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Abstract

Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail.
Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geo-
magnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-
synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This contin-
uous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem
of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail
formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used
in NASA’s Magnetospheric Multi-Scale mission.
Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Many magnetosphere missions require more than a sin-
gle spacecraft to achieve their scientific objective. National
Aeronautics and Space Administration’s (NASA) Time
History of Events and Macroscale Interactions during Sub-
storms (THEMIS), Magnetospheric Multi-Scale (MMS),
and Radiation Belt Storm Probes (RBSP) missions, along
with European Space Agency’s (ESA) Cluster II mission
are some of the currently active magnetosphere missions
requiring multiple spacecraft to accomplish their scientific
objectives. THEMIS was launched in February 2007 with
the main scientific objective of studying auroras. It initially
comprised of five spacecraft. The THEMIS mission con-
firmed that auroras are triggered by magnetic reconnec-
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tion. Two of the THEMIS probes are now in lunar orbits
forming the Acceleration, Reconnection, Turbulence and
Electrodynamics of Moon’s Interaction with the Sun
(ARTEMIS) mission. These two probes study the effects
of the Sun’s radiation on the Moon in the absence of a
magnetic field to shield it. The Cluster II mission was
launched in July 2000 in order to study the dayside of
the magnetosphere in three dimensions over an entire solar
cycle of 11 years. Cluster II uses four identical spinning
spacecraft that form a tetrahedron around the orbit apogee
of a 4 RE � 19:6 RE reference orbit with an inclination of
135�.

Generally, exploring the Earth’s magnetic environment
in three dimensions requires multiple satellites to fly in for-
mation. NASA launched the MMS mission in Mar 2015 to
study the three-dimensional structure of magnetic recon-
nection using four identical spinning spacecraft in order
to separate the temporal and spatial plasma variations.
The spacecraft form a regular tetrahedron formation
within a specified region of interest around orbit apogee.
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Nomenclature

r sail position vector [km]
l Earth’s gravitational constant [km3/s2]
as solar radiation pressure acceleration [km/s2]
a� acceleration due to Earth’s nonsphericity

[km/s2]
acceleration due to moon’s gravity [km/s2]

a� acceleration due to sun’s gravity [km/s2]
n̂s Sun-line unit vector
n̂ sail normal unit vector
ar; ah; ah solar radiation pressure acceleration along

radial, along-track, and cross-track direction
[km/s2]
array containing classical orbital elements
½a; e; i;X;x; f �T . a: semi-major axis [km], e:
eccentricity, i: inclination [rad], X: right ascen-
sion of ascending node [rad], x: argument of
perigee [rad], f: true anomaly [rad]

k characteristic acceleration of solar sail [km/s2]
q relative position vector between spacecraft [km]
q inter-spacecraft range [km]
QðtÞ instantaneous metric to evaluate formation

quality
QRoI average quality factor over a single orbit

AðtÞ instantaneous area of a triangle formation
V ðtÞ instantaneous volume of a tetrahedron forma-

tion
C i½ � rotation matrix about the i axis
O local-vertical-local-horizontal (LVLH) frame
N Earth-centered inertial frame
NO½ � direction cosine matrix that transfers a vector

from O to N frame
ks Sun longitude measured from vernal equinox

[rad]

Subscript

c denotes the chief solar sail
d denotes the deputy solar sail
j denotes spacecraft number in formation

Acronym

SRP solar radiation pressure
RE Earth radius
RoI science region of interest
NLP nonlinear programming

Fig. 1. Comparison of chemical and solar Sail propulsion in geomagnetic
tail exploration.
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The MMS mission has two primary science phases. In the
first phase, the formation flies in a 1.2 RE � 12 RE orbit,
with the apogee lying inside the dayside of the magneto-
sphere. In the second phase, the orbit apogee is raised from
12 RE to 25 RE, with the orbit apogee lying within the
nightside of the magnetosphere. The duration of both
science phases are less than six months because of MMS’s
inertially fixed orbits. Since the exact location of the mag-
netic reconnection is unknown and, more importantly, var-
ies with Sun activity, the tetrahedron formation must
change its size, ranging from 400 km to 7 km in terms of
averaged side length. The Earth’s magnetic tail is directed
along the Sun-Earth line and therefore rotates annually.
Conventional magnetosphere missions require a highly
elliptical orbit with its apogee inside the geomagnetic tail.
The placement of the orbit apogee within a specific region
of interest allows for the maximization of time the space-
craft spends in that region. An inertially fixed orbit is
aligned with the geomagnetic tail only once a year, which
limits the continuous presence and duration of the science
phase to less than three months. Solar sail low-thrust
propulsion, however, is capable of achieving long residence
times in the geomagnetic tail by continuously precessing
the orbit apse line, as illustrated in Fig. 1 (McInnes et al.,
2001; Macdonald and McInnes, 2005; Macdonald et al.,
2007). Note that in this paper, when an orbit is referred
to as Sun-synchronous, it should not be confused with a
conventional Sun-synchronous orbit whose precession rate
of longitude of ascending node equals the mean motion of
the Earth about the Sun. Solar sail formation flying in
Earth-centered Sun-synchronous orbits for exploring the
magnetosphere are studied in Gong et al. (2011) and Mu
et al. (2014), using active control. In these studies, both lin-
ear and nonlinear controllers are applied by the deputy
spacecraft to maintain circular projected relative orbits
about the chief. The formation designed in this paper takes
a completely different approach, namely natural formation
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flying, where all solar sails in formation maintain a fixed or
unsteered Sun-pointing attitude solely for the purpose of
precessing their orbit apse lines Sun-synchronously. In
other words, once the formation is initialized, the sails need
to only maintain their sun-pointing attitude.

At this point it should be emphasized that important
heliophysics science can be achieved with two-craft (Van
Allen Probes and ARTEMIS), three-craft (THEMIS),
and four-craft (MMS and Cluster II) formations. The
key component is adapting the location of the center of
the formation and the spacing of the spacecraft to match
the location and size of the plasma processes of interest.
Achieving these conditions enables coordinated measure-
ments to separate temporal and spatial variations. Perhaps
the most intriguing application of Sun-synchronous sail
orbit technology is to have continuous coverage in the geo-
magnetic tail where wave-particle interactions precipitate
high energy magnetospheric electrons into the ionosphere.

Precipitating high-energy (600–10,000 eV) electrons are
the source of ionization of neutral gas atoms (Evans and
Moore, 1979) in the upper atmosphere and one of the
two most commonly conceived mechanisms for atmo-
spheric escape (Strangeway et al., 2005; Moore and
Khazanov, 2010). These electrons, which are trapped on
closed magnetic field lines whose footprints essentially ter-
minate in the ionosphere, can bounce back and forth
between their northern and southern boundaries, leaving
secondary electrons and ionized gas in their wake. The ion-
ized gas can then be accelerated up into the magnetosphere
and potentially can leave the Earth completely. The sec-
ondary electrons are available to create new ionizations
and further the outflow process.

These precipitating electrons are thought to originate in
the tailside of the magnetosphere where they are scattered
into their bounce trajectories by their interaction with
Whistler chorus waves (Khazanov et al., 2015). Since the
magnetotail has been only partially explored on those occa-
sions, when previous spacecraft missions have naturally
passed through it for approximately 2–3 months during
each year, the resonances and excitations of the wave-
particle interactions are poorly understood.

Having a formation with the usual complement of fields
(fluxgate magnetometer), waves (Langmuir probes for elec-
tric field and search coil magnetometer), and particle (elec-
trostatic spectrometers) sensors parked in the geomagnetic
tail would provide near-continuous monitoring of the
wave-particle interaction and would shed light on the
important geophysical process of atmospheric outflow.

This paper aims to explore the possibility of solar sail

formation flying in Earth-centered, Sun-synchronous orbits
that would allow a formation to remain in the geomagnetic
tail throughout the entire year as opposed to the few
months achieved using conventional spacecraft, such as
the ones used in the MMS mission. This paper is organized
as follows. Section 2 reviews how a solar sail may be used
to artificially precess the orbit apse line Sun-synchronously.
Section 3 explores the problem of solar sail formation
design in detail for various formation sizes and shapes.
The designed solar sail formations are directly compared
to the formations used in MMS mission in terms of forma-
tion quality and stability. Concluding remarks are given in
Section 4.

2. Equations of motion of solar sails in Earth orbits

The general equations of motion for a solar sail in an
Earth orbit is written as:

where r is the position vector of the spacecraft relative to

the Earth and a�, , a�, and as are the accelerations
due to Earth’s nonsphericity, lunar gravitational effects,
solar gravitational effects, and solar radiation pressure
respectively. The adopted inertial frame
N ¼ fO;X;Y ;Zg has its origin O at the center of the
Earth where the X axis points from the origin to the vernal
equinox and Z points along the ecliptic north pole. The Y
axis completes the right-handed coordinate system. For a
flat, rigid, perfectly reflecting solar sail, the solar sail’s
acceleration due to the SRP can be written as

as ¼ k n̂s � n̂ð Þ2n̂ ð2Þ
where n̂ is a unit vector normal to the sail surface, n̂s is a
unit vector from the Sun to the Earth, and the parameter
k is the sail’s characteristic acceleration, which is defined
as the acceleration experienced by the solar sail at a helio-
centric distance of 1 astronomical unit (au) while the sail
normal is directed along the sun-line (McInnes, 2004).
For the GEOSAIL mission, McInnes and Macdonald pro-
pose flying a solar sail in the ecliptic plane using a simple
steering law consisting of the sail’s normal vector continu-
ously pointing along the Sun-line within the orbit plane
such that the rotation of the orbit apse-line is synchronous
with the annual rotation of the Sun-line (McInnes et al.,
2001; Macdonald and McInnes, 2005; Macdonald et al.,
2007). The Sun-synchronized precession of the orbit apse-
line allows the orbit apogee to remain in the geomagnetic
tail continuously, thus enabling science data collection
for long periods. The required characteristic acceleration
k to precess the orbit Sun-synchronously is dependent on
the shape of the orbit and is computed according to
McInnes et al. (2001) and Macdonald et al. (2007)

k a; eð Þ ¼ 2

3
_ks

effiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ffiffiffi
l
a

r
ð3Þ

where a and e are the orbit semi-major axis and eccentric-

ity, respectively. The constant _k is the rate of change of
Sun’s longitude, which is assumed to be 0.9856 deg per
day. To describe the n̂ vector resulting from the
Sun-pointing steering law in the inertial frame N , a local
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reference frame must be defined. Let O ¼ fo; ôr; ôh; ôh}
define the sail’s local-vertical-local-horizontal (LVLH) ref-
erence frame with its origin point o at the sail’s center of
mass, where ôr points along the sail’s position vector, ôh
is directed along the orbit angular momentum vector,
and ôh ¼ ôh � ôr completes the right-handed coordinate
system. In this paper, all the computed relative position
vectors Oq ¼ xôr þ yôh þ zôh as well as the relative motion
trajectories are expressed in the chief’s LVLH frame.

As shown in Fig. 2(a), the a and / angles track the ori-
entation of the sail’s normal with respect to the O frame.
Thus, the sail’s normal vector is expressed in the O frame
as

On̂ ¼
O cos a cos/

cos a sin/

� sin a

2
64

3
75 ð4Þ
where the left-superscript O indicates the frame that the
sail’s normal n̂ is expressed in. As illustrated in Fig. 2(b),
the sail’s normal n̂ points along the Sun-line within the
ecliptic plane such that the identities x ¼ ks and n̂ � n̂s ¼ 1
hold. This leads to orbit apse-line always pointing along
the sun-line n̂s. The SRP acceleration as expressed in the
LVLH frame may be written as

Oas ¼ k n̂s � n̂ð Þ2On̂ ¼
O ar

ah
ah

2
64

3
75 ¼

O k cos a cos/

k cos a sin/

�k sin a

2
64

3
75
Fig. 2. Sail’s orbit geometry
The sail’s assumed orientation results in having
/ ¼ p� f and a ¼ 0. Substituting these identities to Eq.
(4), the sail’s normal vector may be further simplified to

On̂ ¼
O � cos f

sin f

0

2
64

3
75 ð5Þ

The direction cosine matrix NO½ � ¼ N ôr
N ôh

N ôh
� �

is used

to transfer the sail’s normal On̂ from the reference frame O
to the inertial frame N to be used in Eq. (1). Thus the sail’s
normal expressed in the N frame is

N n̂ ¼ NO½ �On̂ ð6Þ
The sunlight direction expressed in the inertial frame N

can be written as

N n̂s ¼
N � cos ks

� sin ks
0

2
64

3
75 ð7Þ

where the longitude of the Sun ks is determined through

ks ¼ ks0 þ _kst ð8Þ

Finally, the SRP acceleration N as is determined by sub-
stituting Eqs. (6) and (7) into Eq. (2). The mission orbit
considered in this paper is a 11 RE � 30RE orbit that lies
in the ecliptic plane, where the perigee is placed in the plan-
etary day-side and the apogee is aligned with the geomag-
netic tail. Note that many interesting magnetospheric
phenomenan such as magnetic reconnection occur on the
night-side of Earth between 20 RE and 30 RE (Curtis,
and general orientation.
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1999). The corresponding orbit period is T ¼ 5:4457 days.
The orbital elements for the mission orbit are
a ¼ 130751:8 km, e ¼ 0:4634; i ¼ 0 deg, x ¼ 0 deg, and
X ¼ 0 deg.
3. Solar sail formation flying

The science region of interest (RoI) for exploring the
geomagnetic tail is shown in Fig. 3. In this paper, the
region of interest is defined as all portions of the chief’s
orbit with distance above 21 RE. The objective is to design
formations that achieve their desired size and shape within
this specified region of interest around apogee. Depending
on the number of solar sails in formation, a different metric
is defined to evaluate the quality of formation in terms of
size and shape for two-craft, three-craft, and four-craft
formations.

A nonlinear programming (NLP) approach is employed
to design a drift-free, in-plane, two-craft formation of a
specific size within the RoI. The word in-plane refers to
the fact that both solar sails lie in the same orbit plane,
which in this case is the ecliptic plane. A similar numerical
approach is used to design in-plane equilateral triangle and
regular tetrahedron formations, which are subsequently
compared, in terms of formation quality and stability, to
the formations flown in the MMS mission. In this paper,
MATLAB’s constrained minimization routine fmincon,
with the active-set algorithm, is used to find a locally opti-
mal solution. Note that the effects of repeated short-term
eclipses are shown to be negligible for the orbit regime dis-
cussed in this study (McInnes et al., 2001), and therefore,
short-term terrestrial shadows are ignored in the numerical
simulations.
3.1. Two-craft formation

For a solar sail flying in a Sun-synchronous orbit, the
average secular variations of orbital elements over a single
Fig. 3. Solar sail formation in a region of interest around apogee.
orbit due to the SRP force in Eq. (5) are found to be
(Parsay, 2016; Parsay and Schaub, 2017),

_�a ¼ 0 ð9aÞ
_�e ¼ 0 ð9bÞ

_�x ¼ 3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a 1� �e2ð Þ

p
2�e

ffiffiffi
l

p ð9cÞ

_M ¼ �n� 3
ffiffiffi
�a

p
1þ �e2ð Þk

2�e
ffiffiffi
l

p ð9dÞ

For the relative motion of two solar sails in Sun-
synchronous orbits to remain invariant to the relative
effects of SRP, the following two secular drift rates must
be matched,

_�xd ¼ _�xc ð10aÞ
_Md ¼ _Mc ð10bÞ

As evident in Eq. (10), there are two constraints that the
deputy states must satisfy for a SRP invariant relative
motion with respect to a chief solar sail flying in a Sun-
synchronous orbit. These two constraints are functions of
three variables (�a;�e, and k). Therefore, there is only one free

variable to choose; once a variable is chosen, the other two
free variables are prescribed such that both SRP invariant
conditions in Eq. (10) are satisfied. For instance, if the dep-
uty solar sail has a fixed characteristic acceleration, there is
only one unique orbit that the deputy can occupy that leads
to a SRP invariant relative motion with respect to the chief
flying in a Sun-synchronous orbit. The concept of SRP
invariant relative orbits are analogous to J 2 invariant rela-
tive orbits that were introduced by Alfriend and Schaub
(Schaub et al., 2000; Schaub and Alfriend, 2001; Schaub,
2003).

For the two-craft formation, the average inter-
spacecraft range within the RoI is defined as the metric
for evaluating the quality of a formation. The relative posi-
tion vector between two solar sails at any point in time is
written as,

qðtÞ ¼ rdðtÞ � rcðtÞ ð11Þ

The average distance between the two solar sails within
the RoI is defined as,

�q ¼ 1

N

XN
k¼1

qk ð12Þ

where qk ¼ jjqkjj and N is the number of integration steps
within the RoI. Let l denote the sail’s mean longitude,
defined as,

l ¼ xþM ð13Þ

The total relative change in mean longitude over an
arbitrary number of complete revolutions is defined as,

Dl ¼
Z tf

t0

_ldðtÞ � _lcðtÞ
� �

dt ð14Þ
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The variable Dl indicates how much the deputy has
drifted apart with respect to the chief over a given time
span. Given the chief’s osculating elements , a two-
craft formation design algorithm is proposed as follows,

minimize J ¼ jDlj
with respect to ed0 ; kd ;Md0

subject to €rc ¼ � l
r3c
rc þ asc

€rd ¼ � l
r3d
rd þ asd

�qmin 6 �q 6 �qmax

free variables ad0 ;xd0

ð15Þ

The choice of using Dl as the cost function for minimiz-
ing the relative drift is directly motivated by Eq. (10).
Examples of the two-craft formation designed to maximize
Fig. 4. Two-craft drift-free formation expressed in
the science gain in the RoI are shown in Fig. 4 for the var-
ious formation sizes of 30, 180, and 300 km, in terms of
average separation distance. The highlighted region repre-
sents the time that the formation is flying within the RoI.
Each trajectory is propagated for 10 orbits. As evident in
Fig. 4, the relative motion does not experience any relative
drift in radial and along-track directions; it remains invari-
ant to the relative effects of SRP perturbation.
3.2. Triangle formation

In this section, the desired three-craft formation geome-
try to be designed inside the RoI is a breathing in-plane
equilateral triangle. The design of an out-of-plane triangle
formation within a specified RoI has been discussed in the
past (Parsay and Schaub, 2015), using a different algo-
rithm. For this in-plane formation geometry, a preliminary
Chief’s LVLH frame (radial vs. along-track).



Table 1
li (i ¼ 1; 2; 3; 4) constants in QðsÞ function per formation size.

10 km 30 km 60 km 160 km 400 km

l1 4 19.3125 45 135 250
l2 6 23.1500 50 140 300
l3 18 42.0750 75 190 550
l4 25 49.4750 80 210 600
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formation is designed analytically. This preliminary forma-
tion is then used as an initial guess for the numerical algo-
rithm to design a triangle inside the RoI. The initial step in
designing a formation is to define a metric that measures
the quality of formation. For the MMS mission, it is
desired that the formation remains close to a regular tetra-
hedron for as long as possible within the RoI. MMS uses
an instantaneous scalar metric called Quality Factor (Q)
which measures both shape (Qv) and size (Qs) of tetrahe-
dron formation with respect to a regular tetrahedron at
any given time (Hughes, 2008a; Hughes et al., 2005;
Hughes, 2008b; Mann et al., 2011). This formation quality
metric is adapted in this paper to design triangle and tetra-
hedron formations. The use of the formation quality factor
Q allows direct comparison to be made between the results
in this paper and formations designed for the MMS mis-
sion. For a triangle formation, the quality factor is defined
using,

QðtÞ ¼ QaðtÞQsðtÞ ð16Þ

In order to define the scalar functions Qa and Qs explic-
itly, the following parameters need to be introduced. Each
side of the triangle formation at any given time, sj, is
defined as,

q1 ¼ rd1 � rc

q2 ¼ rd2 � rc

q3 ¼ rd1 � rd2

ð17Þ

where rc; rd1 ; rd2 are the position vectors of chief, first dep-
uty, and second deputy respectively. The area of the trian-
gle formation is defined at any epoch via,

AðtÞ ¼ 1

2
jq1 � q2j ð18Þ

Given the inter-spacecraft range of qj ¼ qj

�� ��, the aver-

age side-length for triangle formation is determined by

L ¼ 1

3

X3

j¼1

qj ð19Þ

The area of an equilateral triangle with an average side-

length of L is,

Ar ¼
ffiffiffi
3

p

4
L2 ð20Þ

The instantaneous metric QaðtÞ for evaluating the shape
of a triangle formation is defined as the ratio of the actual
triangle area to the area of an equilateral triangle with

averaged side-length of L,

QaðtÞ ¼
A
Ar

ð21Þ

The size metric, Qs, is a smooth piecewise function
defined as,
QsðLÞ ¼

0 L < l1
L�l1ð Þ2 Lþl1�2l2ð Þ

l2�l1ð Þ4 l1 6 L 6 l2

1 l2 < L 6 l3
L�l4ð Þ2 Lþl4�2l3ð Þ

l4�l3ð Þ4 l3 < L 6 l4

0 L > l4

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

where l1; � � � ; l4 are constants in km that are chosen for
every formation size in order to define the acceptable size
range. These constants are tabulated in Table 1 for each
of the formation sizes considered, which are the same val-
ues used in the formation design algorithm of the MMS
mission.

The average value of the metric Q within the RoI at N
number of integration steps is

QRoI ¼
1

N

XN
k¼1

Qk ð23Þ

The average quality factor, QRoI, must be maximized for
a triangle formation to remain close to an equilateral trian-
gle within the RoI. Thus, the cost function is chosen to be,

Jn ¼ QRoI ð24Þ
where n is the orbit number that the cost function is eval-
uated on. Having defined the cost function, the triangle for-
mation design problem may be formulated as,
where Norb is the total number of orbits that the average

quality factor within the RoI is optimized over. Enforcing
the characteristic acceleration value assures that each orbit
remains Sun-synchronous.

To solve the NLP problem, a crude initial guess is
designed analytically. This initial guess is a perfect equilat-
eral triangle at the chief’s apogee with the desired side-

length L. This instantaneous equilateral triangle is illus-
trated in Fig. 5. Given the chief’s apogee radius of rac ,
the deputies’ apogee radius are determined using,



Fig. 5. Instantaneous equilateral triangle at Chief’s apogee.
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raj ¼ rac þ Lj ð26Þ

where T Lj are the triangle sides expressed in a local frame

T ¼ t̂1 t̂2 t̂3
� �

that has its origin at the chief’s position,

T L1 ¼ 1
2
L

ffiffi
3

p

2
L 0

h iT
ð27aÞ

T L2 ¼ 1
2
L �

ffiffi
3

p

2
L 0

h iT
ð27bÞ

The triangle frame T is defined with respect to the
LVLH frame O via,

½OT � ¼ ½C1ðh1Þ�½C2ðh2Þ�½C3ðh3Þ� ð28Þ
For this initial guess, it is assumed that all solar sails

have the same osculating semi-major axis at this instant
and that they are all at their orbit apogee. Thus, the perigee
radius for each spacecraft is computed by rpj ¼ 2ac � raj
where raj ¼ jjraj jj. The deputies’ eccentricities are deter-

mined using their apogee and perigee radii. Because the
formation’s geometry of interest is an in-plane triangle,
the deputies’ inclinations and right ascension of ascending
nodes are identical to those of the chief. The argument of
perigee for each deputy is determined using,

xd1 ¼ xc þ Dx ð29aÞ
xd2 ¼ xc � Dx ð29bÞ

where the differential element Dx is,

Dx ¼ cos�1 raj � rac
raj rac

� 	
ð30Þ
Table 2
Initial guess for triangle orbital elements.

Chief Deputy 1 Deputy 2

ac ac ac
ec

ra1�rp1
2ac

ra2�rp2
2ac

ic ic ic
Xc Xc Xc

xc xc þ Dx xc � Dx
f c ¼ p f c f c
The orbital elements for each spacecraft in this crude
initial guess is summarized in Table 2. To determine the
quality and stability of this formation, the formation is
propagated for approximately 15 orbits. As evident in
Fig. 6(c), the formation forms a perfect equilateral triangle
at the orbit apogee but is immediately deformed after apo-
gee, as is also shown by the sharp decrease in the formation
quality factor Q. The average quality factor is approxi-

mately QRoI ¼ 0:61. This is far below the limit acceptable
for a formation that is useful for collecting science data,
but serves as an adequate initial guess for the numerical
optimizer. The relative motion as seen by the chief’s LVLH
frame is illustrated in Fig. 6(a). The time history of inter-
spacecraft ranges are shown in Fig. 6(e). There are no dan-
gerous close approaches throughout the entire simulation.
Note that the simulation is run for only 60 days, but the
quality of the formation remains high for nearly a year if
propagated forward for that long. The simulation is run
for 60 days in this study, because, in practice, achieving
the perfect desired relative states may be difficult without
having high-thrust capability. The failure to achieve the
exact desired relative states can cause an increase in the rel-
ative drift rates, which may, occasionally, require the dep-
uty spacecraft to employ active control for adjusting its
relative states.

The algorithm described in Eq. (25) is utilized to design
in-plane equilateral triangle formations with various sizes.
The selected formation sizes in terms of average side-
lengths are 10, 60, 160, 400 km. The chosen formation sizes
are directly motivated by the formation sizes that are used
in the MMS mission. Fig. 6(b) illustrates the one-orbit
optimized solution for the 10 km triangle formation. As
illustrated in Fig. 6(d), the quality factor remains accept-
able for at least 60 days. The minimum spacecraft range
is around 10 km, indicating a safe formation for the entire
simulation. Because the eccentricity of the optimized orbits
are different, it requires each solar sail to have a slightly dif-
ferent characteristic accelerations according to the Sun-
synchronous condition. For this formation, the required
change in reflectivity is less than 0.02% for both deputies.
This difference in characteristic acceleration may be
achieved by reflectivity modulation, which was employed
by the Interplanetary Kite-craft Accelerated by Radiation
Of the Sun (IKAROS) mission launched by the Japan
Aerospace Exploration Agency (JAXA) in 2010. To change
the surface reflectance, liquid crystal panels on the sail are
switched on to produce specular reflection and switched off
to create diffuse reflection. With the capability of changing
the sail’s surface reflectivity, the characteristic acceleration
of a sail can be adjusted (Mori et al., 2014). Figs. 10–12
show the optimized solutions for the 60, 160, and 400 km
formations, respectively. Similar to the 10 km formation,
the designed formations are stable for at least 60 days
and do not experience any dangerous close approaches.

In all formations designed, there is a slow secular drift
that leads to a slow degradation of the formation quality.



Fig. 6. Initial guess vs. optimized solution for in-plane equilateral triangle formation design.
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Fig. 7. Tetrahedron formation with average side-length of 10 km (10 orbit optimized).

Fig. 8. Effects of perturbations on an optimal triangle formation.
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The main reason for this apparent relative drift is the
absence of enforcing the relative SRP invariant condition.
As it can be seen from Eq. (25), the objective is to maximize
the quality of the formation and there is no enforced con-
straint that involves minimizing the relative drifts between
the solar sails. The inclusion of the relative SRP invariant
condition is discussed in Section 3.5.

3.3. Tetrahedron formation

The minimum number of spacecraft to fully study the
spatial and temporal changes of magnetic reconnection in
three-dimensions is four (Burch et al., 2016). This section
investigates the possibility flying four solar sails that form
a tetrahedron within the RoI. The formation design prob-
lem is analogous to the triangle formation, with a modifica-
tion in the cost function. For the shape metric, the volume
metric, Qv, is used as opposed to the area metric Qa in the
triangle formation design problem. Therefore, for the tetra-
hedron formation design, the instantaneous quality factor
QðtÞ is defined as,

QðtÞ ¼ QvðtÞQsðtÞ ð31Þ
The actual volume of tetrahedron formation at any
given time is governed by

V ðtÞ ¼ 1

6
q1 � q2 � q3ð Þj j ð32Þ
The volume of a regular tetrahedron that has the same

average side length of L is calculated through

V r ¼
ffiffiffi
2

p

12
L3 ð33Þ
The volume metric is defined as the ratio of the actual
tetrahedron volume, V a, to the volume of a regular tetrahe-
dron V r.

QvðtÞ ¼
V
V r

ð34Þ
Both Qv and Qs have a range that falls between 0 and 1.
Qv will equal 1 when the volume of the tetrahedron equals
that of a regular tetrahedron and it will be equal to 0 when
all four spacecraft lie in a plane. Qs will equal 1 when the
formation falls within the desired size range and 0 when
it is outside of the acceptable range. The NLP problem
of designing tetrahedron solar sail formation may be writ-
ten as,



Fig. 9. Numerical inclusion of SRP invariant condition in triangle formation design.
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Fig. 10. In-plane equilateral triangle formation with average side-length
of 60 km.
A regular tetrahedron with side-length L is used as an
initial guess for the numerical solver (Hughes et al., 2005;
Hughes, 2008a; Hughes, 2008b). Assuming the chief is at
the origin of a local frame T , the deputies’ relative position
vectors expressed in T frame are

T L1 ¼
L

0

0

2
64

3
75 T L2 ¼

1
2
Lffiffi
3

p

2
L

0

2
64

3
75 T L3 ¼

1
2
L

1
2
ffiffi
3

p Lffiffi
2
3

q
L

2
664

3
775 ð36Þ

rd1 ¼ rc þ L1 rd2 ¼ rc þ L2 rd3 ¼ rc þ L3 ð37Þ
OT½ � ¼ C1 h1ð Þ½ � C2 h2ð Þ½ � C3 h3ð Þ½ � ð38Þ
vd1 ¼ v1v̂c vd2 ¼ v2v̂c vd3 ¼ v3v̂c ð39Þ

The velocities of the deputy spacecraft are assumed to
have the same direction as the chief’s velocity. The velocity

magnitudes are computed through vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E0 þ l=rj
� �q

;

j ¼ 1; 2; 3 where E0 ¼ �l=2ac. This crude initial guess is
by no means optimal but provides a good starting point
for the numerical solver. The Cartesian states of the depu-
ties are converted to orbital elements and those initial dif-
ferential orbital elements are passed to the numerical solver
as an initial guess. An example of a 10-orbit optimized
tetrahedron formation design is shown in Fig. 7. As evident
from Fig. 7(a), the formation is useful for at least 10 orbits
before it quickly degrades in the following orbits due to the
relative out-of-plane variations. The inter-spacecraft
ranges shown in Fig. 7(b) indicate that the tetrahedron for-
mation has no dangerous close approaches between any of
its spacecraft pairs throughout the 10-orbit period.

3.4. Effects of perturbations

As it can be seen from Eq. (25), the effects of perturba-
tions besides SRP are ignored in the solution of the forma-
tion design problem. This is because the gravitational
effects of the Earth and third-body effects of the Moon
and Sun on the relative motion in this orbit regime are
shown to be small based on the previous study (Parsay
and Schaub, 2015). In Fig. 8, the optimal solution of a
160 km triangle formation is propagated with and without



Fig. 12. In-plane equilateral triangle formation with average side-length
of 400 km.

Fig. 11. In-plane equilateral triangle formation with average side-length
of 160 km.
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the inclusion of other perturbations. As evident, the effects
of perturbations on the relative motion is negligible and the
quality factor, QðtÞ, remains above 0.8 for at least 60 days,
which satisfies MMS mission requirements.

3.5. Numerical Inclusion of SRP invariant condition

As evident from Eqs. (25) and (35), there is no con-
straint that leads to the minimization of the relative drift
between the solar sails. The question that arises is whether
minimizing the relative drift has any effect on the long-term
stability of the formation. Another valid question is
whether the formation stability can be improved without
sacrificing formation quality. To investigate these ques-
tions, the numerical algorithm is modified to include a con-
straint on how much the deputy spacecraft are allowed to
drift apart over the span of the optimization. The modified
algorithm is summarized as follows for the triangle
formation,
An optimized 10 km triangle formation resulting from

Eq. (40) is illustrated in Fig. 9. As shown in Fig. 9(a), the
formation quality factor is slightly lower for the case where
the relative SRP invariant condition is enforced. However,
the formation quality factor degrades at a faster rate for
the formation with no constraint on the relative drift, as
evident in Fig. 9(b). The relative trajectories of the deputies
with respect to the chief solar sail are illustrated in Fig. 9(e)
and (f), corresponding to the case without the constraint
and the case with the relative drift constraint, respectively.
With the numerical inclusion of the invariance condition,
the formation stability is improved at the price of a small
decrease in the formation quality.

4. Conclusion

In this paper, the problem of solar sail formation design
is explored in detail using numerical optimization for two-
craft, three-craft, and four-craft formations. First, the
design of truly SRP invariant solar sail formations within
a specific region of interest around the orbit apogee are
explored for the two-craft formation. Motivated by
NASA’s MMS mission, the problem of three-craft and
four-craft formation design is subsequently investigated.
The proposed algorithm is applied to the design of
in-plane equilateral triangle and tetrahedron formations.
Various formation sizes ranging from 10 km to 400 km in
terms of average inter-spacecraft range are explored. It is
shown that the in-plane solar sail formation geometries
are stable, while the tetrahedron formation is difficult to
design, assuming the fixed Sun-pointing attitude. Despite
the long-term stability of the designed formations, active
control may be necessary to adjust the formation sporadi-
cally, especially if there is a failure to achieve the desired
states due to control accuracy and navigation errors.
Finally, it is shown that the formations designed with the
inclusion of relative drift constraints are more stable and
degrade at a lower rate. This increase in formation stability
may come with a small penalty in the quality of the
designed formation.
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