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Novel active sensingmethods have been recently proposed tomeasure the electrostatic potential of noncooperative

objects in geosynchronous equatorial orbit and deep space. Such approachesmake use of electron beams to excite the

emission of secondary electrons and X-rays and infer properties of the emitting surface. However, the detectability of

secondary electrons is severely complicated in the presence of complex charged bodies, making computationally

efficient simulation frameworks necessary for in situ potential estimation. Thepurpose of this paper is twofold: firstly,

to introduce and test a quasi-analytical, uncoupled, and computationally efficient electron beam expansion and

deflection model for active charging applications; and secondly, to characterize the uncertainty in the beam–target

intersectionproperties,which condition themeasurement of secondary electrons.The results show that a combination

of secondary electrons andX-raymethods is highly desirable to yield a robust andaccuratemeasure of the potential of

a target spacecraft.

Nomenclature

B = external magnetic flux density, T
B = nondimensional external magnetic flux density
b = internal magnetic flux density, T
C = body capacitance, F
c = speed of light, ms−1

E = external electric field, V∕m
E = nondimensional external electric field
Eb = beam energy, J
Ej = external electric field of sphere j, V∕m
e = internal electric field, V∕m
F = external Lorentz’s force, N
F = nondimensional external Lorentz’s force
f = internal Lorentz’s force, N
Ib = beam current intensity, A
I0 = reference beam current intensity, A
kc = Coulomb constant, Nm2C−2

Lc = mean spacecraft separation, m
me = electron mass, kg
n = volume density distribution of electrons, m−3

p = position vector, m

q = spheres charge vector, C
q = electron charge, C
qi = sphere i charge, C
R = dimensionless ratio
Rb = beam radius, m
Ri = sphere i radius, m
r = radial beam coordinate, m
ri;j = distance between sphere i and j, m
�S� = elastance matrix, F−1

s = arc parameter along beam centroid, m
t = time, s
fur; uψ ; uzg = beam reference system
V = spheres potential vector, V
V = potential, V
Vi = sphere i potential, V
v = electron velocity, ms−1

v = nondimensional electron velocity
vz = beam propagation velocity, ms−1

x = inertial position, m
x = nondimensional inertial position
fx̂; ŷ; ẑg = global reference system
α = electrode rotation angle, rad
β = velocity ratio
γ = Lorentz factor
δ = initial beam divergence angle, rad
ϵ0 = permittivity of free space, Fm−1

μ0 = permeability of free space, Hm−1

τ = nondimensional time
θ = beam deflection angle, rad

Subindices:

f = final
ref = reference value
ser = servicer
tar = target

Symbols:

⊥ = perpendicular to trajectory
⋅ = scalar product
× = vector product
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I. Introduction

T HE use of secondary electrons (SEs) [1] and X-rays [2,3] has
been recently proposed to touchlessly sense the electrostatic

potential of objects in geosynchronous equatorial orbit (GEO) or
deep space. These methods, conceptualized in Fig. 1, make use of a
servicing craft that directs a high-energy electron beam at the target of
interest such that low-energy SEs and X-rays are emitted from the
surface. Due to the charge unbalance induced by the electron beam,
the SEs are accelerated toward the servicing craft, arriving with an
energy equal to the potential difference between both bodies. The
servicing craft measures the electron and photon energy spectrum
and, knowing its own potential with respect to the ambient space
plasma, infers the potential of the target [4]. This technologymay find
application in the electrostatic detumbling [5] and reorbiting [6–8] of
debris, Coulomb formations [9], material identification, and mitiga-
tion of electrostatic perturbations during rendezvous, docking, and
proximity operations [10,11], among others. Potential levels of the
order of tens of kiloelectron volts (keV) and beam currents of up to
1 mA are commonly employed in these scenarios [12].
The validation of SE- and X-ray-based touchless electrostatic

potential sensing methods has been thoroughly addressed in vacuum
chamber experiments with flat plates, which simplify experimental
procedures and ease data interpretation [1,3,13]. However, a flat
surface is not representative of a standard spacecraft, whose complex
geometry leads to highly inhomogeneous electric fields and well-
defined paths where SEs move. The detection of SEs at a servicing
spacecraft is hence conditioned by the target’s geometry, relative
position, and source region [14]. In fact, the intersection between the
electron beam and the target object defines the area where SEs are
generated, and so an appropriate electron beam propagation model is
needed. Past missions have operated electron beams in space, with
some examples being SCATHA [15] or the electron drift instruments
at GEOS [16], Freja [17], Cluster [18], and MMS [19]. Since beam
repulsion effects were negligible or irrelevant in most cases,
advanced electron beam models were not required. However, this
may not be true in applicationswhere the electrostatic repulsion plays
a more relevant role.
Given the close dependence between beam-steering and SE detec-

tion processes, the quantification of the beam–target intersection
position uncertainty becomes fundamental for the development of
potential sensing technologies based on SEs and X-rays. The ability
to focus the electron beam on a specific spot of the target may also
find application in the identification of surface materials and the
characterization of differentially charged objects. In this regard, it
should be noted that although spacecraft design best practices rec-
ommend all exterior surfaces to be connected to a common ground to
prevent electrostatic discharges [20], arcing events are far from

uncommon, particularly in old spacecraft [21–24]. Therefore, the
success of these methods largely depends on the quantification and
mitigation of the uncertainty of the system, the implementation of
robust remote-sensing strategies, and the development of accurate
and computationally efficient simulation frameworks that support
such strategies.
This paper introduces a simplified and computationally efficient

electron beam dynamics model in Sec. II, assesses its validity in
active spacecraft charging scenarios in Sec. III, and quantifies the
uncertainty in the properties of the beam–target intersection area in
Sec. IV. Monte Carlo simulations are implemented after adopting the
perspective of the servicing spacecraft, unveiling the contribution of
each parameter to the uncertainty in the outputs bymeans of a Fourier
amplitude sensitivity testing (FAST) analysis.

II. Electron Beam Model

A. Context and Strategy

Existing electron beam models may be divided into two families:
those that fully implement the space-charge effects induced by the
beam and those that ignore such interaction [25]. In the former, the
electric field depends on the trajectory of the particles and is hence
computed by solving Poisson’s equation in the simulation domain,
leading to accurate results but large computational costs. Particle-in-
cell simulations are commonly employed for this purpose, and have
been widely used to study the injection and long-term propagation of
electron beams in plasma environments [26–30]. Charged Particle
Optics (CPO§) boundary element method [31] in combination with
the space-charge cell and tube methods [32] has also been applied to
all sorts of electrostatic problems [33]. In the models that ignore
space-charge effects, on the contrary, the particle trajectories are
propagated under the unperturbed electrostatic potential generated
by the electrodes. Some representative approaches are SIMION’s
Coulombic and beam repulsion models, that approximate the beam
expansion dynamics by computing the electrostatic repulsion forces
in the beam cross section at each time step [25]. Simplified analytical
results for the beam expansion process can also be found in the
literature [34].
The appropriateness of a certain beam model depends on its

scenario of application. In the active spacecraft charging problem,
servicer and target spacecraft are separated a few tens of meters and
employ focused electron beams of tens of kV. This implies that the
beam will deflect only slightly before reaching the target. In fact, the
short propagation distance makes it remain in the initial expansion
phase, where the beam density is much larger than the GEO plasma
density and the expansion dynamics are driven by the radial electric
field in the beam cross section [35].WithGEODebye lengths of 100–
1000 m, plasma interactions can be safely ignored, but the beam
evolution is determined by the electric field from nearby charged
bodies.
A solution that can be regarded as an intermediate approach

between the analytical expansion equations described by Humphries
in Ref. [34] and SIMION’s repulsion models [25] is subsequently
presented. By taking advantage of the particular active spacecraft
charging environment, a simplified framework of analysis that
uncouples electron beam expansion and deflection processes is
developed and combined with the multispheres method (MSM) for
the estimation of electric fields [36]. The result is a computationally
efficient but accurate particle-tracing-like model that can be inte-
grated in an onboard flight algorithm. This is highly desirable for the
applications here considered, as discussed in Sec. IV.

B. Physical Model

The propagation of electron beams in space is subject to several
internal and external electromagnetic interactions. The quasi-analyti-
cal physical model here presented assumes 1) negligible space-
charge effects, 2) small beam deflection angles θ, 3) small radial

Fig. 1 Conceptual representation of the SEE- and X-ray active space-
craft potential sensing methods.

§Data available online at https://simion.com/cpo/ [retrieved 8 November
2021].
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expansion, 4) axisymmetric distribution of geometry and loads
within the beam cross section, and 5) negligible plasma interactions.
The first two assumptions are key for developing a computation-

ally efficient simulation framework, because they uncouple the
beam-electrode system and the expansion and deflection processes.
As explained in Sec. IV.A, small beamdeflection angles are produced
when the potential difference between servicer and target spacecraft
is significantly smaller than the electron beam energy. This is the case
of interest for remote-sensing applications; otherwise, the beam may
be deflected enough to completely avoid the target. The third and
fourth assumptions reduce the cross-section electrostatic surface
integrals to one dimension by allowing the implementation of an
infinite cylindrical beam framework of analysis. Such an approach is
appropriate for small beam divergence angles and leads to large
computational gains with respect to existing particle-tracing simu-
lations. Finally, and since the separation between servicer and target
spacecraft is of the order of tens ofmeters, which represents a fraction
of the GEODebye length of 100–1000 m, the electron beam dynam-
ics can be reasonably studied without taking into account complex
plasma interactions.

C. Mathematical Model

In what follows, the deflection of the beam is assumed to be
produced by the electromagnetic environment, while its expansion
is a consequence of the distribution of charge in the beam cross
section and the initial beam divergence angle. The model simulta-
neously and independently addresses both problems by integrating
the trajectories of the beam centroid (deflection) and a series of
electrons distributed along the axisymmetric beam cross section
(expansion). In both cases, Lorentz’s force defines the electromag-
netic force on each particle through

F � q�v × B�E� (1)

with q and v being the charge and velocity of the electron, andB and
E denoting the magnetic flux density and electric field, respectively.
The relativistic change in momentum of the particle is given by the
balance

d�γmev�
dt

� F (2)

whereme is the mass of the electron, γ � �1 − β2�−1∕2 is the Lorentz
factor, β � v∕c, c is the speed of light, and the time derivative is
inertial. The position x in the inertial reference frame is computed as

dx

dt
� v (3)

It should be noted that, in accordance with the special theory of
relativity, the inertia of a particle with respect to a reference frame
depends on its speed with respect to such frame. Consequently, the
term γme defines the apparent mass of the particle.
For the sake of clarity, the internal fields, which drive the expan-

sion problem, are subsequently denoted by lowercase variables,
while the external fields, which determine the deflection dynamics,
are given by uppercase letters.

1. Expansion of Cylindrical Electron Beams

In the beam expansion problem, the radial trajectories of a set of
electrons are integrated at different radii of the beam cross section
using Eqs. (1–3). The internal electromagnetic fields and forces
generated by axisymmetric cylindrical beams must consequently
be computed. This is done under the infinite length approximation,
leading to good estimates when the characteristic longitudinal
(propagation) distance is much larger than the characteristic radius
of the beam. The main advantage of this approach is the large
reduction in computational cost achieved by expressing a three-
dimensional problem in the axisymmetric domain.

Axisymmetric cylindrical beams generate radial electric and azi-
muthal magnetic fields. The first is readily derived fromGauss’s law,
resulting in [34]

e�r; t� � q

ϵ0r

Z
r

0

dr 0n�r 0; t�r 0ur (4)

where ϵ0 is the permittivity of free space, n�r� denotes the volume
density distribution of electrons, and fur; uψ ; uzg describes a cylin-
drical reference system centered in the axis of the beam and whose z
component is aligned with the velocity. Similarly, Ampère’s law
gives the azimuthal magnetic field [34]

b�r; t� � μ0qvz�t�
r

Z
r

0

dr 0n�r 0; t�r 0uψ (5)

with μ0 being the permeability of free space, and vz the propagation
velocity of the beam (assumed to be uniform in the cross section). The
modules of the electric and magnetic fields are related through
e � �c∕β�b. By applying Eq. (1) to these fields, the internal electro-
magnetic force becomes

f�r; t� � q2

rϵ0
�1 − β�t�2�

Z
r

0

dr 0n�r 0; t�r 0ur (6)

where the z component of the force, caused by the radial expansion
velocity, has been neglected. The magnetic and electric forces are
related throughFmag � −β2Fel. For relativistic electron beams, both
terms are approximately compensated (β → 1), allowing long-dis-
tance transport at high current levels [34,37].
The initial beam velocity profile is approximated in two steps.

First, the velocity of propagation vz�0� is computed from the initial
relativistic beam energy Eb � �γ − 1�m0c

2 by solving for γ and β.
Then, the initial divergence angle δ, which is not caused by the
electromagnetic repulsion between particles but by the optical con-
figuration of the electron gun itself, is imposed as

v�r; 0� ∼ rδ

Rb

vz�0�ûr � vz�0�ûz (7)

where Rb is the beam radius and a quasi-collimated beam is assumed
(δ ≪ 1). The initial electron density function n�r; 0� is modeled
following a predefined statistical distribution (e.g., quasi-Gaussian,
uniform, etc.) that satisfies the electron beam current intensity Ib and
energy Eb. The condition

Z
Rb

0

dr 02πr 0n�r 0; t� � Ib
qvz�t�

(8)

is then imposed at each time step to conserve the electron beam
current. This expression assumes a uniform vz component computed
in a plane perpendicular to the axis of the beam, which is consistent
with the small radial expansion assumption of the model. Uniform
beams can be discretized with a single external electron in the
axisymmetric beam cross section, while more complex profiles
(e.g., Gaussian) should employ a finer discretization to capture the
evolution of the distribution. A convergence analysis should be
carried out in each case; in particular, high-intensity beams require
more points to accurately simulate the electromagnetic repulsion
effect.
It should be noted that, although Eqs. (4–8) are given as a function

of time (describing the movement of a particle), they are actually
associated with a steady-state solution. Time is related to the arc
parameter s along the beam centroid through δs � vzδt. In a straight
beam, s � z, and each of these expressions can bewritten in terms of
the cylindrical coordinates r and z. The ratio β also changes depend-
ing on the beam propagation velocity, which is computed in the
deflection problem independently of the expansion algorithm.
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2. Deflection of Cylindrical Electron Beams

The deflection of the beam is here represented by the trajectory of
the centroid of the cross section, which is integrated using Eqs. (1–3)
for given external electric and magnetic fields. While the first is
mainly produced by the potential difference between both spacecraft,
the second is imposed by the magnetic environment.
The charge q of a conducting body is related to its capacitance C

through q � CV, whereV is the potential with respect to the ambient
plasma. The identification of the zero potential with the ambient
plasma is a common choice in the spacecraft charging community
[38] that has been adopted in this work. If V is known, then the
capacitance can be used to determine the total charge of the con-
ducting body, from which the electric field at distant points can be
computed. However, objects in close proximity exhibit mutual
capacitance effects [39] that must be accounted for to accurately
determine the total charge, its distribution, and the nearby electric
field. Capacitance is a function of the geometry of the system, but
analytical solutions are only available for a limited number of shapes
(such as spheres or round plates). Therefore, a numerical solution
scheme must be used to find the capacitance of the system. The
method of moments is generally employed for that purpose and,
based on its solution, the multispheres method (MSM) has been
developed as a computationally efficient alternative to approximate
the resulting charge distribution [36,40]. The MSM performs such
approximation by discretizing the geometry using equivalent charged
spheres [36,40]. Given the potential on each sphere and its location
with respect to the rest, the charge distribution is computed by solving
the linear system

0
BBBBBB@

V1

V2

..

.

Vn

1
CCCCCCA

� kc

2
6666664

1∕R1 1∕r1;2 : : : 1∕r1;n
1∕r2;1 1∕R2 : : : 1∕r2;n

..

. ..
. . .

. ..
.

1∕rn;1 1∕rn;2 : : : 1∕Rn

3
7777775

0
BBBBBB@

q1

q2

..

.

qn

1
CCCCCCA
;

V � �S�q (9)

where kc � 1∕�4πϵ0� is the Coulomb constant, Ri is the radius of
each sphere, ri;j is the distance between spheres i and j, and �S�
denotes the elastance matrix [39], which is the inverse of the capaci-
tance matrix. If both spacecraft are assumed to be conducting bodies
in electrostatics equilibrium, each of themmust have an equipotential
surface, and so all Vi belonging to the same surface must equal. This
assumption is appropriate for a GEO spacecraft since modern design
specifications require all outer surfaces to be electrically connected
[20], although it can be relaxed for differential charging studies. The
charge vector q constitutes a model of the charge distributions on the
spacecraft, which allows calculating the electric field E created by
these distributions as the superposition of the one produced by each
individual charge qj, given by

Ej�r� �
qj

4πϵ0p
3
p; p ≥ Rj (10)

where p denotes the radial position vector and Rj is the radius of the
sphere. An arbitrary number of spheres can be placed and their radii
adjusted to match the capacitance of the MSM to the true value.
In relation to the magnetostatic interaction, this work assumes an

arbitrarily orientedGEOmagnetic field of 100 nT. Its large character-
istic length of variation (∼103 km), the small characteristic time of
the beam deflection process (∼10−6 s), and the small influence of the
field in the problemunder consideration justify its treatment as a fixed
parameter.

3. Nondimensional Formulation

The numerical conditioning of the electron beam expansion and
deflection problem can be largely improved by employing a dimen-
sionless formulation of Eqs. (1–3), which become

F � �v ×B� E� (11)

d�γv �
dτ

� F (12)

dx
dτ

� v (13)

where

x � x

xref
; τ � t

tref
; v � tref

xref
v; B � qreftref

mref

B;

E � qreft
2
ref

mrefxref
E; F � t2ref

mrefxref
F (14)

The electron mass and charge are taken as a reference (mref , qref),
with the characteristic time being tref � 10−6 s. The characteristic
length xref is equal to the initial electron beam radiusRb and themean
spacecraft separation Lc for the expansion and deflection processes,
respectively. In other words, two different dimensionless problems
are solved simultaneously.

4. Validity Metrics

As noted in Sec. II.B, the analytical model introduced in this
section is valid while the beam deflection angle

θ � arccos

�
v�0� ⋅ v�tf�
jv�0�jjv�tf�j

�
(15)

is small, with tf denoting the final simulation time. The additional
dimensionless parameter

R � γmv2

jqLc�v × B�E�⊥j
� γv 2

j�v ×B� E�⊥j
(16)

is defined to describe the ratio between the instantaneous electro-
magnetic gyroradius and the characteristic spacecraft separation Lc,
with ⊥ denoting the force component perpendicular to the electron
trajectories and the different variables referring to the deflection
problem. The metric R reflects the influence of the electromagnetic
environment on the trajectory of the centroid. A small value of R
implies that its gyroradius is comparable to the characteristic space-
craft separation, which ultimately leads to the focusing of the beam.
The reader may visualize this scenario with a simple geometrical
problem: if two identical circumferences are initially superposed and
then separated slightly, two intersection points will be generated. The
same happens with an electron beam whenR ≤ 1. This effect is not
contemplated in the model, which explains why R (θ) must be
significantly greater (smaller) than 1.

5. Numerical Integration Scheme

The integration of Eqs. (1–3) must conserve the total energy of the
system. Common integrators, such as the standard fourth-order
Runge–Kutta (RK)method, carry a certain truncation error with each
time step, resulting in unbounded divergences in the long term. This
has made the Boris algorithm, which is an explicit, time-centered
integrator that conserves the phase space volume and bounds the
global energy error, the standard for particle physics simulations [41].
However, in short-term applications (like the one discussed in this
manuscript) RK integrators still offer an accurate solution. In the
simulations that follow, a variable-step, variable-order Adams–Bash-
forth–Moulton PECE solver of orders 1 to 13 is implemented by
means of MATLAB®’s routine ode113 [42], resulting in relative
variations of total energy errors below 0.001%.
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III. Performance Analysis

A. Verification

Every model should be tested to verify its implementation, a step
that is summarized here by independently focusing on the deflection
and expansion processes. As described in Sec. II.C.5, the predicted
trajectories pass the energy conservation test. Besides, they also
match the analytical electron gyroradius and gyrofrequency in the
presence of a constant magnetic field. Particle dynamics in combi-
nation with the MSM representation of charged bodies have been
thoroughly addressed in previous works [43], leaving the beam
expansion dynamics as the last module to be verified.
SIMION’s documentation includes a case of analysis¶ where its

Coulombic and beam repulsion models are validated with coupled
space-charge results from CPO [25]. The example consists of
an isolated beam of 1 eV that originates in a 3 mm circle with an
uniform distribution of 1000 electrons and a deflection angle of
δ � −16.7 deg. The beam current is set as a multiple of the maxi-
mum value I0 � 3.47 μA sustained by the system, leading to the
results depicted in Fig. 2. The same scenario is simulated with the
beam model presented in Sec. II, showing an overall excellent
agreement with SIMION. Small differences between both sets of
results should be attributed to simplifying assumptions. For instance,
the initial beam velocity profile in Eq. (7), leads to a set of particles
with unequal kinetic energies. Although appropriate for small
deflection angles (like the ones used in active spacecraft charging
scenarios), this approximation performsworsewith δ ≫ 1. However,
while the computational cost of each SIMION simulation scales
with the square of the number of particles [25], just a few trajectories
are required by the proposed framework: the centroid and a
certain number of points in the axisymmetric cross section that are
employed to recompute the volume distribution of electrons. Since in
this case such distribution is uniform, a single electron is needed to
capture the evolution of the beam envelope; however, 50 particles are
simulated for illustrative purposes. This computational advantage,
together with the reduction of a complex problem to a small set of
parameters, are the main advantage of the simplified model here
introduced.

B. Validation

The physicalmechanisms involved in the electron beam expansion
and deflection processes have beenverywell understood for decades,
and the validation of fundamental particle dynamics has conse-
quently little technical value. On the contrary, future applications
depend on the proper application of the model presented in Sec. II,
which relies on a number of assumptions that limit its validity space.
Provided that such assumptions are met, a computationally efficient
and powerful analysis tool is obtained.
With the purpose of exploring the performance of the model in a

worst-case scenario, the experimental setup shown in Fig. 3 is tested
in the Electrostatic Charging Laboratory for Interactions between
Plasma and Spacecraft (ECLIPS) [44]. The assembly exposes an
electron beam from a Kimball Physics EMG-4212D electron gun to
the electric field generated by a charged spacecraft-like electrode
mounted on a rotary stage. The shape and location of the beam spot at
approximately 35 cm from the gun orifice are observed with a
3.81 cmdiameter rugged phosphor screen, and the spatial distribution
is obtained with a retarding potential analyzed (RPA) mounted on a
linear stage. The beam is configured at 1 keV energy and 10 μA
current, while the electrode is set at −100 to −500 V employing a
MatsusadaAU-30R1 high-voltage power supply. The electron flux at
the RPA is measured with a Keithley 2400 multimeter. Finally, the
system is automated by means of a LabView VI.
Figure 4 shows the beam spot profiles at the phosphor screen for

electrode potentials ranging from −100 to −500 V. Because the gun
orifice is slightly below the symmetry plane of the electrode, a voltage
decrease leads to a slight downwards deflection. This is compensated
with a fine tuning of the vertical gun deflection settings, which do not

alter the horizontal position or shape of the spot. Figure 4a shows a
∼13 mm diameter beam cross section, which is considerably larger
than the initial ∼3 mm diameter beam. Tests with different beam
current intensities give the same spot shape, which demonstrates that
the expansion is not induced by the electrostatic repulsion between
electrons, but by the initial beam spread angle δ. As the voltage
decreases, the beam is deflected away from the electrode, and its
cross section is elongated vertically. The spot shape is deformed
significantly below −300 V, indicating the existence of small gyro
radii with R ∼ 1. These observations are complemented with the
electron flux distribution computed with the RPA in Fig. 5, where the
narrowing process reduces the width of the flux peak and its ampli-
tude. Based on the 0 V case, the spread angle is estimated to be
δ ∼ 2.5 deg. It should be noted that the apparent beam radius shown
in Fig. 4a is smaller than the one reported in Fig. 5. This is due to
limitations imposed by the power density threshold of the phosphor
screen and the effective aperture of the RPA**.
The influence of the electrode rotation angle α on the beam

deflection and spot shape is also explored in Fig. 6 for V � −100 V
and α � 10 deg to 50 deg. Although the beam is deflected and
the cross section is modified, these effects are much less pronounced
than in Fig. 4, implying that the R metric is significantly larger. In
other words, the uncoupled model is far more appropriate for
this case.
The framework of analysis introduced in Sec. II is not designed to

predict the elongation of the beam cross section, but still gives
accurate estimations for those cases in which the beam deflection
angle is small. In order to evaluate the validity metrics defined in
Sec. II.C.4, the experimental setup is reproduced with a 934-sphere
MSM representation of the spacecraft-like electrode. The result is
shown in Fig. 7 for an electrode potential of −500 V, which corre-
sponds to the case in Fig. 4f, and a beam expansion angle
δ � 2.5 deg.
The validity metricsR and θ are reported in Fig. 8a as a function of

the electrode potential V and in Fig. 8b in terms of the electrode
rotation angle α. An increase in the electrode potential decreases the
minimum R value and increases the deflection angle θ, reaching
∼3 deg and 9.5 deg, respectively, for the limit case of −300 V.
Larger values lead to significant beam cross-section deformations,
as shown in Figs. 4e and 4f. Similarly, the rotation of the electrode
creates a second minimum in theR plot (i.e., a second maximum in
the electromagnetic force), but since this minimum is larger than in
the −200 V case, its effects on the beam cross section are less
significant. Due to the large beam expansion angle δ, the magneto-
electrostatic repulsion between electrons plays virtually no role in the
expansion dynamics of the beam.
The experiment demonstrates the appropriateness of the expan-

sion/deflection decoupling when the validation metrics R and θ
adopt sufficiently large values. In such cases, the beam cross section
becomes practically independent of the external electromagnetic
force. Although the assumptions of the model significantly constrain
its validity range, it is precisely in the spacecraft charging scenario
where this computationally efficient framework can be better
exploited.

IV. Uncertainty in Active Spacecraft Charging Scenario

A. Problem Statement

Once the validity of the beam model has been contrasted with
experimental observations, the base scenario of analysis is introduced
in Fig. 9. The SSL-1300†† and GOES-R‡‡ spacecraft MSM models
are shown together with the e− beam centroid evolution in the global

¶The interested reader is referred to the readme.html file in the examples/
repulsion folder of SIMION 2020.

**The variations in light intensity at the phosphor screen are caused by the
electron-beam-induced deposition of carbon and heavy molecules over the
surface, and not by variations in the distribution of electrons in the beam cross
section.

††Data available online at http://sslmda.com/html/1300_series_platform
.php [retrieved 8 November 2021].

‡‡Data available online at https://www.goes-r.gov/spacesegment/spacecraft
.html [retrieved 8 November 2021].
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Fig. 3 Experimental setup inside the ECLIPS chamber.
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Fig. 2 Comparison between simulation framework and SIMION’s beam repulsion model [25] for E � 1 eV, δ � −16.7 deg, and I0 � 3.47 μA.
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reference system fx̂; ŷ; ẑg. The target spacecraft (−2.5 V) is nega-
tively charged with respect to the servicer (0 kV) due to the current
unbalance induced by the electron beam, generating a net electro-
static force that tends to deflect and slow down the 5 keV, 10 μA
electrons from 4.2 ⋅ 107 m∕s to 3.2 ⋅ 107 m∕s. The electron beam
energy must be larger than the absolute potential difference to allow
the electrons to reach the target surface. The R parameter depends
quadratically on the propagation speed and approximately linearly on
the beam energy [see Eq. (16)], and hence the physical model here
adopted is particularlywell suited for high beam-energy applications.
The trade-off between beam energy and spacecraft potential is

analyzed in Fig. 10 by comparing the validation metrics along the
beam trajectory in three different scenarios. As expected, an increase

in beam energy leads to larger R and smaller θ values, while a
decrease in the target spacecraft potential has the opposite effect. In
the nominal case (Eb � 5 keV, V � −2.5 kV), a deflection angle
θ � 5.33 deg and a minimum R � 4 are reached, satisfying the
validity range of themodel. These values are analogous, in terms ofR
and θ, to the experimental −200 V case pictured in Fig. 4c and
analyzed in Fig. 8.
Figure 11 explores the beam expansion dynamics for different

deflection angles. When a stream of collimated electrons (δ � 0)
exits the gun, the magneto-electrostatic repulsion expands the beam
radius from 2.5 to 40 mm in the 30 m flight. The trajectory of those
electrons is nonlinear, but as the initial δ angle is increased, a linear
expansion is achieved. This qualitatively different behavior reflects
the existence of repulsive and inertial expansion regimes. Although
in the second case, the expansion dynamics become practically
irrelevant, a larger beam–target intersection is also obtained. This
may not be convenient for the characterization of the target.
A discretization of 50 radial points is employed to model the

expansion process, deviating less than 0.01% from a 200-pointmodel
in the worst-case collimated beam regime. AnMSMmodel with 172
spheres is applied to the deflection problem, resulting in errors below
5 cm in the final beam centroid positionwith respect to a high-fidelity
1976-sphere MSM simulation. These results are acceptable for the
problem here discussed.

B. Uncertainty Quantification Analysis

The model built in Sec. II is, because of its computational effi-
ciency, particularly well-suited to quantify the uncertainty in the
beam–target intersection position in an active spacecraft charging
scenario. The analysis is designed from the perspective of a servicing
spacecraft that seeks to steer the beam toward a particular spot of the
target. A total of 702 uncertain variables are considered, with 688

Fig. 5 Experimental electron flux distribution as a function of the
applied electrode potential.

Fig. 4 Electron beam spot in the phosphor screen under different electrode potentials.
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being associated to the MSM spheres that approximate the charge
distribution of the two-spacecraft system. The list of input variables
and their distribution is detailed inTable 1. The outputs of the analysis
are 1) the radius of the beam cross section at the end of flight, 2) the
centroid landing position in the target plane, which is perpendicular
to the line of sight between both spacecraft, 3) the landing energy, and
4) the time of flight.
Due to the large number of parameters and reduced computational

cost of the simulation, a Monte Carlo analysis is chosen over other
uncertainty quantification methods. The relative influence of each

input parameter on the output metrics is measured by means of
sensitivity indices, computed with a FAST suite§§ from Ref. [45].

C. Results

The Monte Carlo analysis is carried out with 104 random realiza-
tions generated from the distributions reported in Table 1, which are
conservative estimations of the different sources of error. Each sim-
ulation takes approximately 0.6 s after parallelizing the code with
sevenCPU threads inMATLAB2021 (Intel Core i7-7820HQCPUat
2.90 GHz, 32 Gb RAM). The solution converges in mean and
variance for the expansion and deflection problems.
Results in Fig. 12 depict the probability density functions (PDFs)

of the model outputs: 12a, final beam radius Rb;f; 12b, final centroid
position px;f and py;f; 12c, time of flight tf; and 12d, final beam

Fig. 6 Electron beam spot in the phosphor screen under different electrode rotation angles at −100 V.

Fig. 7 MSM representation of the experimental setup with electron beam propagation at −500 V.

§§Data available online at https://www.mathworks.com/matlabcentral/
fileexchange/40759-global-sensitivity-analysis-toolbox [retrieved 8 Novem-
ber 2021].
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energy Eb;f. The first follows a quasi-uniform distribution, clearly
influenced by the uniform sampling of the initial deflection angle δ,
and spans from 4 to 13 cm. These expansion values, computed for
δ ⊆ �0 deg; 0.2 deg�, are small in comparison with the spread of the
beam centroid shown in Fig. 12b, where the target �0.11;−1.26� m

is marked as a red cross. The landing positions follow a multi-
Gaussian distribution with mean �0.07;−1.20� m and covariance
�0.20;−0.006;−0.006; 0.28� m2. This implies that the beam centroid
has a 93.9% probability of intercepting the SSL-1300 solar panel,
represented as a rectangle in the figure, while the chances of hitting
a 20 cm diameter circle surrounding the target are just 0.3%. The
time of flight PDF is represented in Fig. 12c and follows a log-
normal distribution with logarithmic mean 14.07 μs and variance

Fig. 8 Validation metricsR and θ as a function of the electrode potential and heading angle.

Fig. 9 Geometry of the two-spacecraft problem for the basic simulation
parameters (see Table 1).

Fig. 10 ValidationmetricsR and θ as a function of the target spacecraft
potential V and beam energy Eb for the nominal active spacecraft
charging scenario.

Fig. 11 Beam radius evolution as a function of divergence angle for the
nominal active spacecraft charging scenario.

Table 1 Uncertainty analysis parameters

Variable Distribution Mean STD Unit

Beam current, Ib Normal 10 0.1 μA

Beam energy, Eb Normal 5 0.05 keV
Initial divergence angle, δ Uniform 0.1 Lims: [0, 0.2] deg
Initial particle density
STD, σb

Normal 0.83 0.083 mm

Servicer potential, Vser Normal 0 0.05 kV
Servicer, Euler-313,
ψ ser, θser, ϕser

Normal [0,0,90] [0.1,0.1,0.1] deg

Target potential, V tar Normal −2.5 0.25 kV
Target, Euler-313,
ψ tar, θtar, ϕtar

Normal [0,0,180] [5,5,5] deg

Relative position, rx, ry, rz Normal [0,10,32] [0.5,0.5,1] m
Capacitances, x172 Normal Dataset 1% C
Spheres pos., x516 Normal Dataset 1% m
Initial beam radius Fixed 2.5 0 mm
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2.14 ⋅ 10−4 μs2. This result is relevant for applications employing
pulsed-beam modulations to filter the returning secondary electron
flux from the target. Modulated electron beams have been employed
in previous space instruments, such as the electron drift instrument of
MMS [19]. Finally, the landing energy PDF is shown in Fig. 12d and
fitted with a Weibull distribution (scale 3309.98, shape 9.97) with
mean 3148.55 keV and variance 144294 keV2. The landing energy
determines the SE yield and is hence important for defining the
resulting SE flux [1]. It also determines the X-ray spectrum profile
and intensity [46].
In order to determine the influence of each input on the outcomes

reported in Fig. 12, a Fourier amplitude sensitivity testing (FAST)
global sensitivity analysis is conducted. The analysis is limited to the
15 non-MSM inputs in Table 1 to minimize its computational cost.
Although 688 MSM variables are removed, Table 2 shows how the
total variances remain practically identical, denoting that such uncer-
tain inputs have a negligible effect in the final distributions.
Table 3 reports the sensitivity coefficients for 104 realizations. The

five outputs of the model (final beam radius Eb;f, beam–target
intersection coordinates px;f and py;f, final energy Eb;f, and time
of flight tf) are listed in the rows, while the inputs are shown in the
columns. The largest sensitivities, showing that each output variance

can be almost completely explained with less than two inputs. For
instance, the final beam radius is mainly dependent on the initial
divergence angle, while the final positions are related to the uncer-
tainties in their corresponding relative spacecraft position compo-
nent. The output py;f is also dependent on the target potential, which
promotes the lateral deflection of the beam, as shown in Fig. 4.
Although the results seem to indicate that the variance in px;f is also
explained by the beam current Ib, this should be attributed to numeri-
cal errors, because the model uncouples the expansion and deflection
problems. The final beam energyEb;f and time of flight tf depend on
the initial beam energyEb and target spacecraft potential V tar, whose
relative influence is strongly influenced by the uncertainty bands
selected in Table 1. The attitude of each spacecraft does not seem to
have a large influence in any output variable; however, this is caused
by the small attitude disturbance angles selected in Table 1, which
would increase with less accurate attitude determination sensors.
It should be noted that, among the most influential input param-

eters, only the target potential and relative positions are not prede-
fined. An obvious conclusion is that the targeting of specific regions
is limited by the accuracy in the measurement of the relative position
between the two spacecraft. Although this problemmay be addressed
with better sensing equipment, the strong influence of the target
potential raises additional issues. In order to obtain a first measure-
ment, the electron beam needs to intercept the target, but such
interception can only be guaranteed if an estimate ofV tar is available.
The problem may be solved by temporarily increasing the beam
expansion angle δ to irradiate larger areas, enhancing the chances
of collision, or by employing a more directive beam with higher
energy Eb. An X-ray sensor oriented toward the irradiated region
would then be used to obtain the first target voltage estimation, which
would then be followed by more accurate SE estimations.

Table 2 Comparison of output variances between the full 702

parameters and the reduced 15 parameters Monte Carlo analyses

V�Rb;f�,
m2

V�px;f�,
m2

V�py;f�,
m2

V�Eb;f�,
keV2 V�tf�, s2

Full 6.830e-4 0.204 0.276 1.387e5 1.301e-16
Reduced 6.790e-4 0.203 0.269 1.456e5 1.319e-16

Fig. 12 Result of the Monte Carlo simulation.
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However, the availability of target potential measurements using
the SE method, which is significantly more accurate than the X-ray
approach [13], is strongly dependent on the geometry of the system
[14]. The spatial distribution reported in Fig. 12b for the beam–target
intersection has a critical influence on the flux of SEs. Figure 13
depicts the trajectories of 100 SEs uniformly generated in a circle
with 1.5m radius (3σ interval) andwhose centermatches the origin of
the Monte Carlo final beam centroid distribution (x � 0.07 m,
y � −1.20 m, z � 30 m). Since they are born with energies of the
order of just a few eV [47], SEs are assumed to start their trajectory
with zero velocity. The SEs are able to reach the servicer only when
the beam hits a very specific area of the target, so it can be readily
concluded that a limited subspace of the Monte Carlo solution
domain will be detectable. That is, an RPA mounted in the servicer
and aimed at a suitable target region is not guaranteed to detect SEs
with the statistical distributions reported in Table 1, concluding that
the combination of X-ray and SE measurements is necessary to
ensure a robust and accurate estimation of the target spacecraft
potential. A feedback control loop may be employed to actively steer
the beam and guarantee the measurement of SEs, following an
implementation analogous to the electron drift instrument of
MMS [19].

V. Conclusions

This paper introduces a quasi-analytical electron beam model that
achieves a great computational efficiency by decoupling the beam
expansion and deflection processes.Although this choice restricts the
range of application of the simulation framework, experimental
observations in the ECLIPS space environments simulation facility
[44] validate its use in active spacecraft charging problems, where
small deflection angles and radial expansions are expected.
The model is employed to quantify the uncertainty of key metrics

in a representative active charging scenario. The sensitivity of the
beam dynamics to a characteristic set of input parameters is studied

by means of Monte Carlo simulations. Although the electron beam
centroid is shown to hit the target spacecraft with a 93.85% chance,
this happens within a large�3σ Gaussian interval of 3 m around the
target. A FAST sensitivity analysis shows that the relative spacecraft
position and target spacecraft potential account for most of the
variance. Furthermore, only a limited number of solutions ensure
that the resulting SEs reach a hypothetical RPA mounted on the
servicer, implying that combined X-ray and SE potential sensing
methods are not only desired but actually required for a robust and
accurate target potential estimation. This setup would benefit from a
closed control loop to guarantee the detectability of SEs in uncertain
environments.
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Table 3 Normalized sensitivity indices from FAST sensitivity analysis with 15 inputs and 5 outputs. The values are scaled
by a factor of 10 for convenience.

Ib Eb σb V tar Vser rx ry rz ϕtar θtar ψ tar ϕser θser ψ ser δ

Rb;f 0.053 0.112 0.011 0.306 0.044 0.009 0.019 0.121 0.005 0.001 0.015 0.056 0.318 0.365 8.563a

px;f 1.208 0.204 0.009 0.016 0.004 8.284a 0.001 0.003 0.233 0.002 0.005 0.002 0.025 0.002 0.002

py;f 0.004 0.030 0.033 1.550a 0.354 0.003 7.888a 0.109 0.001 0.003 0.001 0.003 0.020 0.001 0.001

Eb;f 0.056 1.541a 0.021 7.122a 0.554 0.071 0.126 0.226 0.117 0.138 0.006 0.005 0.005 0.013 0.001

tf 0.028 3.524a 0.005 4.661a 0.760 0.006 0.024 0.741 0.010 0.238 0.001 0.000 0.001 0.001 0.001

aThe largest sensitivities.

ROMERO-CALVO, CANO-GÓMEZ, AND SCHAUB 749

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 B

O
U

L
D

E
R

 o
n 

M
ay

 2
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
19

0 

https://doi.org/10.1029/2019SW002341
https://doi.org/10.1029/2019SW002341
https://doi.org/10.1029/2019SW002341
https://doi.org/10.1109/TPS.2019.2910576
https://doi.org/10.1109/TPS.2019.2910576
https://doi.org/10.1109/TPS.2019.2910576
https://doi.org/10.1109/TPS.2019.2910576
https://doi.org/10.1109/TPS.2019.2910576
https://doi.org/10.1029/2019SW002342
https://doi.org/10.1029/2019SW002342
https://doi.org/10.1029/2019SW002342
https://doi.org/10.1109/TPS.2019.2912057
https://doi.org/10.1109/TPS.2019.2912057
https://doi.org/10.1109/TPS.2019.2912057
https://doi.org/10.1109/TPS.2019.2912057
https://doi.org/10.1109/TPS.2019.2912057
https://doi.org/10.2514/1.A34787
https://doi.org/10.2514/1.A34787
https://doi.org/10.2514/1.A34787
https://doi.org/10.2514/1.A34787
https://doi.org/10.1109/TPS.2017.2684621
https://doi.org/10.1109/TPS.2017.2684621
https://doi.org/10.1109/TPS.2017.2684621
https://doi.org/10.1109/TPS.2017.2684621
https://doi.org/10.1109/TPS.2017.2684621
https://doi.org/10.1007/s42064-018-0030-0
https://doi.org/10.1007/s42064-018-0030-0
https://doi.org/10.1007/s42064-018-0030-0
https://doi.org/10.2514/1.A34359
https://doi.org/10.2514/1.A34359
https://doi.org/10.2514/1.A34359
https://doi.org/10.2514/1.A34359
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A35190&iName=master.img-007.jpg&w=238&h=177
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FTPS.2019.2912057&citationId=p_4
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A34787&citationId=p_5
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FTPS.2017.2684621&citationId=p_6
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2Fs42064-018-0030-0&citationId=p_7
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A34359&citationId=p_8
https://arc.aiaa.org/action/showLinks?crossref=10.1029%2F2019SW002341&citationId=p_1
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2FBF03546427&citationId=p_9
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FTPS.2019.2910576&citationId=p_2
https://arc.aiaa.org/action/showLinks?crossref=10.1029%2F2019SW002342&citationId=p_3


No. 1–2, 2004, pp. 169–193.
https://doi.org/10.1007/BF03546427.

[10] Wilson, K., and Schaub, H., “Impact of Electrostatic Perturbations on
Proximity Operations in High Earth Orbits,” Journal of Spacecraft and
Rockets, Vol. 58, No. 5, 2021, pp. 1–10.
https://doi.org/10.2514/1.A35039.

[11] Wilson, K., Romero-Calvo, A., and Schaub, H., “Constrained Guidance
for Spacecraft Proximity Operations Under Electrostatic Perturbation,”
Journal of Spacecraft and Rockets, 2021.

[12] Schaub, H., and Moorer, D. F., “Geosynchronous Large Debris Reor-
biter: Challenges and Prospects,” The Journal of the Astronautical

Sciences, Vol. 59, No. 1, 2012, pp. 161–176.
https://doi.org/10.1007/s40295-013-0011-8.

[13] Wilson, K. T., Bengtson, M., and Schaub, H., “Remote Electrostatic
Potential Sensing for Proximity Operations: Comparison and Fusion of
Methods,” Journal of Spacecraft and Rockets, 2021.

[14] Bengtson, M. T., and Schaub, H., “Electron-Based Touchless Potential
Sensing of Shape Primitives and Differentially-Charged Spacecraft,”
Journal of Spacecraft and Rockets, 2021, pp. 1–11.
https://doi.org/10.2514/1.A35086.

[15] Olsen, R., and Cohen, H., “Electron Beam Experiments at High Alti-
tudes,” Advances in Space Research, Vol. 8, No. 1, 1988, pp. 161–164.
https://doi.org/10.1016/0304-3886(87)90085-4.

[16] Melzner, F., Metzner, G., and Antrack, D., “The GEOS Electron
Beam Experiment,” Space Science Instrumentation, Vol. 4, Aug. 1978,
pp. 45–55.

[17] Paschmann, G., Boehm, M., Höfner, H., Frenzel, R., Parigger, P.,
Melzner, F., Haerendel, G., Kletzing, C. A., Torbert, R. B., and Sartori,
G., “The Electron Beam Instrument (F6) on Freja,” Space Science

Reviews, Vol. 70, No. 3, 1994, pp. 447–463.
https://doi.org/10.1007/BF00756881.

[18] Paschmann, G., Melzner, F., Frenzel, R., Vaith, H., Parigger, P., Pagel,
U., Bauer, O. H., Haerendel, G., Baumjohann, W., Scopke, N., Torbert,
R. B., Briggs, B., Chan, J., Lynch,K.,Morey,K.,Quinn, J.M., Simpson,
D., Young, C., Mcilwain, C. E., Fillius, W., Kerr, S. S., Mahieu, R., and
Whipple, E. C., “The Electron Drift Instrument for Cluster,” Space

Science Reviews, Vol. 79, No. 1, 1997, pp. 233–269.
https://doi.org/10.1023/A:1004917512774.

[19] Torbert, R. B., Vaith, H., Granoff, M., Widholm, M., Gaidos, J. A.,
Briggs, B. H., Dors, I. G., Chutter, M. W., Macri, J., Argall, M., Bodet,
D., Needell, J., Steller, M. B., Baumjohann, W., Nakamura, R.,
Plaschke, F., Ottacher, H., Hasiba, J., Hofmann, K., Kletzing, C. A.,
Bounds, S. R., Dvorsky, R. T., Sigsbee, K., and Kooi, V., “The Electron
Drift Instrument for MMS,” Space Science Reviews, Vol. 199, No. 1,
2016, pp. 283–305.
https://doi.org/10.1007/s11214-015-0182-7.

[20] Garrett, H. B., and Whittlesey, A. C., “Spacecraft Design Guidelines,”
Guide toMitigating Spacecraft Charging Effects, Wiley, 2012, Chap. 3,
pp. 26–61.
https://doi.org/10.1002/9781118241400.ch3.

[21] Olsen, R. C., McIlwain, C. E., andWhipple, E. C., Jr., “Observations of
Differential Charging Effects on ATS 6,” Journal of Geophysical

Research: Space Physics, Vol. 86, No. A8, 1981, pp. 6809–6819.
https://doi.org/10.1029/JA086iA08p06809.

[22] Grard, R., Knott, K., and Pedersen, , “Spacecraft Charging Effects,”
Space Science Reviews, Vol. 34, No. 3, 1983, pp. 289–304.
https://doi.org/10.1007/BF00175284.

[23] Roeder, J. L., and Fennell, J. F., “Differential Charging of Satellite
Surface Materials,” IEEE Transactions on Plasma Science, Vol. 37,
No. 1, 2009, pp. 281–289.
https://doi.org/10.1109/TPS.2008.2004765.

[24] Ferguson, D., White, S., Rast, R., and Holeman, E., “The Case for
Global Positioning System Arcing and High Satellite Arc Rates,”
IEEE Transactions on Plasma Science, Vol. 47, No. 8, 2019,
pp. 3834–3841.
https://doi.org/10.1109/TPS.2019.2922556.

[25] Manura, D., and Dahl, D., SIMION (R) 8.1 User Manual, Rev-5,
Adaptas Solutions, LLC, Palmer, MA, 2008.

[26] Okuda, H., and Berchem, J., “Injection and Propagation of a Non-
relativistic Electron Beam and Spacecraft Charging,” Journal of

Geophysical Research: Space Physics, Vol. 93, No. A1, 1988,
pp. 175–195.
https://doi.org/10.1029/JA093iA01p00175.

[27] Okuda, H., and Ashour-Abdalla, M., “Propagation of a Nonrelativistic
Electron Beam in Three Dimensions,” Journal of Geophysical

Research: Space Physics, Vol. 95, No. A3, 1990, pp. 2389–2404.
https://doi.org/10.1029/JA095iA03p02389.

[28] Okuda, H., and Ashour-Abdalla, M., “Injection of an Overdense Elec-
tron Beam in Space,” Journal of Geophysical Research: Space Physics,
Vol. 95, No. A12, 1990, pp. 21307–21311.
https://doi.org/10.1029/JA095iA12p21307.

[29] Winglee, R.M., “Simulations of PulsedElectronBeam InjectionDuring
Active Experiments,” Journal of Geophysical Research: Space Physics,
Vol. 96, No. A2, 1991, pp. 1803–1817.
https://doi.org/10.1029/90 JA02102.

[30] Koga, J., and Lin, C. S., “A Simulation Study of Radial Expansion of an
Electron Beam Injected into an Ionospheric Plasma,” Journal of Geo-

physicalResearch: SpacePhysics,Vol. 99,No.A3, 1994, pp. 3971–3983.
https://doi.org/10.1029/93 JA02230.

[31] Harting, E., and Read, F. H., Electrostatic Lenses, Elsevier Publishing
Company, Amsterdam, 1976.

[32] Read, F. H., Chalupka, A., and Bowring, N. J., “Charge-Tube Method
for Space Charge in Beams,” Charged Particle Optics IV, edited by E.
Munro,Vol. 3777, International Society for Optics and Photonics, SPIE,
Bellingham, WA, 1999, pp. 184–191.
https://doi.org/10.1117/12.370129.

[33] Renau, A., Read, F. H., and Brunt, J. N. H., “The Charge-Density
Method of Solving Electrostatic Problems with and Without the Inclu-
sion of Space-Charge,” Journal of Physics E: Scientific Instruments,
Vol. 15, No. 3, 1982, pp. 347–354.
https://doi.org/10.1088/0022-3735/15/3/025.

[34] Humphries, S., Charged Particle Beams, Wiley, 1990, Chap. 5: Intro-
duction to Beam-Generated Forces.

[35] Gendrin, R., “Initial Expansion Phase of an Artificially Injected Elec-
tron Beam,” Planetary and Space Science, Vol. 22, No. 4, 1974,
pp. 633–636.
https://doi.org/10.1016/0032-0633(74)90097-X.

[36] Stevenson, D., and Schaub, H., “Multi-Sphere Method for Modeling
Spacecraft Electrostatic Forces and Torques,” Advances in Space

Research, Vol. 51, No. 1, 2013, pp. 10–20.
https://doi.org/10.1016/j.asr.2012.08.014.

[37] Lewellen, J. W., Buechler, C. E., Carlsten, B. E., Dale, G. E., Holloway,
M. A., Patrick, D. E., Storms, S. A., and Nguyen, D. C., “Space-Borne
Electron Accelerator Design,” Frontiers in Astronomy and Space Sci-

ences, Vol. 6, May 2019, p. 35.
https://doi.org/10.3389/fspas.2019.00035.

[38] Lai, S. T., Fundamentals of Spacecraft Charging: Spacecraft Inter-

actions with Space Plasmas, Princeton University Press, 2012.
[39] Smythe,W., Static andDynamicElectricity, 3rd ed.,McGraw–Hill, 1968.
[40] Hughes, J. A., and Schaub, H., “Heterogeneous Surface Multisphere

ModelsUsingMethod ofMoments Foundations,” Journal of Spacecraft
and Rockets, Vol. 56, No. 4, 2019, pp. 1259–1266.
https://doi.org/10.2514/1.A34434.

[41] Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., and Tang, W. M., “Why Is
Boris Algorithm so Good?” Physics of Plasmas, Vol. 20, No. 8, 2013,
p. 084503.
https://doi.org/10.1063/1.4818428.

[42] Shampine, L. F., and Reichelt, M. W., “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, No. 1, 1997, pp. 1–22.
https://doi.org/10.1137/S1064827594276424.

[43] Bengtson,M. T., “ElectronMethod for Touchless Electrostatic Potential
Sensing of Neighboring Spacecraft,” Ph.D. Dissertation, Department of
Aerospace Engineering Sciences, University of Colorado, Boulder, CO,
2020.

[44] Wilson,K.,Romero-Calvo,A.,Bengtson,M.,Hammerl, J.,Maxwell, J.,
and Schaub, H., “Development and Characterization of the ECLIPS
Space Environments Simulation Facility,” Acta Astronautica, 2021,
under review.

[45] Cannavó, F., “Sensitivity Analysis for Volcanic SourceModeling Qual-
ity Assessment and Model Selection,” Computers & Geosciences,
Vol. 44, July 2012, pp. 52–59.
https://doi.org/10.1016/j.cageo.2012.03.008.

[46] Wilson, K. T. H., and Schaub, H., “An X-Ray Spectroscopic Approach
to Remote Space Object Potential Determination: Experimental
Results,” AIAA SciTech, AIAA Paper 2020-0049, 2020.
https://doi.org/10.2514/6.2020-0049.

[47] Chung, M. S., and Everhart, T. E., “Simple Calculation of Energy
Distribution of Low-Energy Secondary Electrons Emitted from Metals
Under Electron Bombardment,” Journal of Applied Physics, Vol. 45,
No. 2, 1974, pp. 707–709.
https://doi.org/10.1063/1.1663306.

D. P. Thunnissen
Associate Editor

750 ROMERO-CALVO, CANO-GÓMEZ, AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 B

O
U

L
D

E
R

 o
n 

M
ay

 2
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
19

0 

https://doi.org/10.1007/BF03546427
https://doi.org/10.1007/BF03546427
https://doi.org/10.1007/BF03546427
https://doi.org/10.2514/1.A35039
https://doi.org/10.2514/1.A35039
https://doi.org/10.2514/1.A35039
https://doi.org/10.2514/1.A35039
https://doi.org/10.1007/s40295-013-0011-8
https://doi.org/10.1007/s40295-013-0011-8
https://doi.org/10.1007/s40295-013-0011-8
https://doi.org/10.2514/1.A35086
https://doi.org/10.2514/1.A35086
https://doi.org/10.2514/1.A35086
https://doi.org/10.2514/1.A35086
https://doi.org/10.1016/0304-3886(87)90085-4
https://doi.org/10.1016/0304-3886(87)90085-4
https://doi.org/10.1016/0304-3886(87)90085-4
https://doi.org/10.1007/BF00756881
https://doi.org/10.1007/BF00756881
https://doi.org/10.1007/BF00756881
https://doi.org/10.1023/A:1004917512774
https://doi.org/10.1023/A:1004917512774
https://doi.org/10.1023/A:1004917512774
https://doi.org/10.1007/s11214-015-0182-7
https://doi.org/10.1007/s11214-015-0182-7
https://doi.org/10.1007/s11214-015-0182-7
https://doi.org/10.1002/9781118241400.ch3
https://doi.org/10.1002/9781118241400.ch3
https://doi.org/10.1002/9781118241400.ch3
https://doi.org/10.1002/9781118241400.ch3
https://doi.org/10.1029/JA086iA08p06809
https://doi.org/10.1029/JA086iA08p06809
https://doi.org/10.1029/JA086iA08p06809
https://doi.org/10.1007/BF00175284
https://doi.org/10.1007/BF00175284
https://doi.org/10.1007/BF00175284
https://doi.org/10.1109/TPS.2008.2004765
https://doi.org/10.1109/TPS.2008.2004765
https://doi.org/10.1109/TPS.2008.2004765
https://doi.org/10.1109/TPS.2008.2004765
https://doi.org/10.1109/TPS.2008.2004765
https://doi.org/10.1109/TPS.2019.2922556
https://doi.org/10.1109/TPS.2019.2922556
https://doi.org/10.1109/TPS.2019.2922556
https://doi.org/10.1109/TPS.2019.2922556
https://doi.org/10.1109/TPS.2019.2922556
https://doi.org/10.1029/JA093iA01p00175
https://doi.org/10.1029/JA093iA01p00175
https://doi.org/10.1029/JA093iA01p00175
https://doi.org/10.1029/JA095iA03p02389
https://doi.org/10.1029/JA095iA03p02389
https://doi.org/10.1029/JA095iA03p02389
https://doi.org/10.1029/JA095iA12p21307
https://doi.org/10.1029/JA095iA12p21307
https://doi.org/10.1029/JA095iA12p21307
https://doi.org/10.1029/90JA02102
https://doi.org/10.1029/90JA02102
https://doi.org/10.1029/90JA02102
https://doi.org/10.1029/93JA02230
https://doi.org/10.1029/93JA02230
https://doi.org/10.1029/93JA02230
https://doi.org/10.1117/12.370129
https://doi.org/10.1117/12.370129
https://doi.org/10.1117/12.370129
https://doi.org/10.1117/12.370129
https://doi.org/10.1088/0022-3735/15/3/025
https://doi.org/10.1088/0022-3735/15/3/025
https://doi.org/10.1088/0022-3735/15/3/025
https://doi.org/10.1016/0032-0633(74)90097-X
https://doi.org/10.1016/0032-0633(74)90097-X
https://doi.org/10.1016/0032-0633(74)90097-X
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.1016/j.asr.2012.08.014
https://doi.org/10.3389/fspas.2019.00035
https://doi.org/10.3389/fspas.2019.00035
https://doi.org/10.3389/fspas.2019.00035
https://doi.org/10.3389/fspas.2019.00035
https://doi.org/10.3389/fspas.2019.00035
https://doi.org/10.2514/1.A34434
https://doi.org/10.2514/1.A34434
https://doi.org/10.2514/1.A34434
https://doi.org/10.2514/1.A34434
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4818428
https://doi.org/10.1063/1.4818428
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.1016/j.cageo.2012.03.008
https://doi.org/10.2514/6.2020-0049
https://doi.org/10.2514/6.2020-0049
https://doi.org/10.2514/6.2020-0049
https://doi.org/10.2514/6.2020-0049
https://doi.org/10.1063/1.1663306
https://doi.org/10.1063/1.1663306
https://doi.org/10.1063/1.1663306
https://doi.org/10.1063/1.1663306
https://arc.aiaa.org/action/showLinks?crossref=10.1029%2FJA086iA08p06809&citationId=p_21
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.cageo.2012.03.008&citationId=p_45
https://arc.aiaa.org/action/showLinks?crossref=10.3389%2Ffspas.2019.00035&citationId=p_37
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2FBF00175284&citationId=p_22
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A35086&citationId=p_14
https://arc.aiaa.org/action/showLinks?crossref=10.1515%2F9781400839094&citationId=p_38
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FTPS.2008.2004765&citationId=p_23
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0273-1177%2888%2990358-4&citationId=p_15
https://arc.aiaa.org/action/showLinks?crossref=10.1063%2F1.1663306&citationId=p_47
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A34434&citationId=p_40
https://arc.aiaa.org/action/showLinks?crossref=10.1117%2F12.370129&citationId=p_32
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FTPS.2019.2922556&citationId=p_24
https://arc.aiaa.org/action/showLinks?crossref=10.1063%2F1.4818428&citationId=p_41
https://arc.aiaa.org/action/showLinks?crossref=10.1088%2F0022-3735%2F15%2F3%2F025&citationId=p_33
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2FBF00756881&citationId=p_17
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A35039&citationId=p_10
https://arc.aiaa.org/action/showLinks?crossref=10.1137%2FS1064827594276424&citationId=p_42
https://arc.aiaa.org/action/showLinks?crossref=10.1023%2FA%3A1004917512774&citationId=p_18
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A35039&citationId=p_11
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0032-0633%2874%2990097-X&citationId=p_35
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2Fs11214-015-0182-7&citationId=p_19
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2Fs40295-013-0011-8&citationId=p_12
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.asr.2012.08.014&citationId=p_36


This article has been cited by:

1. Álvaro Romero Calvo, Julian Hammerl, Hanspeter Schaub. Touchless potential sensing of complex differentially-charged
shapes using secondary electrons . [Abstract] [PDF] [PDF Plus]

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 B

O
U

L
D

E
R

 o
n 

M
ay

 2
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
19

0 

https://doi.org/10.2514/6.2022-2311
https://arc.aiaa.org/doi/pdf/10.2514/6.2022-2311
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2022-2311

