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Abstract
The solar sail formation establishment problem is solved for Earth-centered Sun-
Synchronous orbits using optimal control theory, assuming that the deputy solar
sail is capable of changing its attitude and that the chief solar sail flies in a Sun-
synchronous orbit and does not employ active control. Because there is no analytic
solution, numerical techniques are used to solve the optimal formation establishment
problem. This paper demonstrates the existence of locally-optimal solutions to the
solar sail formation establishment problem and provides a quantification of the solar
sail’s control effort.
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Nomenclature
as Solar radiation pressure acceleration [km/s2]
œ Array containing classical orbital elements

[a, e, ω,M]T . a: semi-major axis [km], e: eccentricity, ω: argument of
perigee [rad],
M: mean anomaly [rad]

δœ Differential orbital elements of deputy with respect to chief
λs Sun longitude measured from vernal equinox [rad]
k Characteristic acceleration of solar sail [km/s2]
O Local-vertical-local-horizontal (LVLH) frame
c Denotes the chief solar sail
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d Denotes the deputy solar sail
RE Earth radius
SRP Solar radiation pressure

Introduction

The ability of solar sails to create non-Keplerian orbits can significantly increase
the science gain of certain space missions. Past and current magnetosphere missions
employ conventional spacecraft formations for in situ observations of the geomag-
netic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only
aligned with the geomagnetic tail once per year, since the geomagnetic tail is always
aligned with the Earth-Sun line, and therefore, rotates annually. National Aeronau-
tics and Space Administration’s (NASA) Time History of Events and Macroscale
Interactions during Substorms (THEMIS), Magnetospheric Multi-Scale (MMS), and
Radiation Belt Storm Probes (RBSP) missions, along with European Space Agency’s
(ESA) Cluster II mission are some of the currently active magnetosphere missions
that employ multiple spacecraft flying in Keplerian orbits to achieve their scientific
objectives [1–3]. As illustrated in Fig. 1, solar sails are able to artificially create
sun-synchronous orbits such that the orbit apse line remains aligned with the geo-
magnetic tail line throughout the entire year [4–6]. This continuous presence in
the geomagnetic tail can significantly increase the science phase for magnetosphere
missions.

McInnes and Macdonald propose a novel mission called GEOSAIL in which a
solar sail is employed to create a Sun-synchronous orbit artificially [4]. GEOSAIL’s
initial feasibility study was carried out by ESA in 2007, but since then, there has
been no update regarding mission funding and its future. Because studying the geo-
magnetic tail requires multiple spacecraft to fly in formation in order to separate
spatial and temporal plasma variations, Mu et al. propose flying two solar sails in
formation. Ref. [7, 8] propose flying two solar sails in a projected circular forma-
tion, which requires active control to maintain the formation due to the non-Keplerian
nature of the proposed relative motion. Parsay and Schaub propose natural solar sail
formations, which only requires maintaining a Sun-pointing attitude upon achieving
the desired natural relative motion; the necessary conditions for a drift-free natural
solar sail formation and the design of such formations for two-craft, triangle, and
tetrahedron geometries are studied in Ref. [9–11].

This preliminary study aims to address the solar sail formation establishment prob-
lem for the most basic natural formation, namely the string of pearl formation, in
Earth-centered Sun-synchronous orbits. It is assumed that the chief solar sail flies in
a Sun-synchronous orbit, while the deputy solar sail adjusts its attitude to establish a
desired string of pearl formation of a particular size. The main motivation is to seek
the existence of solutions and quantify the control effort under the most ideal sce-
nario. Therefore, only the in-plane dynamics is considered when solving the optimal
control problem. Because each spacecraft is assumed to employ its own individual
control without cooperating with other deputies, the presented problem formulation
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Fig. 1 Comparison of chemical and solar sail propulsion in geomagnetic tail exploration

may be expanded to include more deputies. This paper is organized as follows. The
equations of motion for two solar sails flying in Sun-synchronous orbits is discussed in
“Equations of Motion”. The formulation of the optimal formation establishment prob-
lem is presented in “Problem Formulation for Optimal Formation Establishment”. In
“Numerical Solutions”, the employed solution method and the numerical results are
studied. Concluding remarks are given in “Conclusion”.

Equations of Motion

For a flat, rigid, perfectly reflecting solar sail, the solar sail’s acceleration due to the
solar radiation pressure (SRP) is written as

as = k
(
n̂s · n̂

)2
n̂ (1)

where n̂ is a unit vector normal to the sail surface, n̂s is a unit vector from the Sun
to the Earth, and the parameter k is the sail’s characteristic acceleration, which is
defined as the acceleration experienced by the solar sail at a heliocentric distance of
1 astronomical unit (AU) while the sail’s normal is directed along the sun-line [12].

As illustrated in Fig. 2, to create a Sun-synchronous orbit, a solar sail flying in the
ecliptic plane employs a simple steering law consisting of the sail’s normal vector
continuously pointing along the Sun-line within the orbit plane such that the identities
ω = λs and n̂ · n̂s = 1 hold [4–6]. The required characteristic acceleration k to
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precess the orbit Sun-synchronously is dependent on the shape of the orbit and is
computed according to [4, 5]

k (a, e) = 2

3
λ̇s

e√
1 − e2

√
μ

a
(2)

In this problem formulation, the chief is assumed to fly in a Sun-synchronous orbit
by maintaining a Sun-pointing attitude. Inspecting Fig. 2 and Eq. 1, the chief’s SRP
acceleration expressed in the chief’s LVLH frame is,

Ocasc =
[

arc

aθc

]Oc

= kc

[
cosφc

sinφc

]Oc

(3)

where the subscript c denotes the chief solar sail. It is assumed that the chief
does not apply control to cooperatively achieve a desired relative motion; only the
deputy is assumed to have the capability to change its attitude in order to establish
a desired formation. The deputy solar sail is nominally maintaining a Sun-pointing
attitude, but is capable of changing its orientation within the orbit plane by δφ. The
change in the deputy’s orientation is assumed to have physical lower and upper lim-
its. Therefore, the deputy’s attitude varies from its nominal Sun-pointing attitude by
δφmin � δφ(t) � δφmax. The deputy’s SRP acceleration expressed in the deputy’s
LVLH frame is written as,

Od asd =
[

ard

aθd

]Od

= kd

[
cos (φd + δφd)

sin (φd + δφd)

]Od

(4)

The two-body equations of motion for a spacecraft, governed by the Gauss’
variation of parameters equations, are [13],

(5)

where contains the classical orbital elements, u is the perturbing
acceleration, and the matrices A and B (œ) are defined as,

A = [
0 0 0 n

]T (6)

(7)

where f is true anomaly. Let denote the orbital elements of the formation
comprising both the chief and deputy solar sails,

(8)
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Fig. 2 Solar sail geometry in
Sun-synchronous orbit

The equations of motion for the formation is written as,

(9)

where as includes the perturbing SRP accelerations for both the chief and the deputy
solar sail.

The variations of the chief orbital elements under the SRP influence of Eq. 3 are
illustrated in Fig. 3 for approximately 33 days for a 11 RE× 30 RE reference orbit
that lies in the ecliptic. Both the semi-major axis and eccentricity experience periodic
variations, but their net change over a span of an orbit is zero. Because the sail is
maintaining a Sun-pointing attitude and the orbit lies within the ecliptic plane, there is
no out-of-plane variations, as evident by Fig. 3c and d. Figure 3e shows the argument
of perigee increasing by approximately one degree per day. This is a direct result of
imposing the Sun-synchronous condition in Eq. 2. The sail size required to precess
this reference orbit is 47 × 47 m2, assuming that the sail weighs 160 kg and has an
efficiency of 95%. The required sail size reduces to 41 × 41 m2 if the sail’s mass is
120 kg. NASA’s Sunjammer mission, which was canceled in October 2014 prior to
launch, planned to fly a 38 × 38 m2 solar sail with a total mass of 32 kg [14]. Thus,
the assumptions made in this paper about the sails’ size and mass fall within the realm
of current or near future technology.
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Fig. 3 Sail’s orbital elements variations

Problem Formulation for Optimal Formation Establishment

The formation establishment problem is formulated as follows,

(10)
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where the differential orbital elements δœ are defined as,

(11)

The array contains the desired osculating differential elements at the final
boundary epoch. The most simple form of a natural formation is the leader-follower
or the string of pearls formation. This formation requires both the chief and deputy
to be in the same orbit and consequently have the same characteristic acceleration
based on Eq. 2. The same characteristic acceleration implies that the two solar sails
must have the same design and reflective surface area. Building two identical solar
sails may reduce cost and complexity in terms of design. For a natural leader-follower
formation, the desired osculating orbital elements at the final epoch are,

(12)

Depending on the value of δMf , the leader-follower formation has a different
size. Thus, δMf directly controls the formation size, which is typically dictated by
the scientists for magnetosphere missions. It is assumed that both the chief and deputy
start with a Sun-pointing attitude flying in a Sun-synchronous orbit. Because the
desired relative motions are natural, the deputy solar sail must have a Sun-pointing
attitude once the formation is established, otherwise the relative secular drift rates due
to the relative SRP forces will lead to the degradation of the achieved formation. For
these reasons, the constraint δφ(t0) = δφ(tf ) = 0 is included in the formation estab-
lishment problem in Eq. 10, which assures that the deputy starts and ends with a
Sun-pointing attitude.

For this formation establishment problem, two different time horizons are exam-
ined. At first, it is assumed that the deputy solar sail achieves the desired relative
motion within 0.5 orbit (denoted by T-1), as illustrated in Fig. 4a. The same problem
is then solved assuming that the formation is established in 1.5 orbits (T-2), as shown
in Fig. 4b.

Similarly, two initial boundaries are selected to further investigate the sensi-
tivity of the control effort to initial relative geometry. The first initial boundary (IB-1)
is assumed to be the post-deployment state followed by 3 coasting orbits. The sec-
ond initial boundary (IB-2) is assumed to be the post-deployment state without any
coasting phase.

The deployment scenario considered is as follows. The two sails are released
sequentially at the perigee of the operational mission orbit. The chief is released along
the local velocity direction. The deputy sail is released in a slightly different direc-
tion than the velocity to avoid close approaches. In this study, the deputy is assumed
to be released along a direction that is 1◦ off the local velocity direction while lying
within the orbit plane. The chief sail is released first, followed by the deputy after
a buffer time to further reduce the chance of a close approach immediately after the
deployment. During the next 3 orbits, the sails deploy their reflective surface and
achieve the desired Sun-pointing mission attitude. The 3 orbit coasting time allows
the ground segment to perform orbit and attitude determination before establishing
the desired formation. The corresponding differential orbital elements immediately
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Fig. 4 Time-horizons used in solving the optimal formation establishment problem

after deployment are summarized in Table 1. More details on this simple deployment
strategy can be found in Ref. [15].

Numerical Solutions

SolutionMethod

A fast direct method to solve optimal control problems is the Legendre Pseudo-
Spectral Method. This method uses Legendre polynomials to approximate (dis-
cretize) states and controls for each segment between nodes. The nodes are selected
using a Gaussian quadrature method. Once the problem is discretized, a nonlinear
programming (NLP) solver is used to solve for the states and the required control. A
version of this method is implemented in the software package DIDO [16]. Many
direct methods do not produce costate information, which may be considered a draw-
back because it inhibits the verification of optimality. The main advantage of DIDO
is that it is capable of computing accurate values for the adjoint functions with-
out solving the associated necessary conditions. This allows for the checking of the
optimality conditions once DIDO converges on an optimal solution.

Once the optimal control problem is solved, the solution is first evaluated for its
feasibility. This is to assure that the solution satisfies the the ordinary differential
equations (ODE), since there is no propagation involved in the Legendre Pseudo-
Spectral method employed to solve the optimal control problem. Once a solution

Table 1 Post-deployment
differential elements Differential Element Value Unit

δa −0.7 km

δe −4.24 × 10−6 −
δω +0.021 deg
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Fig. 5 Leader-follower formation establishment (IB-1 — T-1)

satisfies the ODE feasibility test, the necessary conditions are numerically checked
to test the optimality of the solution.

Results

The optimal formation establishment problem is solved using the initial boundary IB-
1 and the time horizon T-1 for four different formation sizes as shown in Fig. 5. The
entire formation deployment and establishment scenario as seen by the chief solar
sail is illustrated in Fig. 5a. As noted earlier, the chief sail is released first along the
velocity direction. After 25 minutes of buffer time, the deputy sail is released along
a direction that is 1◦ off the local velocity direction. Because there is a difference
between the orbit periods of the two sails due to nonzero δa, the deputy experiences
a secular drift in the along-track direction during the next 3 orbits. After the coasting
time, the deputy begins changing its attitude to achieve the leader-follower formation
at the chief’s orbit apogee.

The controller’s effort is shown in Fig. 5b. In all cases, the control effort falls
within the specified imposed constraints, which are taken to be ±6◦. For the initial
boundary IB-1, the most optimal formation is achieved for the δMf = +0.0205◦
case, which leads to the smallest cost of J = 0.00025 as evident by Table 2 and
Fig. 5b. Although the required attitude change does not exceed the limits defined, the
rate of change of δφ is relatively high for the two cases shown in blue and red. Given

Table 2 Cost vs. formation size in leader-follower formation establishment

Trajectory Desired δMf IB-1 T-1 Case IB-2 T-1 Case

Red δMf = +0.0169◦ J = 0.00072 J = 0.00034

Blue δMf = +0.0181◦ J = 0.00047 J = 0.00051

Green δMf = +0.0193◦ J = 0.00031 J = 0.00075

Black δMf = +0.0205◦ J = 0.00025 J = 0.00110
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the size of the solar sail assumed in this study, such angle rates may or may not
be achievable. Thus, picking the right formation size for a given initial boundary is
important.

The time history of the adjoint variables are used to check the necessary conditions
on the optimality of the feasible solutions. For instance, the well-known gradient
normality condition [16–18] requires that,

(13)

As shown in Fig. 6, for one of the converged solutions, the gradient normality
condition is satisfied to an acceptable numerical precision. The variations in the dif-
ferential elements throughout the formation establishment process is illustrated in
Fig. 7. It is evident that the initial differential orbital elements in Table 1 are nulli-
fied as desired to establish the leader-follower formation. Note that the differential
element δa increases in magnitude from -0.7 km at the initial boundary to -26 km
before it is nullified at the final epoch. Similarly, there is a significant variation in the
δe before the formation is established.

To illustrate the effects of the initial boundary (initial relative geometry of the two
sails) on control performance, the optimal formation establishment is solved for the
same desired formation, assuming the initial boundary condition IB-2. The relative
trajectory and the deputy’s control effort are illustrated in Fig. 8. The correspond-
ing cost to each of the desired relative geometries are shown in Table 2. For this
initial boundary, the most optimal control effort corresponds to the smallest desired
relative motion of δMf = +0.0169◦. As the formation size increases, the required
control becomes less optimal. For the case of δMf = +0.0205◦, the rate of change
of δφd is high, which may or may not be achievable for the deputy solar sail. Com-
paring Fig. 8 to Fig. 5, it is evident that a different initial relative geometry yields
a significantly different optimal control for the same desired formation. Therefore,
a careful formation deployment strategy must be selected, since the deployment
directly affects the relative initial geometry between the two sails before the forma-
tion is established. This is typically not an issue for spacecraft that use chemical

Fig. 6 Checking first-order
optimality conditions
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Fig. 7 Variation in differential elements throughput the formation establishment

propulsion. However, in the case of solar sails and systems lacking high thrust propul-
sion, the deployment strategy may be used as a knob to turn for setting up the initial
relative geometry, such that the sail’s effort to achieve the desired relative motion is
minimized.

To illustrate the effect of the time horizon on the control, the formation estab-
lishment problem is solved using the IB-1 boundary conditions and the time span
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Fig. 8 Leader-follower formation establishment (IB-2 — T-1)
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T-2. Two trajectories are generated for two different formation sizes as illustrated in
Fig. 9. The increase in the time horizon directly increases the computational time for
the numerical optimal control solver, which may be an issue in practice.
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Fig. 10 The effects of employing different cost functions for a specific desired formation
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Effects of Changing theMeasure of Optimality

As evident from Eq. 10, the cost function selected is the L2 norm of the change
in the deputy’s orientation, which leads to smooth changes in δφ. The effects of
changing the measure of optimality is illustrated in Fig. 10 for four different cost
functions, namely, ||δφ(t)||2L2

, ||δφ̇(t)||2L2
, ||δφ̇(t)||L1 , and ||δφ(t)||L1 . As evident

from Fig. 10a and b, the desired leader-follower formation is established in all
cases. The main challenge in controlling a solar sail’s attitude are the physical lim-
its on the angular velocity that a large solar sail is able to achieve. For this reason,
it is crucial to assure that the sail’s orientation is not subjected to rapid changes. To
achieve slow changes in orientation, the cost function is changed from minimizing
the angle δφ to minimizing the angle rate δφ̇. It is evident in Fig. 10c and d that
minimizing the L1 norm of δφ̇ leads to nearly zero rates throughout the maneuver
but requires rapid changes in attitude at the boundary points, which may or may not
be achievable depending on the type of attitude control system on-board. Due to the
high frequency of variations in the deputy’s attitude, which is difficult to achieve for
a solar sail, it is concluded that the L1 norm cost function does not yield solutions
that are practical.

Conclusion

In this paper, the problem of establishing a leader-follower solar sail formation is
discussed. First, a deployment scenario into the mission orbit is considered. From this
deployment scenario, the relative geometry between the two solar sails are estimated
after they are injected into the mission orbit. This is a crucial step before employing
active control to achieve a desired formation; it allows for a solution to the formation
establishment problem, assuming a pragmatic initial relative geometry.

The formation establishment problem is solved using optimal control theory,
assuming that the deputy solar sail is capable of changing its attitude and that the
chief solar sail flies in a Sun-synchronous orbit and does not employ active con-
trol. Because there is no analytic solution, numerical techniques are used to solve the
optimal formation establishment problem. Solutions to the optimal control problem
are found for a leader-follower formation of various sizes. It is shown that chang-
ing the formation size may require a significantly different control effort for the
same initial boundary conditions. The effects of changing the initial relative geome-
try for achieving the same desired relative motion is subsequently explored and it is
shown that small changes to relative initial geometry can have a significant impact
on the control effort required to achieve the same desired relative motion. The effects
of changing the measure of optimality is also investigated. It is demonstrated that
smooth quadratic cost functions (L2 norms) lead to smoother control efforts when
compared to non-smooth cost functions (L1 norms). This is especially important for
solar sails since they are not capable of making abrupt changes to their orientations.

This paper only considered in-plane variations in the sail’s attitude for establish-
ing a desired relative geometry. Both in-plane and out-of-plane changes in a sail’s
orientation will be necessary in practice for establishing a desired relative motion,
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even if the sails lie in the same plane initially. The relative third-body effects will cer-
tainly create small relative out-of-plane separations that the deputy solar sails must
correct for before establishing the desired in-plane leader-follower formation. While
the rigid flat-plate SRP model may be sufficient for preliminary orbit analysis, an
accurate SRP model that is validated by historical data is needed to develop a practi-
cal simulation tool. Moreover, because of the highly coupled orbit-attitude dynamics
of solar sails, anything but a six DoF simulation is susceptible to inaccuracies that
may not be negligible when flying two large solar sails in close proximity of each
other.
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