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Abstract

The linear dynamics and stability analysis of reconfiguring a 2-spacecraft Coulomb
tether formation is investigated. In this concept the tether between two craft is replaced
with electrostatic force fields. Here the relative distance between the two satellites is in-
creased or decreased using electrostatic Coulomb forces. The two craft are connected by
an electrostatic tether which is capable of both tensile and compressive forces. The re-
sulting virtual structure can change its shape by modifying the desired reference length.
As a result, the two-craft formation will essentially act as a long, slender, nearly-rigid
body of variable length. Inter-spacecraft Coulomb forces cannot influence the inertial
angular momentum of this formation. However, the gravity gradient effect can be ex-
ploited to stabilize the attitude of this Coulomb tether formation about an orbit radial
direction. Limits of the Coulomb tether expansion and contraction rates are discussed
using linearized time-varying dynamical models. These allow the reference length time
histories to be designed while ensuring linear stability of the virtual structure.

Keywords – Coulomb Tether, Formation Flying

1 Introduction

A new formation flying concept using electrostatic propulsion was introduced in Refer-
ences 1,2,3. The charge of a spacecraft is controlled by active emission of charged particles
and this charge transfer is used to generate inter-spacecraft Coulomb forces. These Coulomb
forces can be used to control the relative motion of the spacecraft or hold them in rigid
formations over short distances ranging 10-100 meters. This novel propellantless relative
navigation control concept has many potential advantages over conventional thrusters like
ion engines. Coulomb propulsion effectively uses no consumables and enables high precision,
close-proxmity formation flying applications. It is also a very clean method of propulsion
compared to ion engines, thereby avoiding the thruster plume contamination issue with
neighboring crafts. Further, the study of electrostatic charging data of the SCATHA space-
craft4 verified that spacecraft can charge to very high voltages in low plasma environments
such as GEO and the electric power requirement will be typically less than 1 Watt. How-
ever, this Coulomb propulsion also has its own set of limitations. The Coulomb electrostatic
force magnitude is inversely proportional to the square of the separation distance. Hence,
this method is effective only for close formations of the order of 10-100m. Additionally,
Coulomb force effectiveness is diminished in a space plasma environment due to the pres-
ence of charged plasma particles. The electric field strength drops off exponentially with
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increasing separation distance. The severity of this drop is characterized using the Debye
length.5,6 For low earth orbits (LEO), the Debye length is of the order of millimeters to
centimeters, making the Coulomb formation flying concept impractical at these low orbit
altitudes. At geostationary orbit (GEO) altitudes or higher, which has a hotter and less
dense plasma environment, the Debye length can vary between 100-1000 meters depending
on the solar activity cycles. The Coulomb formation flying concept appears to be feasible
at this altitude.

King et al. found analytical solutions for Hill-frame invariant Coulomb formations.2 Here
spacecraft are placed at specific locations in the rotating Hill frame with specific electro-
static charges. As a result the Coulomb forces perfectly cancel all Keplerian relative orbit
accelerations, causing the satellites to remain fixed or static as seen by the constantly rotat-
ing Hill frame. However, the charge is held constant in this early analysis. The discovered
open-loop static Coulomb formations were all found to be unstable. Reference 3 discusses
these static Coulomb satellite formations and a nonlinear control which is capable of bound-
ing the relative motion between two close craft. This charge feedback control can also be
used to control general orbit element differences with guaranteed stability, but not neces-
sarily asymptotic convergence. In References 7, a genetic algorithm for numerically finding
the static charges to maintain a multi-craft Coulomb formation is given. The analytical
solution for the static charge and their feasibility for different shapes in two and three
craft formations are discussed in detail in Reference 8. In Reference 9, a hybrid propulsion
system using ion thrusting and Coulomb forces is developed for maintaining a swarm of
satellites in formation. Izzo and Pettazzi10 propose using Coulomb forces for aiding the self
assembling of large structures in space. Here, the use of Coulomb forces reduce the pro-
pellent consumption significantly. Reference 11 studies the stabilization of a simple static
2-craft Coulomb tether structure aligned along the orbit radial direction. Compared to the
previous works on static Coulomb structures, Reference 11 is the first study to introduce a
charge feedback law to stabilize a simple Coulomb structure to a specific shape and orien-
tation. Coulomb forces are inter-spacecraft forces and can not control the inertial angular
momentum of the formation. Hence, stability characteristics of orbital rigid body motion
under a gravity gradient field was applied to a Coulomb tethered two-spacecraft system
to develop an active charge feedback control. With this control the spacecraft separation
distance can be maintained at a fixed value, while the coupled gravity gradient torque is
exploited to stabilize the formation attitude about the orbit nadir vector. Further, as the
separation distance converged to the desired value, the in-plane rotation angle is shown to
converge to zero as well. The out-of-plane angle is shown to be decoupled from the other
modes and not influenced (to first order) by the spacecraft charges.

This paper extends this earlier work by investigating how to reconfigure the 2-craft
Coulomb tether formation by forcing the craft to move apart or come closer using the
Coulomb force and again using the gravity gradient to stabilize the formation. An active
charge feedback law is introduced and the linear stability of the coupled separation distance
and attitude is evaluated for this time-variant system. Based on this analysis, stability
regions for expanding and contracting the two-craft formation are established. A com-
prehensive study of the dynamics of physically connected tether systems are presented in
Reference 12. Note that contrary to these physically connected tethers, the Coulomb tether
is capable of receiving both tensile and compressive forces, resulting in a flexible virtual
tether. With Coulomb tether, the problems associated with complex cable dynamics are
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avoided thereby making the force to lie along a straight line joining the craft. Further, the
stiffness or flexibility of the satellite connection can be controlled through feedback control
laws. This will allow for the Coulomb tether stiffness to be varied with changing mission
requirements. In References 13 and 14, the dynamics of a physically connected two-craft
tether is studied where they develop length rate laws that guarantee stability. The atti-
tude stability that is achieved is only a bounded stability. In the current work, with an
electrostatic virtual tether replacing the actual tether, the feedback law attempts to asymp-
totically stabilize the separation distance and the in-plane oscillations. The asymptotic
stability is achievable due to the virtual tether which allows both compression and tension
and a flexible tether length. The formation is studied in GEO and the Debye lengths are
assumed to be sufficiently large so that the effects of Debye shielding can be neglected.
Finally, numerical simulations illustrate the analytical stability predictions.

2 Satellite Reconfiguration Dynamics

A 2-satellite formation is considered as shown in the Figure 1. The center of mass
is assumed to maintain a circular Keplerian orbit and the two satellites are nominally
aligned along the orbit radial direction. In essence, these two charged spacecraft will behave
like a conventional 2-craft tether system, with the exception that this electrostatic tether
is capable both of attractive and repulsive forces. Reference 11 shows that the relative
distance between the two satellites can be controlled using electrostatic Coulomb forces.
A charge feedback law is used to maintain the relative distance at a constant value. As a
result, the two satellites behave like a long slender nearly rigid body and the differential
gravitational attraction is used to stabilize the attitude of this formation about the orbit
radial direction. From this point onwards, this will be referred to as the Coulomb tether
regulation problem. These concepts are extended for the time varying Coulomb tether
length tracking problem. The main aim in the tracking (reconfiguration) problem is to
increase or decrease the relative distance between the satellites by forcing them to move
relative to each other along a prescribed path. This static Coulomb structure reconfiguration
is to be accomplished without loosing altitude stability.

The Clohessy-Wiltshire-Hill’s equations15,16,17 for one of the spacecraft in the 2-craft
Coulomb tether formation as shown in Figure 2, is given by

ẍ1 − 2Ωẏ1 − 3Ω2x1 =
kc

m1

(x1 − x2)
L3

q1q2 (1a)

ÿ1 + 2Ωẋ1 =
kc

m1

(y1 − y2)
L3

q1q2 (1b)

z̈1 + Ω2z1 =
kc

m1

(z1 − z2)
L3

q1q2 (1c)

where (xi, yi, zi)T is the position vector of the ith satellite in Hill frame components, m1

and q1 are the mass and charge of satellite 1, and L is the distance between the satellites 1
and 2. The constant chief orbital rate is given by Ω =

√
µ/r3

c , where µ is the gravitational
coefficient and rc is center of mass position vector. The parameter kc = 8.99 · 109 Nm2/C2

is the Coulomb constant. As the Hill frame origin is set to be identical to the formation
center of mass, the motion of the 2nd craft can be found by noting that the center of mass
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Figure 1: A simple Coulomb tracking illustration.
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Figure 2: Coulomb Tethered Two Satellite Formation with the Satellites Aligned Along the
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vector is constant due to conservation of linear momentum. This yields18,19

m1ρ1 +m2ρ2 = 0 (2)

The differential equation of the separation distance L, between the two satellites is given
by11

L̈ = (2Ωψ̇ + 3Ω2)L+
kc

m1
Q

1
L2

m1 +m2

m2
(3)

where ψ̇ is the angular in-plane perturbation rate and Q is the product of spacecraft charges
q1 and q2. For the Coulomb tether regulation problem, L is the sum of a constant reference
length Lref and a small varying length δL. Similarly, let Q be the sum of Qref, which is
the ideal constant charge product needed to maintain the satellites in a rigid formation of
length Lref, and a small charge product variation δQ.

L(t) = Lref + δL(t) (4a)
Q(t) = Qref + δQ(t) (4b)

The reference charge product Qref is a function of Lref and is computed analytically from
the linearized Hill frame equations. The analytical expression for Qref is written as11,8

Qref = −3Ω2L
3
ref

kc

m1m2

m1 +m2
(5)

It should be noted that in the Coulomb tether regulation problem Lref is constant and the
differential equation given in Eq. (3) is linearized by assuming a small δL separation distance
error. This can be slightly modified to accommodate the Coulomb tracking problem. The
reference Coulomb structure length Lref(t) is made time varying, but the separation distance
errors δL(t) are still assumed to be small.

L(t) = Lref(t) + δL(t) (6a)
Q(t) = Qref(t) + δQ(t) (6b)

Here Lref(t) is the time varying reference separation distance and Qref(t) is the corre-
sponding reference charge product which can be calculated using Eq. (5). Substituting the
assumptions in Eq. (6) into Eq. (3) and linearizing assuming small δL yields

δL̈ = −L̈ref + 2ΩLrefψ̇ + 9Ω2δL+
kc

m1
δQ

1
L2

ref

m1 +m2

m2
(7)

This equation establishes the relation between the additional charge product δQ required
and the change in relative separation of the satellites. Note that this relation is coupled
to the angular in-plane perturbation rate ψ̇. In order to obtain an expression for this
perturbation, a stability analysis using the gravity gradient is employed. The derivation of
the expression for angular perturbation closely follows the derivation given in Reference 11
for the Coulomb regulation problem. The linearized attitude dynamics of the Coulomb
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tether body frame are written along with the separation distance equation as:

θ̈ +
2L̇ref

Lref
θ̇ + 4Ω2θ = 0 (8a)

ψ̈ +
2L̇ref

Lref
ψ̇ +

2Ω
Lref

δL̇− 2L̇ref

L2
ref

ΩδL+
2L̇ref

Lref
Ω + 3Ω2ψ = 0 (8b)

δL̈+ L̈ref − 2ΩLrefψ̇ − 9Ω2δL− kc

m1
δQ

1
L2

ref

m1 +m2

m2
= 0 (8c)

Thus, Eq. (8a) – (8c) are the linearized equations of motion of the Coulomb tracking about
the static nadir reference configuration. These equations of motion are similar to the ones
developed for the physically connected tether systems in Reference 12, with tension in the
cable replaced by Coulomb force. One key difference between the equations of motion for
the physically connected tether system and Coulomb tracking is in the linearization of sep-
aration distance. Due to the inherent flexibility present in the virtual Coulomb tether, the
separation distance can be modeled as a sum of required separation distance (Lref) and a
small separation distance error (δL), and the equations of motion are linearized for small δL.
Such linearization technique is not commonly encountered in physically connected tether
systems. In Eq. (8a) – (8c), only the linearized δL differential equation is obtained using
the Clohessy-Wiltshire-Hill equations, while the linearized differential equations of in-plane
angle ψ and out-of-plane angle θ are derived from the full formation angular momentum
expression along with Euler’s equation. Compared to the regulation problem, these differ-
ential equations are non-autonomous and depend explicitly on time through Lref(t). This
greatly complicates the stability analysis of any feedback control law.

Let the charge product variation δQ be the control signal. The Coulomb regulation
feedback control is then modified to incorporate a time-varying Lref(t) term. The new
feedback control law for Coulomb reconfiguration is given as

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (9)

The constants C1 and C2 are the position and velocity feedback gains. Incorporating this
feedback law in to the δL differential equation in Eq. (8c) yields the following closed-loop
separation distance dynamics:

δL̈+ L̈ref − 2ΩLrefψ̇ + (C1 − 9Ω2)δL+ C2δL̇ = 0 (10)

It can be observed that the linearized equations in Eq. (8a) – (8c) depend on the mean orbit
rate Ω which has a very small value at GEO. In order to eliminate the numerical issues
that might arise while integrating due to the small Ω value, the following normalization
transformation is employed to make these equations independent of Ω.

dτ = Ωdt (11a)

(∗)′ = d(∗)
dτ

=
1
Ω

d(∗)
dt

(11b)

The orbit rate independent form of the linearized equations in Eq. (8a) – (8c) are written
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as

θ′′ +
2L′ref

Lref
θ′ + 4θ = 0 (12a)

ψ′′ +
2L′ref

Lref
ψ′ +

2
Lref

δL′ −
2L′ref

L2
ref

δL+
2L′ref

Lref
+ 3ψ = 0 (12b)

δL′′ + L′′ref − 2Lrefψ
′ + (C̃1 − 9)δL+ C̃2δL

′ = 0 (12c)

where C̃2 = (C2/Ω) and C̃1 = (C1/Ω2) are non-dimensionalized feedback gains. These
equations show that the out-of-plane motion θ is decoupled from the charge product term
δQ and separation distance variation δL. Therefore, it is not possible to control the out-
of-plane motion using charge control in this linearized analysis. This is in accordance with
the axially symmetric, slender rigid body dynamics15 and the physically connected tether
dynamics.12 However, the in-plane motion ψ is coupled to the δL motion in the form of
a driving force and hence, requiring a coupled in-plane attitude and separation distance
stability analysis.

3 Stability Analysis

With time varying Lref(t), the equations of motion are linear and time dependent. Rosen-
brock20 shows that the linear time-dependent system given by ẋ = A(t)x is asymptotically
stable if the frozen system for each t is stable and the rate of change of A(t) is very small.
Reference 20 also establishes a bound for A′(t) when A(t) is in the control canonical form.
The stability of the 2-craft Coulomb tether formation with varying reference length is ana-
lyzed using this method. The coupled δL and ψ equations in Eq. (12b) – (12c) are written
in the state space form as

ψ′

ψ′′

δL′

δL′′

 =


0 1 0 0

−3 −2L′ref
Lref

2L′ref
L2

ref
− 2

Lref

0 0 0 1
0 2Lref 9− C̃1 −C̃2


︸ ︷︷ ︸

A(t)


ψ
ψ′

δL
δL′

+


0

−2L′ref
Lref

0
−L′′ref


︸ ︷︷ ︸

d(t)

(13)

The square matrix in the above equation is A(t) and the time dependency in this matrix
is due to the terms Lref and L′ref. The stability of the system greatly depends on the
rate at which Lref is varied. The rate of change of reference length L′ref, can be chosen
according to the mission requirement or design. Of interest is how large L′ref can be while still
guaranteeing stability. From Eq. (13), it can be observed that there is a state independent
term d(t) which only depends on the specified rate of change of reference length (L′ref).
This term in the equation of motion will lead to a steady state offset as long as Lref is time
varying. The analytical expression for the steady state offset is given as follows

(
ψoffset

δLoffset

)
=

−2L′ref
3Lref

+ 2L′refL
′′
ref

3(−9+3C̃1)L2
ref

L′′ref
(−9+3C̃1)

 =

− 2L̇ref
3ΩLref

+ 2L̇refL̈ref

3Ω(−9Ω2+3C1)L2
ref

L̈ref
(−9Ω2+3C1)

 (14)
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Before fixing the limits for L′ref, the values for gains are chosen such that the A(t) matrix is
Hurwitz at any given time t. This does not guarantee stability for a time varying system, but
this is a necessary step for the Rosenbrock stability conditions. In the regulation problem
the feedback gains were expressed in terms of scaling factor c and α. Since this work is an
extension of the regulation problem, the same scaling factor for the gains are chosen. They
can be written as

C̃1 = c (15)

and

C̃2 = α
√
c− 9 (16)

The characteristic equation of the A(t) matrix is given by

λ4 + (C̃2 + 2
L′ref

Lref
)λ3 + (C̃1 + 2C̃2

L′ref

Lref
− 2)λ2 + (3C̃2 − 22

L′ref

Lref
+ 2C̃1

L′ref

Lref
)λ

+ 3(C̃1 − 9) = 0 (17)

Let k = L′ref/Lref be a time varying coefficient which is determined through the chosen
reference separation time history Lref(t). With this simplification the characteristic equation
of A(t) becomes

λ4 + (C̃2 + 2k)λ3 + (C̃1 + 2C̃2k − 2)λ2 + (3C̃2 − 22k + 2C̃1k)λ+ 3(C̃1 − 9) = 0 (18)

To ensure stability, roots of the characteristic equation should have negative real parts
(Hurwitz matrix). This requirement is satisfied using the Routh-Hurwitz stability criterion.
Based on this criterion it is established that C̃1 should have a value greater than 9 and
the range of possible values for k and α for certain fixed C̃1 is shown in Figure 3. The
shaded region illustrates the possible values of k and α which guarantee that roots of the
characteristic equation (i.e. the eigenvalues of the matrix A(t)) have negative real parts.
It can be observed from Figure 3 that for C̃1 > 10 there is no bounds on k when we
are expanding the separation distance. But, for contracting or decreasing the separation
distance (i.e. −k) we have a tight limit on k. The α value is fixed such that we have a
maximum range of k. From Figures 3(b) and 3(c), the values of α are taken as 1.4 and 0.9
for the C̃1 values of 12 and 14, respectively.

By satisfying the Routh-Hurwitz criterion, the eigenvalues of A(t) at any fixed time t will
always be in the left half of the plane. This is not sufficient to guarantee stability of the
system. The sufficient condition is that rate of change of A(t) be very small. Rosenbrock20

established bounds for this rate of change and stated it as a theorem when A(t) is in the
control canonical form (Ac(t)). For the sake of continuity the theorem is stated here, but
the reader should refer to Reference 20 for the detailed derivation of the theorem. Let the
matrix R be defined as

R = SAT
c +AcS − S′ + ηI < 0 (19)

(Sij) =
n∑

k=1

λi−1
k λ̄j−1

k (20)
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Figure 3: Plots showing the regions that satisfy the Routh Hurwitz stability criterion.
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where Sij are the elements of the S matrix, λk and λ̄k are the eigenvalues and its conjugate,
S′ is the derivative of S and η > 0 is some arbitrary constant. When all the eigen values
of Ac are distinct and in the left half of the plane at any given instant of time, and R
is negative definite throughout the maneuver, the system is asymptotically stable about
x = 0. For the 2-craft Coulomb tether problem, this requires the time varying reference
separation distance Lref(t) to be carefully chosen so that the R is negative definite at all
times. This theorem is based on the fact that for a matrix in the control canonical form,
the eigenvalues are uniquely related to the elements of the matrix and hence, the bounds
on the rate of change of the matrix can be replaced by bounds on the rate of change of the
eigenvalues. Some more details about the S matrix are given in the following equation.

S = HH∗ (21)

where H is the is the eigenvector matrix and H∗ is the transposed complex conjugate of H.
The matrix H is defined as

H =


1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n

 (22)

Studying the characteristic equation in Eq. (18), note that if L′ref(t) is chosen such that
the coefficient k = L′ref/Lref is constant, then the eigenvalues of Ac(t) are also constant.
For this special case the Rosenbrock stability conditions on the rate of change of A(t)
are trivially satisfied, and the overall stability is determined through the Routh-Hurwitz
stability conditions. However, having a constant k coefficient is not a practical maneuver
because it requires exponential expansion or contraction.

The A(t) matrix in Eq. (13) is not in the control canonical form, but it can be transformed
in a control canonical form using a similarity transformation ξ = Tx which yields the
differential vector equation

ξ′ = Ac(t)ξ (23)

It should be noted that the characteristic equation of the transformed matrix Ac(t) is
the same as the original matrix A(t). Hence, the values of gains chosen earlier will keep
the eigenvalues in the left half plane. For this transformed matrix we can establish the
bounds on Lref and L′ref which guarantee that the matrix L remains negative definite. The
transformed states ξ are linear combinations of the original states x. Therefore, if the
transformed states are stable then the original states are also stable. The control canonical
form of the matrix (Ac(t)) for the given matrix A(t) can be easily written by observing the
characteristic equation. It is given by

Ac(t) =


0 1 0 0
0 0 1 0
0 0 0 1

−3(C̃1 − 9) −(3C̃2 − 22k + 2C̃1k) −(C̃1 + 2C̃2k − 2) −(C̃2 + 2k)

 (24)
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Figure 4: Plots showing the regions that satisfy the Routh Hurwitz stability criterion and
Rosenbrock bounds.
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Because Ac(t) is a 4 × 4 matrix, analytically finding the expression for eigenvalues and
using them in the inequality in Eq. 19 is very challenging. The resulting expressions are
too complex to be insightful. Instead the feasible values of Lref and L′ref that satisfies the
inequality in Eq. 19 for the chosen values of C̃1 and α are identified numerically. These
feasible values are shown in Figure 4. The plots can be used to specify the reference
trajectory Lref(t). Kulla21 has developed a critical limit for the ratio L′(t)/L(t) which
guarantees stability for a tethered two-craft system. This critical limit is given as

L′(t)/L(t) = L̇(t)/(ΩL(t)) ≤ 0.75 (25)

This limit comes from a trigonometric constraint while balancing the Coriolis forces by the
gravity gradient forces. The identified feasible values of Lref and L′ref for the current two
craft virtual tether problem have linear constraint boundaries similar to the Kulla critical
limit. The Coulomb tether problem is significantly different as a virtual tether allows both
tension and compression, and the stability depends on the feedback gains. In comparison,
the classical nadir-pointing tether reconfiguration problem requires tension at all times and
only depends on the length rate L̇.

4 Numerical Simulation

To illustrate the performance and stability of Coulomb tether reconfiguration maneuvers,
the following numerical simulations are performed. The simulation parameters that used
are listed in Table 1. The initial attitude values are set to ψ = 0.1 radians and θ = 0.1
rad. The separation length error (Coulomb tether length error) is δL = 0.5 meters. All
initial rates are set to zero through ψ̇ = δL̇ = θ̇ = 0. Two sets of maneuvers, expanding
the Coulomb tether formation from 25m to 35m in 1.8 days and contracting the formation
from a separation distance of 25m to 15m, are shown.

Table 1: Input Parameters Used in Simulation

Parameter Value Units

m1 150 kg
m2 150 kg
kc 8.99× 109 Nm2

C2

Ω 7.2915× 10−5 rad/sec
δL(0) 0.5 m
ψ(0) 0.1 rad
θ(0) 0.1 rad

The Coulomb tether performance is simulated in two different manners. First the lin-
earized spherical coordinate differential equations are integrated. This simulation illustrates
the charge control performance operating on the linearized dynamical system. Second, the
exact nonlinear equations of motion of the deputy satellites are solved using the same charge
feedback control, and compared to the performance of the linearized dynamical system. The
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nonlinear deputy equations are given through Cowell’s equations

r̈1 +
µ

r3
1

r1 =
kc

m1

Q

L(t)3
(r1 − r2) (26a)

r̈2 +
µ

r3
2

r2 =
kc

m2

Q

L(t)3
(r2 − r1) (26b)

where r1 = rc+ρ1 and r2 = rc+ρ2 are the inertial position vectors of the the masses m1 and
m2, while L =

√
(r2 − r1) · (r2 − r1). The vector rc denotes the position of the formation

center of mass or chief location. The gravitational coefficient µ is defined as µ ≈ GMe.
After integrating the motion using inertial Cartesian coordinates, the separation distance
L, as well as the in-plane and out-of-plane angles ψ and θ, are computed in post-processing
using the exact kinematic transformation.
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Figure 5: Simulation results for expanding the spacecraft separation distance from 25m to
35m in 1.8 days. The feedback gains are C̃1 = 12 and α = 1.4.

Figure 5(a) shows the Coulomb tether motion for increasing the separation distance from
25m to 35m in the linearized spherical coordinates (ψ, θ, δL), along with the full nonlinear
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(a) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rota-
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Figure 7: Simulation results for contracting the spacecraft separation distance from 25 m
to 15m in 1.8 days. The feedback gains are C̃1 = 12 and α = 1.4.
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spherical coordinates shown as dotted lines. The expansion is done in 1.8 days and this
corresponds to a constant L′ref of 0.88. After 1.8 days, the L′ref is zero and the formation
is allowed to stabilize about the final separation distance. The feedback gains are C̃1 = 12
and α = 1.4. With the presented charge feedback law, both the yaw motion ψ and the
separation distance deviation δL converge to zero. By stabilizing the δL state to zero, the
in-plane rotation ψ(t) also converges to zero. As expected, the pitch motion θ(t) was a
stable sinusoidal motion, decoupled from the controlled in-plane orbital motion. Further,
Figure 5(a) shows that the nonlinear simulation closely follows the linearized simulation,
validating the linearizing assumption and illustrating robustness to the unmodelled dynam-
ics. Since L′ref is constant, there is no steady state offset for δL and the offset for ψ is very
small (order of 10−2 rad) and hence, not visible in the graph.

Figure 5(b) shows the spacecraft control charge q1 (on craft 1) for both the linearized
and full nonlinear simulation models. Both are converging to the reference value pertaining
to the static equilibrium at each instant of time. Note that the deviation from the value of
reference charges is small, justifying the linearization assumptions used. The magnitude of
the control charges is in the order of micro-Coulomb which is easily realizable in practice
using charge emission devices. The charge on craft 2 will be equal and opposite to the
charge on craft 1.

In order to illustrate how well the system is tracking the prescribed reference trajectory
Lref(t), the time histories of separation distance L(t) and the time histories of rate of
change of separation distance L̇(t) are shown in Figure 6(a) and Figure 6(b), respectively.
Figure 6(a) shows that the reference separation distance (Lref(t)) increases linearly until
1.8 days before settling to a constant value and both the linear and inertial nonlinear
simulations track the reference separation distance closely. Figure 6(b) illustrates that the
rate of change of the reference separation distance (L̇ref(t)) is a discrete step change. In
the linear and inertial nonlinear simulations the formation is assumed to be static to begin
with and hence, their rate of change of separation distance (L̇(t)) are zero initially. But
they converge with the reference rate L̇ref(t) within 1.2 days. A faster convergence can be
achieved by replacing the sharp corners of the reference rate (infinite reference acceleration)
with a smooth polynomial function or spline (finite reference acceleration).

Figure 7(a) and Figure 7(b) show Coulomb tether motion and charge time histories for
decreasing the separation distance from 25m to 15m. Contractions are more challenging
because the angular momentum will cause to destabilize the in-plane attitude motion. The
maneuvers must be performed slow enough to allow the gravity gradient to maintain sta-
bility. Again the maneuver is done in 1.8 days which means L′ref is −0.88 and the gains are
same as above expansion maneuver. These two sets of maneuvers are repeated for the gain
values C̃1 = 14 and α = 0.9 and, Figure 8 and Figure 9 illustrate their time histories. It can
be observed from these two graphs that even though the system is stable, the performance
could potentially be improved by tuning the feedback gains.

5 Conclusions

A charge feedback control law for reconfiguring a 2-craft Coulomb tether formation with
time varying length is given. The 2-craft system forms a simple virtual Coulomb structure
where the electrostatic force replaces the physical tether cable. Previous work only consid-
ered stabilizing a static structure with a fixed length. This paper discusses an expanded
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Figure 8: Simulation results for expanding the spacecraft separation distance from 25m to
35m in 1.8 days. The feedback gains are C̃1 = 14 and α = 0.9.
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Figure 9: Simulation results for contracting the spacecraft separation distance from 25 m
to 15m in 1.8 days. The feedback gains are C̃1 = 14 and α = 0.9.
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feedback control law which allows for the Coulomb tether length to vary with time. During
these maneuvers care is taken to ensure that the gravity gradient torque is still sufficient
to stabilize the in-plane attitude of the nadir pointing formation. The stability regions
for expanding and contracting the formation are established through linearization of the
motion and by applying criteria developed by Rosenbrock for linear time-varying systems.
Contracting the virtual structure is more difficult to perform while guaranteeing stability.
The system angular momentum will cause any in-plane angular motion to increase with de-
creasing tether length. The magnitude of the local gravity gradient limits the rate at which
the separation distance can be reduced. In contrast, expanding the virtual structure length
is easier because the angular momentum helps contain in-plane rotation. The out-of-plane
motion of the craft is decoupled from the in-plane motion with the linearized dynamics,
and not controllable with the Coulomb forces. Numerical simulations of the full nonlinear
motion are carried out to illustrate the results and compare the linearized performance
predictions to the actual nonlinear system response.
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