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The relative orbit geometry of a spacecraft formation can be elegantly described in terms of
a set of orbit element differences relative to a common chief orbit. For the non-perturbed orbit
motion these orbit element differences remain constant if the anomaly difference is expressed in
terms of the mean anomaly and all semi-major axes are equal. A general method is presented to
estimate the linearized relative orbit geometry for both circular and elliptic chief reference orbits.
The relative orbit is described purely through relative orbit element differences, not through the
classical method of using Cartesian initial conditions. Analytical solutions of the relative motion are
provided in terms of the true anomaly angle. By sweeping this angle from 0 to 2π, it is trivial to
estimate the along-track, out-of-plane and orbit radial dimensions. The orbit element based relative
motion predictions are valid for both the osculating element space and the mean element space. The
main assumption being made in the linearization is that the relative orbit radius is small compared
to the inertial orbit radius relative to Earth. The resulting linearized relative motion solution can
be used to assist in selecting the orbit element differences that yield a natural desired relative orbit
geometry. Linearized analytical solutions are provided that show what secular drift is caused by
having a non-zero semi-major axis difference, or what influence the J2 gravitational perturbation will
have on the mean relative motion.

Introduction
To describe and control the relative motion between var-

ious spacecraft in a formation, various coordinate sets have
traditionally been used. A common choice is to use the
Cartesian coordinates of the relative position vector with
components expressed in the rotating rotating Hill coordi-
nate frame.1–3 The six Cartesian initial conditions are the
invariant parameters of the relative orbit. A more accurate
choice in coordinates would be to use curvilinear coordi-
nates in the same Hill coordinate frame. Using either set,
assuming a small relative orbit size and a circular chief orbit,
it is possible to solve the corresponding Clohessy-Wiltshire
differential equations of motion and obtain an analytical ex-
pression of all possible uncontrolled relative motions. This
solution has been extensively used to study the linearized
relative motion of satellites and design reference trajecto-
ries for the relative orbit control problem. An alternate set
of six invariant parameters to describe the relative orbit is
to use orbit element differences relative to the chief orbit.4–8

Prescribing the relative orbit geometry through sets of rela-
tive orbit element differences has the major advantage that
these relative orbit coordinates are constants of the non-
perturbed orbit motion. Even if perturbations are present,
they typically cause the orbit element differences to vary
slowly with time.

Several relative orbit control strategies have recently been
suggested that feed back relative orbit errors in terms of or-
bit element differences.9–13 However, no mention is made
in these references how to construct a desired relative or-
bit geometry using orbit element differences. Typically the
required orbit element differences are found through a trial
and error method of changing the orbit elements and observ-
ing the resulting relative orbit geometry. This is particularly
true if the chief orbit has a significant non-zero eccentricity
value. In comparison, the analytical relative motion solution
of the Clohessy-Wiltshire equations provides direct insight
into the shape, size and location of the relative orbit. How-
ever, this elegantly simple result is only valid for circular
chief orbits.

The goal of this paper is to provide simple linearized es-
timates of the uncontrolled (x, y, z) relative orbit motion
in the rotating Hill frame in terms of classical orbit element
differences. Note that the relative motion is still assumed to
be defined in terms of the orbit element differences and not
the Cartesian coordinates. However, the latter coordinates
are used to describe the resulting relative orbit geometry
in a more intuitive manner. Contrary to previous work
in this area,7,8 the presented results are general in that

∗Assistant Professor, Senior AIAA Member.

they show the effect of all six orbit element differences and
apply to both circular and elliptic chief orbits. Direct lin-
earized relationships between the orbit element differences
and the resulting relative orbit geometry are presented for
both circular and eccentric chief orbits. No small eccen-
tricity assumptions are required in this development. In
particular, the relative orbit along-track, out-of-plane and
orbit radial motion and offsets are estimated for specific sets
of orbit element differences for the case of bounded relative
orbits. The only linearizing assumption made here is that
the relative orbit radius is small compared to the inertial
orbit radius. Further, linear approximations to the orbit el-
ement drift equations are provided for having unequal orbit
energies and for studying mean relative orbit motion un-
der the J2 gravitational influence. The solution is valid for
both bounded and un-bounded relative motion. However,
the relative orbit (x, y, z) description is now only valid as
long as the relative orbit radius is small compared to the
inertial orbit radius. Note that the orbit element difference
description itself is still valid if this is not the case, only the
linearized mapping into the (x, y, z) Hill frame coordinates
breaks down at this point.

Analytical solutions to the linearized relative motion with
eccentric chief orbits have been studied in References 14–20.
Melton developed a state transition matrix that can be used
to predict the relative motion for chief orbits with small
eccentricities.14 Tschauner and Hempel have solved the
relative equations of motion directly for the general case
of having an elliptic chief orbit.15 Kechichian develops in
Reference 16 the analytical solution to the relative orbit
motion under the influence of both the J2 and J3 zonal
harmonics assuming that the eccentricity is a very small pa-
rameter. However, all these relative motion solutions are
not explicit and require the computation of an integral. In
Reference 17 Carter does present an analytical solution to
the linearized relative motion where the true anomaly is
used as the independent variable. However, this solution
is in terms of the Cartesian coordinates and not in terms
of the desired orbit element differences. Reference 20 uses
this analytical linearized motion result from Carter to study
the relative motion dynamics of elliptic chief orbits and de-
rives Cartesian Hill frame coordinate conditions for bounded
relative motion. More recently, Broucke has presented in
Reference 19 an analytical solution to the linearized rel-
ative equations of motion for eccentric chief orbits. His
solution uses both time and true anomaly and finds the cur-
rent Cartesian coordinates of a deputy satellite given the
initial Cartesian coordinates. Unfortunately all these meth-
ods yield relatively complex solutions and the six Cartesian
relative motion initial conditions do not easily reveal the

1



2 SCHAUB: RELATIVE ORBIT GEOMETRY

geometry of the resulting relative orbit. In particular, the
secular and sinusoidal contributions are not easily separated
as is the case with the CW equations solution. Thus, it is not
intuitive to the relative orbit design process how to adjust
the initial Cartesian conditions to obtain a relative orbit of
the desired shape and size without resorting to a numerical
trial and error method.

In References 12 and 21, a linearized mapping is presented
between a particular set of orbit element differences and
the Cartesian position and velocity coordinates in the ro-
tating Hill reference frame. This work was then expanded
in Reference 18 to provide the state transition matrix for
the relative orbit motion using a set of orbit elements which
are non-singular for circular orbits. In the present paper
the linearized mapping in Reference 12 between orbit ele-
ment differences and the rotating Cartesian coordinates is
recast into a new form using the classical orbit elements.
The simpler result can describe the relative orbit geome-
try (i.e. relative orbit positions) without singularities, thus
there is no need to use the mathematically more complex
non-singular orbit elements. Further, the solution is pre-
sented in terms of differences in mean anomalies and not
differences in true latitude angles as in Reference 12. The
reason being that for elliptic motions, a mean anomaly dif-
ference between two satellites remains constant under the
assumption of classical Keplerian motion and equal orbit
energies. The final relative motion description is then sim-
plified to a form which isolates the static offsets and the
sinusoidal motion components, analogous to the algebraic
form of the analytical solution of the Clohessy-Wiltshire
equations. The resulting linearized analytic relative orbit
solution is useful when designing a relative orbit that must
meet scientific mission requirements. If the relative orbit
must have a certain along-track behavior, then this solution
directly shows how to adjust the relative orbit element dif-
ferences to achieve the desired motion. Further, the general
solution for elliptic chief orbits is specialized for the small
eccentricity case and near circular orbit case.

Note that this paper does not discuss control applications
of this linearized relative motion description. This requires
developing the relative orbit velocity expressions. Refer-
ence 12 illustrates how the complete linearized mapping
between non-singular orbit element differences and Carte-
sian Hill frame coordinates, including velocity expressions,
can be combined in a hybrid control law. Instead, the rela-
tive motion equations in this paper are provided for analysis
purposes to study natural, uncontrolled relative motions.

Relative Orbit Definitions
The following nomenclature is adopted to describe the

satellites within a spacecraft formation. The satellite about
which all other satellites are orbiting is referred to as the
chief satellite. The remaining satellites, referred to as the
deputy satellites, are to fly in formation with the chief. Note
that it is not necessary that the chief position actually be
occupied by a physical satellite. Sometimes this chief po-
sition is simply used as an orbiting reference point about
which the deputy satellites orbit. To express how the rel-
ative orbit geometry is seen by the chief, we introduce the
Hill coordinate frame O.22 Its origin is at the osculating
chief satellite position and its orientation is given by the
vector triad {ôr, ôθ, ôh} shown in Figures 1. The unit vec-
tor ôr is in the orbit radius direction, while ôh is parallel to
the orbit momentum vector in the orbit normal direction.
The unit vector ôθ then completes the right-handed coordi-
nate system. Let r be the chief orbit radius and h be the
chief angular momentum vector. Unless noted otherwise,
any non-differenced states or orbit elements are assumed to
be those of the chief. Differenced states are assumed to be
differences between the deputy and chief satellite. Mathe-
matically, these O frame orientation vectors are expressed

as

ôr =
r

r
(1a)

ôθ = ôh × ôr (1b)

ôh =
h

h
(1c)

with h = r × ṙ. Note that if the inertial chief orbit is
circular, then ôθ is parallel to the satellite velocity vector.
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Fig. 1 Illustration of a General Type of Spacecraft For-
mation with Out-Of-Plane Relative Motion

The relative orbit position vector ρ and velocity vector
ρ̇ of a deputy satellite relative to the chief is expressed in
Cartesian O frame components as

ρ = (x, y, z)T (2)

ρ̇ = (ẋ, ẏ, ż)T (3)

The relative position and velocity vectors are compactly
written as

X =

„
ρ
ρ̇

«
(4)

Thus, given both the relative position vector ρ and the chief
position vector r, we are able to determine the inertial mo-
tion of a deputy satellite. Note that the x and y coordinates
don’t have to be interpreted as rectilinear coordinates. In-
terpreting them as curvilinear coordinates no changes in the
mathematical expressions are required. Here x is interpreted
as a difference in the orbit radius and y is interpreted as the
curved flight path difference. Assuming x and y are curvilin-
ear results greatly enhances the accuracy of the linearization
result.

Instead of using Cartesian coordinates to describe the rel-
ative position of a deputy to the chief, we can also use orbit
element differences.4,5 Let the vector e be defined through
the orbit elements

e = (a, θ, i, q1, q2, Ω)T (5)

where a is the semi-major axis, θ = ω+f is the true latitude
angle, i is the orbit inclination angle, Ω is the argument of
the ascending node and qi are defined as

q1 = e cos ω (6)

q2 = e sin ω (7)

The parameter e is the eccentricity, ω is the argument of
perigee, and f be the true anomaly. Let the relative or-
bit be described through the orbit element difference vector
δe. Whereas all six elements of the relative orbit state X
vector are time varying, all the orbit element differences,
except for the true anomaly difference, are constant for a
non-perturbed Keplerian orbit. This has many advantages
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when measuring the relative orbit error motion and applying
it to a control law. In References 21 and 12 a convenient
direct mapping is presented which translates between the
Cartesian states X and the orbit element differences δe.
In deriving this mapping, it is assumed that the relative
orbit radius ρ is small in comparison to the inertial chief
orbit radius r. While Reference 12 shows both the forward
and backward mapping between these relative orbit coor-
dinates, only the mapping from orbit element differences
to Cartesian Hill frame coordinates is used in the following
development. The relative position vector components are
given in terms of orbit elements through:

x ≈ r

a
δa +

Vr

Vt
r δθ − r

p
(2aq1 + r cos θ)δq1

− r

p
(2aq2 + r sin θ)δq2

(8a)

y ≈ r(δθ + cos i δΩ) (8b)

z ≈ r(sin θ δi− cos θ sin i δΩ) (8c)

The parameter p = a(1−e2) = aη2 is the semi-latus rectum,

with η =
√

1− e2 being another convenient measure of the
orbit eccentricity. The chief radial and transverse velocity
components Vr and Vt are defined as

Vr = ṙ =
h

p
(q1 sin θ − q2 cos θ) (9)

Vt = rθ̇ =
h

p
(1 + q1 cos θ + q2 sin θ) (10)

The orbit radius r is defined in terms of the orbit elements
used in Eq. (5) as

r =
a(1− q2

1 − q2
2)

1 + q1 cos θ + q2 sin θ
=

aη2

1 + e cos f
(11)

Note that the ratio Vr/Vt in Eq. (8a) can be rewritten as

Vr

Vt
=

q1 sin θ − q2 cos θ

1 + q1 cos θ + q2 sin θ
=

e sin f

1 + e cos f
(12)

Alternate mappings between orbit element differences and
Cartesian relative orbit coordinates are found in Refer-
ences 6 and 23. The following development will take this
orbit element mapping between local Cartesian coordinates
and orbit element differences and reformulate the solution
into a new form where the relative orbit geometry will be
readily apparent. For the circular chief orbit special case,
the Hill or Clohessy-Wiltshire (CW) relative equations of
motion have the convenient analytical solution24,25

x(t) = A0 cos(nt + α) + xoff (13a)

y(t) = −2A0 sin(nt + α) + yoff −
3

2
nxofft (13b)

z(t) = B0 cos(nt + β) (13c)

The integration constants A0, B0, α, β, xoff and yoff are
determined through the relative orbit initial conditions. By
choosing the initial relative orbit Cartesian coordinates, the
resulting relative orbit geometry can be easily seen through
the secular, sinusoidal and constant terms in Eq. (13). For
the relative orbit designer, what classes of unforced relative
orbit motion is possible is readily apparent. This type of rel-
ative orbit geometry analysis is not possible with the form
of the relative motion description in Eq. (8), because the
terms δθ, r, Vr and Vθ are all time varying. The following
development will yield a simple solution of the linearized
relative motion for generally eccentric orbits that is equiva-
lent to the simple classical CW solution of the circular chief
motion special case. Given specified orbit element differ-
ences, the resulting linearized relative orbit motion will be
seen through a simple combination of constant offsets, secu-
lar terms, and sinusoidal components. Contrary to the CW
analytical solution, this relative orbit description will apply
to both circular and eccentric chief orbits.

Mean Anomaly Drift Due to Unequal
Orbit Energies

Assuming unperturbed Keplerian motion, the orbit pe-
riod is determined solely from the semi-major axis a. Ig-
noring other perturbations, if two orbits have unequal semi-
major axes, then we expect the two anomaly angles to drift
apart. Thus, having a non-zero δa will result in the mean
anomaly difference δM having a secular drift. This section
derives analytical solutions the mean anomaly drift in terms
of the true anomaly angle as the independent variable in-
stead of the time variable. These first order approximations
will be of use in the following sections where the linearized
relative motion is described in terms of mean anomaly dif-
ferences. The chief mean anomaly M is given by

M(t) = nt + M0 =

r
µ

a3
t + M0 (14)

where M0 = M(t0). The mean anomaly rate is expressed as

Ṁ =
dM

dt
=

r
µ

a3
(15)

Taking the first variation of Eq. (15), we find that small

differences in mean anomaly rates δṀ are related to small
differences in the semi-major axis δa through

δṀ =
d(δM)

dt
= −3

2

r
µ

a5
δa = −3

2
n

δa

a
(16)

By defining these differences to be differences between
deputy and chief satellite orbit elements, Eq. (16) provides
an approximation to how the mean anomaly difference will
vary due to δa. Note that the true nonlinear drift in mean
anomalies is given by

δṀ = Ṁd − Ṁ =

r
µ

(a + δa)3
−
r

µ

a3
(17)

where ad = a + δa. We could easily integrate Eq. (16)
with respect to time to estimate the mean anomaly differ-
ence at a particular time step t. However, it would still
be necessary to solve Kepler’s equation to relate a time t
to the corresponding true anomaly angle f to make use of
the relative orbit description in terms of true anomaly de-
pendent orbit element differences. These are extra steps
in evaluating the linearized relative orbit that are prefer-
ably avoided in order to yield a simple analytical solution
of the linearized relative motion applicable for relative mo-
tion analysis. The following steps will lead to an analytical
solution of the linearized drift equation δṀ(f). First the
differential equation in Eq. (16), which is expressed with re-
spect to time, is rewritten to be expressed with respect to
the true anomaly f . To accomplish this, we make use of the
identity

dt

df
=

r2

h
=

η3

n(1 + e cosf)2
(18)

where η =
√

1− e2. Multiplying both sides of Eq. (16) by
dt/df , we find

δM ′ =
d

df
(δM) = −3

2

η3

(1 + e cosf)2
δa

a
(19)

The differential equation in Eq. (19) could be numerically
integrated with respect to the true anomaly f to find the
required δM(f) without having to solve Kepler’s equation
at each integration step. However, this differential equation
can be solved analytically as well. Note thatZ f

f0

η3

(1 + e cosf)2
df = M(f)−M0 (20)
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where M0 = M(f0). Applying this integral solution to
Eq. (19) yields:

δM(f) = δM0 −
3

2
(M(f)−M0)

δa

a
(21)

The mean anomaly is expressed in terms of the true anomaly
using

M = E(f)− e sin E(f) (22)

The variable E is the eccentric anomaly and is related to
the true anomaly f through the transformation

E(f) = 2 arctan

„√
1− e sin(f/2)√
1 + e cos(f/2)

«
(23)

When numerically evaluating E(f), note that the
atan2(x,y) function should be used to avoid arctan() sin-
gularities and obtain angles in the proper quadrant. Thus,
Eq. (21) provides a direct analytical approximation of the
mean anomaly drift due to δa in terms of the true anomaly
f . Further, note that this δM(f) approximation is valid for
chief orbits of any eccentricity, as long as the relative orbit
size has not grown large compared to the chief inertial orbit
radius. The term M(f) provides the expected secular term
in δM(f) due to the semi-major axis difference δa and will
grow unbounded with time.

A common mission scenario is that the chief orbit only has
a weakly eccentric orbit. The general expression in Eq. (21)
can then be refined by neglecting higher order terms of the
eccentricity e and only retaining terms which are linear in
e. Since we are already dropping higher order terms in ρ/r
to obtain the linearized relative motion equations, a weakly
eccentric orbit is understood to be one where en (with n >
1) is smaller than ρ/r and e is larger than ρ/r. For this
case, the approximation of the mean anomaly drift δM(f)
is expressed as

δM(f) = δM(f0)−
3

2
(f − 2e sinf)

˛̨̨f
f0

δa

a
(24)

If the chief orbit is essentially circular, then e is virtually
zero and much smaller than the relative orbit radius to in-
ertial orbit radius ratio ρ/r. In this case, the approximation
of the mean anomaly drifts δM(f) is reduced to

δM(f) = δM(f0)−
3

2
(f − f0)

δa

a
(25)

General Elliptic Orbits
To find a simple closed-form analytical solution of the

linearized relative motion, note that Eq. 8 provides a di-
rect linear mapping between orbit element differences δe
and the Hill frame Cartesian coordinates ρ. The only lin-
earizing assumption made is that the relative orbit radius
ρ is small compared to the inertial chief orbit radius r. No
small eccentricity assumptions have been made. However,
when describing a relative orbit through orbit element differ-
ences, it is not convenient to describe the anomaly difference
through δθ or δf . For elliptic chief orbits, the difference in
true anomaly between two orbits will vary with time even
when the relative orbit is closed and bounded. To avoid
this issue, the desired anomaly difference between two or-
bits is expressed here in terms of a mean anomaly difference
δM . This anomaly difference will remain constant even for
elliptic chief orbits, assuming unperturbed Keplerian mo-
tion with equal orbit energy states as shown in Eqs. (21),
(24) and (25). To express the mean anomaly differences in
terms of other anomaly differences, we make use of the mean
anomaly definition

M = E − e sin E (26)

where E is the eccentric anomaly. Taking its first variation
we express differences in mean anomaly in terms of differ-
ences in eccentric anomaly and differences in eccentricity.

δM =
∂M

∂E
δE +

∂M

∂e
δe

= (1− e cos E)δE − sin Eδe
(27)

Using the mapping between eccentric anomaly E and true
anomaly f

tan
f

2
=

r
1 + e

1− e
tan

E

2
(28)

and taking its first variation, differences in E are then ex-
pressed as differences in f and e through

δE =
η

1 + e cos f
δf − sin f

1 + e cos f

δe

η
(29)

Substituting Eq. (29) into Eq. (27) and making use of the
orbit identities

(1− e cos E) =
η2

(1 + e cos f)
(30)

sin E =
η sin f

(1 + e cos f)
(31)

the desired relationship between differences in true and
mean anomalies is found.

δf =
(1 + e cos f)2

η3
δM +

sin f

η2
(2 + e cos f)δe (32)

Let us redefine the orbit element difference vector δe to
consist of the classical orbit elements:

δe = (δa, δM, δi, δω, δe, δΩ)T (33)

Note that all these orbit element differences are constants
for Keplerian two-body motion where all orbits have equal
energy states. Further, while using q1 and q2 instead of e
and ω allows us to avoid singularity issues for near-circular
orbit velocity expressions, for the following relative orbit ge-
ometry discussion such singularities do not appear. In fact,
describing the relative orbit path using δe and δω instead
of δq1 and δq2 yields a simpler, more elegant, and thus a
more intuitive result to analyze all possible unforced rela-
tive orbits. However, to use this linear mapping between
orbit element differences and Hill frame Cartesian coordi-
nates in control applications, the non-singular elements in
Eq. (5) should be used to avoid near-circular orbit singular-
ity issues. Control laws using Eq. (8) have been discussed
in Reference 12. Using Eqs. (6) and (7), the differences in
the qi parameters are expressed as

δq1 = cos ωδe− e sin ωδω (34a)

δq2 = sin ωδe + e cos ωδω (34b)

After substituting Eqs. (32) and (34) into the linear map-
ping in Eq. (8) and simplifying the result, we are able to
express the relative position coordinates (x, y, z) in terms of
the orbit element differences in Eq. (33) through

x(f) ≈ r

a
δa +

ae sin f

η
δM − a cos fδe (35a)

y(f) ≈ r

η3
(1 + e cos f)2δM + rδω

+
r sin f

η2
(2 + e cos f)δe + r cos iδΩ

(35b)

z(f) ≈ r(sin θδi− cos θ sin iδΩ) (35c)
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Note that with this linearized mapping the difference in the
argument of perigee δω does not appear in the x(f) expres-
sion. Further, these equations are valid for both circular and
elliptic chief orbits. Only the δM and δe terms contribute
periodic terms to the radial x(f) solution. Due to the depen-
dence of r on the true anomaly f , all orbit element difference
terms in the along-track y(f) motion contribute both static
offsets as well as periodic terms. For the out-of-plane z(f)
motion both the δi and δΩ terms control the out-of-plane
oscillations. By dividing the dimensional (x, y, z) expres-
sions in Eq. (35) by the chief orbit radius r(f) and making
use of Eq. (11), we obtain the non-dimensional relative orbit
coordinates (u, v, w).

x(f)

r(f)
= u(f) ≈ δa

a
+ (1 + e cos f)

e sin f

η3
δM

− (1 + e cos f)

η2
cos fδe

(36a)

y(f)

r(f)
= v(f) ≈ (1 + e cos f)2

δM

η3
+ δω

+
sin f

η2
(2 + e cos f)δe + cos iδΩ

(36b)

z(f)

r(f)
= w(f) ≈ sin θδi− cos θ sin iδΩ (36c)

Since (y, z) � r, the non-dimensional coordinates (v, w)
are the angular deputy satellite relative orbit position with
respect to the chief orbit radius axis.

However, the present form of Eq. (36) is not convenient to
determine the overall non-dimensional shape of the relative
orbit. The reason is that there are several sin() and cos()
functions being added here. Using the identities

A sin t+B cos t=
p

A2+B2 cos

„
t− tan−1

„
A

B

««
= −

p
A2+B2 sin

„
t− tan−1

„
B

−A

«« (37)

as well as standard trigonometric identities, we are able to
rewrite the linearized non-dimensional relative orbit motion
as

u(f) ≈ δa

a
+

1

η2

s
e2δM2

η2
+ δe2 cos(f − fu)

− eδe

2η2
+

e

2η2

s
e2δM2

η2
+ δe2 cos(2f − fu)

(38a)

v(f) ≈
„„

1 +
e2

2

«
δM

η3
+ δω + cos iδΩ

«

+
2

η2

s
e2δM2

η2
+ δe2 cos(f − fv)

+
e

2η2

s
e2δM2

η2
+ δe2 cos(2f − fv)

(38b)

w(f) ≈
p

δi2 + sin2i δΩ2 cos (θ − θw) (38c)

with the phase angles fu, fv and θw being defined as

fu = tan−1

„
eδM

−ηδe

«
(39a)

fv = tan−1

„
ηδe

eδM

«
= fu −

π

2
(39b)

θw = tan−1

„
δi

− sin i δΩ

«
(39c)

At the phase angles fu and θw, the trigonometric terms
will reach either their minimum or maximum value. Note

that 180 degrees can be added or subtracted from these
angles to yield the second extrema point of the trigonometric
functions. To further reduce the expression in Eq. (38), let
us introduce the small states δu and δw:

δu =

s
e2δM2

η2
+ δe2 (40a)

δw =
p

δi2 + sin2i δΩ2 (40b)

Using these δu and δw definitions as well as Eq. (39b), the
linearized relative orbit motion is described through

u(f) ≈ δa

a
− eδe

2η2

+
δu

η2

“
cos(f − fu) +

e

2
cos(2f − fu)

” (41a)

v(f) ≈
„„

1 +
e2

2

«
δM

η3
+ δω + cos iδΩ

«
− δu

η2

“
2 sin(f − fu) +

e

2
sin(2f − fu)

” (41b)

w(f) ≈ δw cos (θ − θw) (41c)

These equations describe the general linearized relative mo-
tion of the deputy satellite relative to the chief in terms of
orbit element differences and using true anomaly as the in-
dependent variable. For the non-dimensional motion where
δa = 0 and δM = constant, static offsets terms and si-
nusoidal terms are cleanly separated as is the case with the
classical analytical relative motion solution of the CW equa-
tions in Eq. (13). The secular growth terms are hidden in
the orbit element description in the orbit element differ-
ences themselves. For this common analytical case where
feasible bounded relative motions are studied, the relative
motion is obtained using Eq. (41) by simply sweeping the
true anomaly angle from its initial state f(t0) to its final
state f(tf ). For the case where a nonzero δa is considered,
then Eq. (21) is used to express the now time dependent
δM(f) term. If the orbit element differences vary with time
due non-Keplerian influences, then the orbit element drift
differential equation δė will have to be solved numerically
for the most general case. To relate the anomaly angle and
the current time, Kepler’s equation must be solved at each
time step.

To avoid standard inverse tangent singularities in the
computation of the phase angles in Eqs. (39a) – (39c), it
is important that the atan2(x,y) function and not the
atan(x) function is used to obtain an angle in the proper
quadrant. The only numerical problems that might arise
computing fu or fv is when either e or δM and δe are zero.
For this degenerate case there would be no relative in-plane
motion between the deputy and chief satellites (δu = 0) and
the phase angle fu is arbitrary. However, typical relative or-
bit designs require a non-zero δe or δM term. Similarly, the
θw angle is arbitrary if either i or δΩ and δi are zero. How-
ever, in this degenerate case no relative out-of-plane motion
would occur with δw being zero.

Note that the cos(2f) and sin(2f) terms are multiplied by
the eccentricity e. Only if the chief orbit is very eccentric
will these terms have a significant contribution to the over-
all relative orbit dimension. For the more typical case of
having a chief orbit with a small eccentricity e, these terms
only provide small perturbations to the dominant sin(f) and
cos(f) terms. However, the linearized relative motion solu-
tion shown is valid for any elliptic chief orbit eccentricity.
No expansions in e have been taken here. Using Eq. (41),
it is trivial to determine the maximum radial, along-track
and out-of-plane dimension of a relative orbit provided that
the relative orbit geometry is prescribed through the set of
orbit element differences {δa, δe, δi, δΩ, δω, δM}. The only
linearizing assumption made so far is that the relative orbit
radius is small compared to the planet centric inertial orbit
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radius. However, note that we are only estimating the non-
dimensional relative orbit shape. To obtain the true radial,
along-track and out-of-plane motions, we need to multiply
(u, v, w) by the chief orbit radius r. Since r is time de-
pendent for an elliptic chief orbit, the points of maximum
angular separation between deputy and chief satellites may
not correspond to the point of maximum physical distance.
To plot the dimensional linearized relative orbit motion, we
use Eq. (35) instead. However, due to the ratio’s of sin()
and cos() terms, it is not trivial to obtain the maximum
physical dimensions of the relative orbit.

Let us take a closer look at the out-of-plane motion.
The true latitude angle θw, at which the maximum angular
out-of-plane motion will occur, is given by Eq. (39c). As ex-
pected, if only a δΩ is prescribed, then the maximum w(f)
motion occurs during the equator crossing at θ = 0 or 180
degrees. If only a δi is prescribed, then the maximum w
motion occurs at θ = ±90 degrees.

hd

hc

δw

i

Chief Orbit
Plane

Deputy Orbit
Plane

δw

Ω

δΩ

i+δi

Fig. 2 Illustration of Orbit Plane Orientation Difference
between Chief and Deputy Satellites

The maximum angular out-of-plane motion is given by the
angle δw as shown in Figure 2. This angle δw is the tilt angle
of the deputy orbit plane relative to the chief orbit plane. As
such, it is the angle between the angular momentum vector
of the chief orbit and the angular momentum vector of the
deputy orbit. To prove that δw is indeed this angle, let us
make use of the spherical law of cosines for angles. Using
the spherical trigonometric law of cosines, we are able to
relate the angles δΩ, i, δi and δw through:26

cos δw = cos i cos(i+δi) + sin i sin(i+δi) cos δΩ (42)

Assuming that δΩ, δi and δw are small angles, we approxi-
mate sin x ≈ x and cos x ≈ 1− x2/2 to solve for δw.

δw =
p

δi2 + sin2 iδΩ2 (43)

Using the angle δw, the out-of-plane motion w(f) in
Eq. (41c) is written in the compact form shown.8,27

Chief Orbits with Small Eccentricity
In this section we assume that the chief orbit eccentricity

e is a small quantity. In particular, we assume that e is
small but greater than ρ/r, while powers of e are smaller
than ρ/r and are thus dropped. The inertial orbit radius r
is now approximated as

r =
aη2

1 + e cos f
≈ a(1− e cos f) (44)

while η2 ≈ 1. The linearized dimensional relative orbit mo-
tion in Eq. (35) is written for the small eccentricity case
as:

x(f) ≈ (1− e cos f)δa +
ae sin f

η
δM

− a cos fδe

(45a)

y(f) ≈ a

η
(1 + e cos f)δM + a(1− e cos f)δω

+ a sin f(2− e cos f)δe

+ a(1− e cos f) cos iδΩ

(45b)

z(f) ≈ a(1− e cos f)(sin θδi− cos θ sin iδΩ) (45c)

Making use of the trigonometric identity in Eq. (37), the
(x, y, z) motion is re-written as

x(f) ≈ δa + aδx cos(f − fx) (46a)

y(f) ≈ a

„
δM

η
+ δω + cos iδΩ

«
− aδy sin(f − fy)− ae

2
sin(2f)δe

(46b)

z(f) ≈ aδz cos(θ − θz)−
ae

2
δz cos(2f − fz)

− ae

2
(sin ωδi− cos ω sin iδΩ)

(46c)

with the small states δx, δy and δz being defined as

δx =

s
e2δM2

η2
+

„
δe +

δa

a

«2

(47a)

δy =

s
4δe2 + e2

„
δM

η
− δω − cos iδΩ

«2

(47b)

δz =
p

δi2 + sin2 iδΩ2 (47c)

and the phase angles fx, fy, θz and fz being defined as

fx = tan−1

 
eδM

−η
`
δe + δa

a

´! (48a)

fy = tan−1

0@e
“

δM
η
− δω − cos iδΩ

”
−2δe

1A (48b)

θz = tan−1

„
δi

− sin iδΩ

«
(48c)

fz = tan−1

„
cos ωδi + sin ω sin iδΩ

sin ωδi− cos ω sin iδΩ

«
(48d)

As was the case for the general eccentric orbit case the lin-
earized relative motion solution in Eq. (46) has the static
and trigonometric terms separated. If δa is non-zero, then
the δM(f) term expressed in Eq. (24) will lead to a secular
growth of the relative orbit.

The tan−1() terms are again computed using the
atan2(x,y) function to avoid singularities with a zero de-
nominator and obtain an angle in the proper quadrant. Note
that the orbital radial motion x(f) for the small eccentric-
ity case is identical to the general orbit radial coordinate
in Eq. (35a) if δa is zero. The semi-major axis difference
must be zero for bounded relative motion if no perturba-
tions are present. With perturbations present, δa may be
non-zero and the orbit radial coordinate will then be differ-
ent between the linearizing approximations. The estimated
along-track motion y(f) and out-of-plane motion z(f) will
always be numerically different between the generally ellip-
tic case and the small eccentricity case.

The dimensional form of the relative orbit motion in
Eq. (45) is convenient to determine the amplitudes of the
sinusoidal motion in either the along-track, orbit radial or
out-of-plane motion. Note that since e is considered small,
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the double-orbit frequency terms sin(2f) are only a mi-
nor perturbation to the dominant orbit frequency sinusoidal
terms. Also, if the orbit element differences remain con-
stant, then the true anomaly angle f determines the relative
motion. If δė is non-zero, then the orbit element drift equa-
tions must be solved as well.

Near-Circular Chief Orbit
If the chief orbit is circular or near-circular, and the rel-

ative orbit radius is small compared to the planet centric
orbit radius, then the linearized relative equations of mo-
tion are given through the famous Clohessy-Wiltshire or
CW equations.24 These are sometimes also referred to as
Hill’s equations.22 These differential equations of the rela-
tive orbit motion can be solved for the explicit analytical
solution repeated here.

x(t) = A0 cos(nt + α) + xoff (49a)

y(t) = −2A0 sin(nt + α) + yoff −
3

2
nxofft (49b)

z(t) = B0 cos(nt + β) (49c)

The integration constants A0, B0, α, β, yoff and xoff are de-
termined through the relative orbit initial conditions. These
equations have been extensively used to generate relative or-
bits if the chief orbit is circular. Let us now compare the
predicted (x, y, z) motion in terms of the true anomaly in
Eq. (46) to the CW solution in Eq. (49) if the chief orbit
is assumed to be near-circular (i.e. e � ρ/r). In this case
terms containing the eccentricity e are dropped, as com-
pared to the small eccentricity case studied earlier where
only higher order terms of e were dropped. Assuming that
all δe components are small (i.e. the relative orbit radius
is assumed to be small compared to the inertial orbit ra-
dius), and letting e → 0, we find that r → a and η → 1.
Further, note that fx and fy approach π. Using Eq. (46)
and Eq. (25), the relative orbit motion (x(f), y(f), z(f)) is
expressed for the near-circular chief orbit special case as

x(f) ≈ a cos fδe + δa (50a)

y(f) ≈ −2a sin fδe + a(δω + δM(f0) + cos iδΩ)

− 3

2
(f − f0)δa

(50b)

z(f) ≈ a
p

δi2 + sin2 iδΩ2 cos (θ − θz) (50c)

Note that the maximum width of the oscillatory along-track
motion y is given by 2aδe. This particular result has been
previously presented in References 7 and 8. Comparing
Eqs. (49) and (50) and noting that nt = f − f0 for this
case, we are able to establish a direct relationship between
the CW constants and the orbit element differences.

A0 = aδe (51a)

B0 = a
p

δi2 + sin2 iδΩ2 (51b)

α = f0 ± π (51c)

β = f0 + ω − θz (51d)

xoff = δa (51e)

yoff = a(δω + δM(f0) + cos iδΩ) (51f)

Incorporating the J2 Perturbation
For low Earth orbits (LEO), the J2 gravitational pertur-

bation is the dominant perturbation for a formation with
spacecraft of equal type and build. While the atmospheric
drag will cause all satellite orbits to continuously loose en-
ergy, the deceleration is nearly identical among these space-
craft. The J2 perturbation will cause all six orbit elements,
and thus all six orbit element differences used to describe the
relative orbit, to vary with time. This perturbed motion
of the orbit elements is separated into short-period, long-
period and secular motion.28 The short and long period

motion is cyclic and does not cause unbounded relative or-
bit grow. The instantaneous motion of a satellite is referred
to as the osculating motion. The mean motion is what re-
mains after the short period and long period motions have
been removed. This mean motion can be thought of as an or-
bit averaged motion. The Brouwer-Lyddane theory is used
to obtain a first order analytic mapping between the oscu-
lating and mean orbit elements at any instance of time.28,29

Using this theory, given any instantaneous osculating orbit
elements, it is possible to compute the corresponding mean
orbit elements without performing any averaging computa-
tion over time. This is attractive for spacecraft formation
flying, where often it is not necessary to control the short
or long term period motions of the relative orbit, but rather
the focus is to avoid and counter the long-term drift caused
by the secular motion.

Although all six orbit elements will vary with time, when
mapping the osculating orbit elements to mean orbit ele-
ments, only three orbit elements are found to exhibit secular
grow due to the J2 gravitational influence. Let the param-
eter ε be defined as

ε(a, e) = 3J2

„
req

a(1− e2)

«2
(52)

The mean element differential equations are given by.25,30

ė1(t) =

8>>>><>>>>:
da

dt
= 0

de

dt
= 0

di

dt
= 0

(53a)

ė2(t) =

8>>>>><>>>>>:

dΩ

dt
= − ε(a, e)

2
n cos i

dω

dt
=

ε(a, e)

4
n (5 cos2i− 1)

dM0

dt
=

ε(a, e)

4
n η (3 cos2i− 1)

(53b)

Unless noted otherwise, this section assumes that all orbit
elements have been mapped into the mean element space.
As such, only the secular J2 induced motions are consid-
ered. Note the natural split into the orbit elements sets
e1 = {a, e, i} and e2 = {Ω, ω, M0} in the mean element
differential equations in Eq. (53). Thus, while the mean
element set e2 will experience secular drift due to the J2

gravitational perturbation, the rate of drift is constant and
solely determined by the invariant mean element set e1.

To predict the mean linearized relative motion using the
orbit element difference expressions in Eqs. (41), the dif-
ferential equations ė2 in Eqs. (53) could be analytically
integrated with respect to time to yield the chief and deputy
orbit element time histories e(t) and ed(t) respectively. Note
that only the three uncoupled orbit element difference differ-
ential equations {δΩ̇, δω̇, δṀ0} need to be integrated, since
the mean {a, e, i} elements to not vary under the influence
of the J2 gravitational attraction. However, to find the
osculating linearized relative motion, all twelve differential
equations for the chief and deputy osculating orbit elements
would have to be solved. Let us focus on computing the
mean relative motion between satellites. Since ė2 is constant
(see Eq. (53b)), the differential equations {δΩ̇, δω̇, δṀ0} are
trivially solved to yield {δΩ(t), δω(t), δM0(t)}. However, to
use these time dependent orbit element differences in the
linearized relative motion solution in Eq. (41), it is still nec-
essary to solve Kepler’s equation at each time step to map
the time state t into an equivalent true anomaly angle f .

The following development will illustrate how this can
be avoided to yield a complete analytical solution of the
linearized relative motion (in mean element space) using the
true anomaly angle f as the independent variable. Taking
the first variation of ė2, we are able to estimate how the
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small orbit element differences δe1 = {δa, δe, δi} will affect

the orbit element difference rates δė2 = {δΩ̇, δω̇, δṀ0}.

δΩ̇(t) = ε n

„
7

4
cos i

δa

a
− 2

e

η2
cos i δe +

1

2
sin i δi

«
(54a)

δω̇(t) = ε n
“
− 7

8
(5 cos2i− 1)

δa

a

+
e

η2
(5 cos2i− 1)δe− 5

4
sin(2i) δi

” (54b)

δṀ0(t) = ε n
“
− 7

8
η(3 cos2i− 1)

δa

a

+
3

4

e

η
(3 cos2i− 1)δe− 3

4
η sin(2i) δi

” (54c)

Next, these differential equations are multiplied by dt/df in
Eq. (18) to obtain δe′2.

δΩ′(f) = εδκΩ
η3

(1 + e cosf)2
(55a)

δω′(f) = εδκω
η3

(1 + e cosf)2
(55b)

δM ′
0(f) = εδκM

η3

(1 + e cosf)2
(55c)

with

δκΩ =
“7

4
cos i

δa

a
− 2

e

η2
cos i δe +

1

2
sin i δi

”
δκω =

“
− 7

8
(5 cos2i− 1)

δa

a
+

e

η2
(5 cos2i− 1)δe

− 5

4
sin(2i) δi

”
δκM =

“
− 7

8
η(3 cos2i− 1)

δa

a
+

3

4

e

η
(3 cos2i− 1)δe

− 3

4
η sin(2i) δi

”
Note that the terms δκΩ, δκω and δκM are constants since
the mean δa, δe and δi orbit element differences to not
vary under the influence of the J2 gravitational perturba-
tion. Making use of the integral expression in Eq. (20),
these differential equations are integrated with respect to
the true anomaly angle f to yield:

δΩ(f) = δΩ(f0) + ε δκΩ(M(f)−M0) (56a)

δω(f) = δω(f0) + ε δκω(M(f)−M0) (56b)

δM0(f) = δM0(f0) + ε δκM (M(f)−M0) (56c)

The current mean anomaly difference δM(f) is found by
substituting the δM0(f) into Eq. (21). With these analytic
solutions to the mean δΩ(f), δω(f) and δM(f) behavior,
using Eq. (41) we have an analytic solution to the mean
linearized relative orbit motion with the J2 gravitational
perturbation included. If we assume that the chief orbit is
only weakly linear, then the terms δκΩ, δκω and δκM reduce
to

δκΩ =
7

4
cos i

δa

a
− 2e cos i δe +

1

2
sin i δi (57)

δκω = −7

8
(5 cos2i− 1)

δa

a
+ e(5 cos2i− 1)δe

− 5

4
sin(2i) δi

(58)

δκM = −7

8
η(3 cos2i− 1)

δa

a
+

3

4
e(3 cos2i− 1)δe

− 3

4
η sin(2i) δi

(59)

If the chief orbit is near circular, then all terms containing
e are dropped leading to the simplified terms:

δκΩ =
7

4
cos i

δa

a
+

1

2
sin i δi (60)

δκω = −7

8
(5 cos2i− 1)

δa

a
− 5

4
sin(2i) δi (61)

δκM = −7

8
η(3 cos2i− 1)

δa

a
− 3

4
η sin(2i) δi (62)

Note that this elegant analytical solution to the orbit el-
ement differences δe(f) is only possible since for the mean
motion the δė2(t) rates only depend on the constant mean
e1 and δe1 parameters. When computing the δe′2(f) rates
the expressions do depend on the independent variable f ,
but are still analytically integrable. In comparison, to find
the osculating linearized relative motion, it is necessary to
numerical integrate the 12 orbit element differential equa-
tions e′(f) and e′d(f) for the chief and deputy satellites to
obtain the required δe(f) values.

Numerical Simulations
The following numerical simulations verify that the rel-

ative motion approximation in Eqs. (35), (46) and (50) do
indeed predict the spacecraft formation geometry. These
simulations also illustrate the accuracy at which these sim-
plified linearized solutions are valid. Let the chief orbit be
given by the orbit elements shown in Table 1.

Table 1 Chief Orbit Elements

Orbit Elements Value Units
a 7555 km
e 0.03 or 0.13
i 48.0 deg
Ω 20.0 deg
ω 10.0 deg

M0 0.0 deg

The relative orbits are studied for two different chief ec-
centricities. For the relative orbits studied, the ratio ρ/r is
about 0.003. The smaller of the two eccentricities consid-
ered is already an order of magnitude larger than this, while
the second eccentricity is even larger again. The numeri-
cal simulations show that the small eccentricity assumption
(i.e. retaining terms in e but dropping higher order terms
in e) will still yield a reasonable relative orbit prediction for
e = 0.03, even though it is larger than the small term ρ/r.
The orbit element differences which define the relative orbit
are given in Table 2. Since these simulations assume Keple-
rian motion of the satellites, the semi-major axis difference
δa must be zero to achieve a bounded relative motion.

Table 2 Orbit Element Differences Defining the Space-
craft Formation Geometry

Orbit Elements Value Units
δa 0 km
δe 0.00095316
δi 0.0060 deg
δΩ 0.100 deg
δω 0.100 deg

δM0 -0.100 deg

For example, for the e = 0.13 case these orbit element dif-
ferences were chosen assuming the relative orbit is to have
an angular along-track offset of 0.060777 degrees, a sinu-
soidal along-track angular motion of 0.027435 degrees and
an angular out-of-plane motion of 0.074556 degrees. Thus,
using Eq. (41a), δM0, δω and δΩ are chosen such that„

1 +
e2

2

«
δM0

η3
+ δω + cos iδΩ = 0.060777 degrees
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Fig. 3 Comparison of the Linearized Relative Orbit Solutions for Cases 1–4 with e = 0.03 and e = 0.13.

Clearly this choice in δM0, δω and δΩ is not unique. Other
combinations would yield the same angular offset. The ec-
centricity difference δe is chosen using Eq. (41b) such that

2

η2

s
e2δM2

0

η2
+ δe2 = 0.027435 degrees

Finally, the inclination angle difference is chosen using
Eq. (41c) such thatp

δi2 + sin2i δΩ2 = 0.074556 degrees

The following figures compare the relative orbit motion for
four different cases. Case 1 is the relative motion that will
result using the true nonlinear equations of motion. Case 2
uses the dimensional linearized analytical relative orbit so-
lution in Eq. (35). The only assumption that has been made
here is that the ratio between the relative orbit radius ρ and
the inertial chief orbit radius r is small and terms involving

ρ/r have been dropped. Case 3 assumes that the chief orbit
eccentricity is small, but not near zero. The relative orbit
motion is described through Eq. (46). Case 4 uses Eq. (50)
which assumes that the chief orbit is near-circular and that
e is very close to zero. Case 4 is not included here to suggest
that a circular orbit assumption should be made when the
chief orbit is clearly eccentric. The circular chief orbit as-
sumption case is included to provide a relative comparison
illustrating the extent of the eccentricity effect.

The resulting relative orbit motion is illustrated in Fig-
ure 3. Figures 3(a) and 3(b) show the three-dimensional
relative orbits for cases 1 through 4 as seen by the rotating
Hill reference frame. The relative orbit radii vary between
10 and 20 kilometers. When e = 0.03, note that the relative
orbits for cases 1–3 are virtually indistinguishable. Only the
relative orbit prediction assuming a circular orbit (case 4)
has a clearly distinct motion. Studying Figure 3(b) with e
= 0.13, the case 2 relative orbit is still indistinguishable on
this scale from the true relative motion in case 1. With this
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Fig. 4 Mean Anomaly Difference Drift Predictions with Keplerian Orbits.

larger eccentricity the relative motion predicted in case 3
(dropping higher order terms in e) does show some visible
departure from the true relative motion. As expected, the
circular chief orbit assumption (case 4) yields a very poor
prediction of the relative orbit motion.

In Figures 3(c) and 3(d) the RMS relative orbit errors are
shown in polar plots versus the chief orbit true anomaly. For
the e = 0.03 simulations, the relative orbit errors for case 2
lie between 20 and 40 meters. Since the relative orbit radius
is roughly 10 kilometers, this corresponds to a 0.2–0.4 per-
cent relative motion error. The RMS relative motion error
for case three is only marginally worse. As was discussed
earlier, dropping the higher order e terms should begin to
have a noticeable affect on the relative motion errors. For
the e = 0.13 simulations, the relative motion errors for case
2 lie between 50 and 100 meters (roughly 0.5–1.0 percent
errors). However, dropping the higher order e terms in case
3 has a very noticeable effect with the relative motion errors
growing as large as 500 meters (about 5.0 percent error).

To illustrate the accuracy of the linearized mean anomaly
drift prediction in Eq. (21), the orbit elements in Table 1
and the orbit element difference in Table 2 are used, except
for the semi-major axis difference δa being 0.1 kilometers in
this case. The chief eccentricity is 0.13.

Figure 4(a) compares the mean anomaly drift approxi-
mation errors of Eq. (21) (solid line) and Eq. (24) (dashed
line) relative to the true nonlinear solution on a logarithmic
scale over 8 orbits. While the small eccentricity approxi-
mation does yield noticeably worse predictions, over a few
orbits these errors are all still very small in magnitude. The
corresponding relative orbit is illustrated in Figure 4(b).

Conclusion
Analytical linearized relative orbit descriptions are pro-

vided for several types of chief orbit eccentricities, where
orbit element differences are chosen to define the relative
orbit geometry. The relative orbit motion between a deputy
and chief satellite is expressed with the true anomaly angle
as the independent variable. With these linearized relative
motion solutions, it is trivial to estimate what the geomet-
ric effect of changing a particular orbit element difference
will be. For the bounded relative motion case, the rela-
tive orbit solutions are written such that their secular offset
and sinusoidal motions are clearly separated. As such, it is
easy to see what the offsets and sinusoidal amplitudes will
be for a given set of orbit element differences in the orbit
radial, along-track and out-of-plane motion. Orbit element
differences have the advantage that they are constants of the
Keplerian two-body solution if the mean anomaly difference

is selected as the relative anomaly measure and the semi-
major axis difference is zero. If the bounded relative orbit
constraint is not satisfied, or there are other perturbations
present such as the J2 gravitational perturbations, then
some or all of the orbit element differences will vary slowly
with time. The presented analytical solutions in terms of
the orbit element differences are still valid. However, care
must be taken to treat the appropriate orbit element differ-
ences as time varying. Analytical orbit element difference
drift equations are provided for the non-zero δa case and
for studying the mean relative orbit motion under the grav-
itational J2 influence. To account for more general orbit
perturbations, the corresponding orbit element difference
differential equations would need to be numerically solved
to use the presented relative orbit descriptions.
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