ), and maximum ( 3 T / 4 ) of the displacement of the center of

the surface. The four points chosen for the inertial wave are highlighted in Fig. 16 . In the non-magnetic case, the same

nodal flow patterns reported in Ref. [71] are observed. However, the magnetic cases also show an apparent boundary layer 
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enlargement at the lower right corner of the container. This is presumably caused by the large localized magnetic forces 

induced by the coil and seems to be a feature of the magnetic sloshing problem. The minimum and maximum displacement

points correspond to transition regimes and lead to more complex flow patterns with respect to the nodal cases. Higher 

order eigenmodes are clearly visible as counter rotational votexes in several plots (e.g. at T / 4 for 5 A, 20 A, and the inertial

case). 

5. Conclusions 

A fully coupled interface-tracking ferrohydrodynamic model has been developed to analyze the equilibrium, stability, 

modal response, and time-dependent evolution of magnetic liquids in axisymmetric surface tension-dominated multiphase 

flows using a highly efficient monolithic scheme. These characteristics enable the study of highly susceptible materials, such 

as ferrofluids, in a wide variety of ferrohydrodynamic problems. 

Classical results and magnetic simulations in Comsol Multiphysics are employed to verify the field-free implementation 

of the model. The free surface oscillation frequencies are validated with experiments from the ESA Drop Your Thesis! 2017 

The Ferros campaign, improving the estimations from a previous quasi-analytic approach [22] . The numerical framework is 

shown to determine the linear stability and nonlinear evolution of the interface, whose analysis hints at the existence of 

characteristic magnetically-induced flow patterns. From a technical perspective, these capabilities are essential for the design 

of novel magnetic propellant management devices in space [41] . 

Although the axisymmetric magnetic sloshing problem and the ESA Drop Your Thesis! 2017 configuration have been stud- 

ied in this work, the numerical model finds application in additional scenarios interest. Those include the analysis of mi- 

crofluidic systems involving highly susceptible magnetic liquids, liquid manipulation devices in space, or bubble/droplet 

growth, detachment, and displacement problems, among many others. 
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Appendix A. Magnetic force derivation 

The magnetic stress tensor T m 

has been widely used in classical an recent works to obtain the local distributions of

magnetic forces on magnetically polarizable bodies [60–64] . The canonical form of the magnetic work per unit volume done

to magnetize the polarizable medium, H · δB , leads to the magnetic stress tensor 

T m 

= −μ0 

2 

H 

2 I + BH. (35) 

The local effect of magnetic fields on the continuous magnetizable medium can be formulated in terms of both volume 

( f V 
m 

) and surface ( f S 
m 

) magnetic force densities. The force per unit volume, or magnetic body force, is determined by the

divergence of magnetic stress tensor 

f V 
m 

= ∇ · T m 

= −μ0 H∇H + ∇ · ( BH ) , (36) 

By considering B = μ0 (H + M) as well as the solenoidal nature of the magnetic induction field ( ∇ · B = 0 ), the dyadic prod-

uct BH becomes 

∇ · ( BH ) = ( B · ∇ ) H = μ0 ( H · ∇ ) H + μ0 ( M · ∇ ) H. (37) 

When this expression is substituted in Eq. (36) , and taking into account the general result 

H∇ H = ( H · ∇ ) H + H × ( ∇ × H ) , (38) 

the general expression 

f V 
m 

= −μ0 H × ( ∇ × H ) + μ0 ( M · ∇ ) H (39) 

is derived [3] . 
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In the problem of interest, no electric current are applied to the involved magnetic media. Therefore, H is an irrota-

tional field. On the other hand, the constitutive relation that is assumed for these media implies that the fields M and H

are aligned, so that M = (M/H) H. If both conditions (together with Eq. (38) ) are taken into account in the above general

expression, the relations 

f V 
m 

= μ0 ( M · ∇ ) H = μ0 M∇H (40) 

are finally obtained. The equivalence between the above expressions for the Kelvin force of Eq. (40) is due to the collinearity

that is assumed for the fields M and H, regardless of the characteristic constitutive relationship of the medium, M/H =
χm 

(H) . 

In the case under study of axisymmetric magnetic fields whose azimuthal component is null and that only depend on 

the cylindrical coordinates r and z, the Kelvin force is f V 
m 

= f r e r + f z e z , with 

f r = μ0 

(
M r 

∂H r 

∂r 
+ M z 

∂H r 

∂z 

)
, (41a) 

f z = μ0 

(
M r 

∂H z 

∂r 
+ M z 

∂H z 

∂z 

)
, (41b) 

being the corresponding components of the magnetic force that appear in Eqs. (12b) and (12c) , respectively. These expres-

sions are directly obtained form μ0 (M · ∇) H. The irrotationality of the field H implies ∂ H r /∂ z = ∂ H z /∂ r which, applied in

Eqs. 40 and (41), leads to the expression of the Kelvin force as μ0 (M∇H) . 

The imanation field M is discontinuous between the internal ( ∂V −) and external ( ∂V + ) faces of the surface ∂V bound-

ing the magnetized media, since M 

+ = 0 and M 

− � = 0 . In consequence, the magnetic stress tensor also has a discontinuity

through ∂V , and a magnetic traction force arises at said interface [3,61,63,64] , which is described by the surface density 

f S 
m 

= n · T + m 

− n · T −m 

, (42) 

with 

n · T ±m 

= −μ0 

2 

(
H 

±)2 
n + B 

±
n H 

± (43) 

and n being the external normal vector at ∂V . According to Gauss’s law, the normal component of the induction field is

continuous through ∂V ( B + n = B −n = B n ). In addition, the absence of electrical surface currents in ∂V results in the continuity

of the tangential magnetic field component ( H 

+ 
t = H 

−
t = H t ). Therefore, Eq. (42) becomes 

f S 
m 

= −μ0 

2 

[ (
H 

+ 
n 

)2 −
(
H 

−
n 

)2 
] 

n + B n 

(
H 

+ 
n − H 

−
n 

)
n . (44) 

Using the definition of the magnetic field H on the external and internal faces of ∂V , 

H 

+ 
n = 

B n 

μ0 

; H 

−
n = 

B n 

μ0 

− M 

−
n (45) 

the result for the surface distribution of magnetic force at ∂V is 

f S 
m 

= 

μ0 

2 

(
M 

−
n 

)2 
n . (46) 

It should be noted that this surface magnetic force density, normal to ∂V , corresponds to the magnetic traction term p n in

Eqs. (8a) and (22a) . 

Appendix B. Finite differences framework 

The governing equations of the problem are discretized in the uniform s − η computational grids. The first and second 

fourth-order derivatives of each variable f are computed as 

∂ n f 

∂x n 
(x 0 ) = 

1 

12�x n 

4 ∑ 

i = −4 

[ c i f (x i ) ] + O (�x 4 ) , (47) 

with x i being the spatial coordinate ( s or η) at node i and i = 0 the node under consideration, �x the uniform grid space,

f (x i ) the value of the variable at x i , c i a coefficient given by Table 6 , and n the order of the derivative. Forward, central,

and backward finite differences are implemented depending on whether the node is located in the boundary or bulk of the

domain. 

Second-order backward finite differences are employed in the time domain using a fixed time step �t , resulting in 

∂ f 

∂t 
= 

1 

2�t 
[ 3 f (t 0 ) − 4 f (t −1 ) + f (t −2 ) ] + O (�t 2 ) , (48) 

where t 0 denotes the time under consideration. The first time step is computed with a first-order approximation of the 

derivative assuming an initial steady state. 
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Table 6 

Fourth-order finite difference coefficients. 

Type Order c −4 c −3 c −2 c −1 c 0 c 1 c 2 c 3 c 4 

Forward 1 1 -25/12 4 -3 4/3 -1/4 

2 35/12 -26/3 19/2 -14/3 11/12 

Forward 2 1 -1/4 -5/6 3/2 -1/2 1/12 

2 11/12 -5/3 1/2 1/3 -1/12 

Central 1 1/12 -2/3 0 2/3 -1/12 

2 -1/12 4/3 -5/2 4/3 -1/12 

Backward n − 1 1 -1/12 1/2 -3/2 5/6 1/4 

2 -1/12 1/3 1/2 -5/3 11/12 

Backward n 1 1/4 -4/3 3 -4 25/12 

2 11/12 -14/3 19/2 -26/3 35/12 

 

 

 

 

Appendix C. Magnetic Comsol multiphysics model 

In order to verify the magnetic field and force from the simulation for a given meniscus profile and coils current intensity,

the problem is reproduced in Comsol Multiphysics by solving the stationary Maxwell equations 

∇ × H = J, (49) 

B = ∇ × A , (50) 

J = σE, (51) 

where J is the current field, A is the magnetic vector potential produced by the current in the coil and the magnetized

materials, σ is the conductivity of the coil, and E is the electric displacement field. The constitutive relation 

B = μ0 μr H, (52) 

with μr being the relative permeability of the material, is applied to the aluminum plates ( μAl 
r = 1 . 0 0 0 022 ), surrounding air

( μair 
r = 1 ) and copper coils ( μCu 

r = 1 ). Within the ferrofluid volume, the constitutive relation is defined by the magnetization

curve M = f (H) depicted in Fig. 5 , that results in 

B = μ0 

(
1 + 

f ( H ) 

H 

)
H, (53) 

where H is the module of the magnetic field H. The current field is computed through 

J = 

NI 
e φ, (54) 
S 

Fig. 18. Mesh employed by the magnetic Comsol Muliphysics model. 

858 



Á. Romero-Calvo, M.A. Herrada, G. Cano-Gómez et al. Applied Mathematical Modelling 111 (2022) 836–861 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with N = 200 being the number of turns, I the current intensity flowing through each wire, S = 509 mm 

2 the coils cross

section and e φ the circumferential vector. 

The simulation domain is a rectangular 1 × 3 m 

2 region enclosing the assemblies. An axisymmetric boundary condition 

is applied to the symmetry axis, while the tangential magnetic potential is imposed at the external faces through n × A =
n × A d . A d is the dipole term of the magnetic vector potential generated by the current in the coils and the magnetization

fields of the ferrofluid volumes. Consequently, A d is computed as the potential vector generated by four point dipoles applied

at the centers of the magnetization distributions and whose moments are those of said distributions. While the dipoles 

associated to the coils can be calculated beforehand, the ferrofluid dipoles need to be approximated iteratively by integrating 

M in the ferrofluid volume. The relative error in the magnetic vector potential due the dipole approximation is estimated to 

be below 1.0% at the boundary of the domain with respect to the exact value generated by equivalent circular loops. 

The mesh is composed of 167,755 irregular triangular elements, as shown in Fig. 18 for the I = 20 A case. Mean and

minimum condition numbers of 0.985 and 0.527 are obtained. The governing equations are solved using Comsol’s “Mag- 

netic Fields” physics module with a stationary solver and a fully coupled implementation. The termination criterion set to 

“Solution or Residual” with a residual factor of 10 3 . 
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