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Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061

The linearized dynamics and stability of a 2-craft Coulomb tether formation is investigated. With
a Coulomb tether the relative distance between two satellites is controlled using electrostatic Coulomb
forces. A charge feedback law is introduced to stabilize the relative distance between the satellites to
a constant value. Compared to previous Coulomb thrusting research, this is the first feedback control
law which stabilizes a particular formation shape. The two craft are connected by an electrostatic tether
which is capable of both tensile and compressive forces. As a result, the two-craft formation will essen-
tially act as a long, slender near-rigid body. Inter-spacecraft Coulomb forces cannot influence the inertial
angular momentum of this formation. However, the differential gravitational attraction can be exploited
to stabilize the attitude of this Coulomb tether formation about an orbit nadir direction. Stabilizing the
separation distance will also stabilize the in-plane rotation angle, while the out-of-plane rotational mo-
tion remains unaffected. The Coulomb tether has been modeled as a massless, elastic component. The
elastic strength of this connection is controlled through a spacecraft charge control law.

I. Introduction
The concept of formation flying using electrostatic propulsion

was introduced in References 1, 2, 3. The electrostatic (Coulomb)
charge of spacecraft is varied by active emission of either negative
electric charges (electrons) or positive electric charges (ions). The
resulting changes in inter-spacecraft Coulomb forces are used to
control the relative motion of the spacecraft. This novel concept
of propellantless relative navigation control has many advantages
over conventional thrusters like ion engines. For example, this
method of propulsion has been shown to require essentially no
consumables (fuel efficiencies ranging up to 1013 seconds), re-
quire very little electric power to operate (often less than 1 Watt),
and can be controlled with a very high bandwidth (zero to max-
imum charge transition times are of the order of milli-seconds).
Thus, this propulsion concept could enable high precision for-
mation flying with separation distances ranging between 10–100
meters. It is also a very clean method of propulsion compared
to ion engines, thereby avoiding the thruster plume contamina-
tion issue with neighboring satellites. For this range of separation
distances, the plume-impingement problem of high-efficiency ion
engines would be severe. Proposed uses of the Coulomb propulsion
concept include high-accuracy, wide-field-of-view optical inter-
ferometry missions with geostationary orbits(GEO),1 controlling
clusters of spacecraft to maintain a bounded shape,3 as well as the
use of drone-worker concepts where dedicated craft place a sen-
sor in space using Coulomb forces.4 A new application of the
Coulomb propulsion concept is to use the electrostatic force to con-
trol the separation distance between two physically unconnected
craft. Due to the similarities with using a tether cable to connect
two craft, this concept is called a Coulomb tether formation. Note
that contrary to traditional tethers, the Coulomb tether is capable
of receiving both tensile and compressive forces. Further, the stiff-
ness of the satellite connection can be controlled through feedback
control laws. This will allow for the Coulomb tether stiffness to
be varied with changing mission requirements. Scenarios with two
spacecraft flying only dozens of meters apart are investigated. Po-
tential applications include releasing a sensor or camera unit from
the primary spacecraft and holding it at fixed distance above or be-
low the spacecraft. From this non-Keplerian orbit, the sensor craft
could monitor the spacecraft itself, or perform other scientific mea-
surements.
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While the Coulomb propulsion concept has many exciting ad-
vantages, it does come at the price of greatly increased coupling
and nonlinearity of the charged spacecraft equations of motion.
The relative motion of all other neighboring charged craft will be
affected by changing the charge of a single craft. Further, with the
Coulomb forces being formation-internal forces, some constraints
are applicable to all feasible charged spacecraft motion. In par-
ticular, Coulomb forces cannot be used to change the total inertial
formation angular momentum vector.5, 6 As a result, these space-
craft charges cannot be used to reorient a formation as a whole to a
new orientation. An external influence must be used or generated
through thrusters to reorient a Coulomb formation.

When charging spacecraft to control relative motion, differential
charging across the spacecraft components must be minimized to
avoid arcing. The very simple Coulomb craft used in this study
are assumed to be designed to carry a higher Coulomb charge
level. However, note that the control charge levels proposed for
the Coulomb tether formation are similar to the naturally occurring
charge levels of GEO spacecraft during periods of high solar ac-
tivity. The technology to control the charge involves high-speed
ion and electron emitters, and is similar to what is currently flying
on the CLUSTERS mission7 or to what flew on the SCATHA mis-
sion.8 On the CLUSTERS mission the spacecraft charge is actively
controlled to neutralize its potential relative to the space plasma
environment. Because of the high fuel efficiency of the Coulomb
thrusting concept,1, 2 where relative motion Isp values can range
between 1010–1013 seconds, the change in momentum and plasma
environment due to the expelled charges is negligible.

Spacecraft are not subjected to the same gravitational pull
throughout the body. The sections which are closer to the Earth are
attracted more strongly than those that are further away. This force
or gravity gradient9 has been used in stabilizing some satellites.
To guarantee linear stability of rigid body attitudes in orbit, the
principal inertias of the body must satisfy well-known constraints.
Typically gravity-gradient stabilized satellites are tall and slender,
and aligned with the local nadir direction. The same concept of
stabilization can be extended to the two spacecraft Coulomb tether
concept where the craft are assumed to be flying apart by a few
dozen meters. A charge feedback law is employed to stabilize the
spacecraft separation distance (making the formation act as a rigid,
slender rod), while the gravity gradient torque is exploited to assist
in stabilizing the formation attitude.

The study of electrostatic charging data of SCATHA spacecraft8

in GEO has shown that the spacecraft can naturally charge to very
high voltages in low plasma environments such as at GEO. The
level of natural charge depends on the current solar activity. Fur-
ther, this mission demonstrated that the spacecraft charge could be
actively controlled. The Coulomb propulsion has its own set of lim-
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itations, however. The magnitude of Coulomb electrostatic force is
inversely proportional to the square of separation distance, which
makes this method effective only for close formations of the order
of 10-100 m, depending on the maximum allowable level of space-
craft charge. Moreover, if charged plasma particles are present in
the space, the effectiveness of Coulomb force is diminished with
the electric field dropping off exponentially. The severity of this
drop is measured using the Debye length.10, 11 For low Earth orbits
(LEO), the Debye length is of the order of centimeters, making the
Coulomb formation flying concept impractical. At geostationary
orbits (GEO) or higher, where the plasma environment is milder,
the Debye length is about 100-1400 meters. The Coulomb for-
mation flying concepts can be comfortably applied at this altitude.
King et. al.2 found analytical solutions for Hill-frame invariant
Coulomb formations. Here spacecraft are placed at specific loca-
tions in the rotating Hill frame with specific electrostatic charges.
As a result the Coulomb forces perfectly cancel all natural orbital
accelerations, causing the satellites to remain fixed or static as seen
by the Hill frame. However, the charge was held constant in their
analysis. The discovered open-loop static Coulomb formations
were all found to be unstable.

References 1, 2, 3 discuss the static Coulomb satellite forma-
tions and the associated equilibrium charges, but do not address
the stabilization of these formations. In this paper, stabilization of
a simple static Coulomb structure is discussed for the first time. An
active charge feedback control is presented to stabilize the static 2-
craft formation shape and orientation. In oder to achieve this goal
we use known stability characteristics of orbital rigid body mo-
tion under a gravity gradient field and examine its applicability to a
Coulomb tethered two-spacecraft system. To avoid the very small
plasma Debye lengths found at LEO, the Coulomb tether formation
studied is at GEO. The formation center of mass or chief motion is
assumed to be circular. In formation flying the chief is the refer-
ence location about which all other deputy satellites are flying. The
two body Coulomb tether problem considered here can be viewed
as a sub-problem of the multi-satellite formation flying problem. In
future work, attempts will be made to extend the feedback control
discussed here to multi-satellite formations. The paper is organized
as follows. After discussing the charged spacecraft equations of
motion, the equations are rewritten using spherical coordinates and
linearized for small departure angles relative to an equilibrium at-
titude. A feedback charge control law is introduced to stabilize
the separation distance, followed by a combined attitude and sep-
aration distance linear stability analysis. A numerical simulation
illustrates the results and compares the linearized performance pre-
dictions to the actual nonlinear system response.
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Figure 1: Rotating Hill Coordinate System Used to Describe
the Relative Position of the Satellites

II. Static (Rigid) Formation Dynamics
To start with, the equations of motion of a cluster of charged

spacecraft are briefly reviewed. The Clohessy-Wiltshire-Hill’s
equations12, 13 are commonly used for spacecraft formation stud-
ies. These equations express the linearized motion of one satellite

relative to a circularly orbiting reference point or chief location.
Note that this chief location does not have to be actually occupied
by a satellite. For the present discussion, the formation chief loca-
tion is set to be equal to the formation center of mass. The various
satellites in a formation are called the deputy satellites. The system
of Cartesian coordinates used to describe the relative motion of a
satellite with respect to the chief location is defined in the rotating
Hill orbit frameO : {ôr, ôθ, ôh} as shown in Figure 1. The origin
of the coordinate system is chosen to be the formation center of
mass or chief location. The Cartesian x, y and z coordinates are
the vector components of the relative position vector

ρ =

O x
y
z

!
(1)

along the directions of orbit radial ôr (outward), the orbital veloc-
ity vector ôθ , and the normal vector ôh with respect to the orbit
plane. Assuming that the Coulomb formation contains N satel-
lites, the CW equations of the ith deputy with respect to the chief
are expressed as

ẍi − 2Ωẏi − 3Ω2xi =
kc

mi

NX
j=1

(xi − xj)

|ρi − ρj |3
qiqje

−|ρi−ρj |/λd j 6= i

(2a)

ÿi + 2Ωẋi =
kc

mi

NX
j=1

(yi − yj)

|ρi − ρj |3
qiqje

−|ρi−ρj |/λd j 6= i

(2b)

z̈i + Ω2zi =
kc

mi

NX
j=1

(zi − zj)

|ρi − ρj |3
qiqje

−|ρi−ρj |/λd j 6= i

(2c)

where ρi = (xi, yi, zi)
T is the position vector of the ith satel-

lite in Hill frame components, mi is the satellite mass, and qi

is the satellite charge. The chief position vector rc is assumed
to have a constant orbital rate of Ω =

p
GMe/r3c , where G is

the gravity constant and Me is the Earth’s mass. The parameter
kc = 8.99 · 109 Nm2/C2 is the Coulomb’s constant, while the
parameter λd is the Debye length. Because the Coulomb tether for-
mations are assumed to be at GEO where the Debye length is much
larger than the typical Coulomb tether length, the Debye length in-
fluence is ignored as a higher order term for the remainder of the
paper. Note that these relative equations of motion of a charged
spacecraft contain linearized orbital dynamics, while retaining the
full nonlinear Coulomb force expression. In fact, it is this very
nonlinear Coulomb force term that causes the strong and complex
coupling between the spacecraft motions.

The formation geometry of the ideal 2-craft Coulomb tether for-
mation is shown in Figure 2. As will be shown later in this section,
there exists a 2-craft static Coulomb formation solution where both
masses must be aligned equal distances away from the chief along
the nadir direction. The ideal separation distance is called Lref. If
each craft has a certain charge, then the resulting Coulomb forces
will perfectly cancel the linearized orbital accelerations in the Hill
frame. As a result, the two craft would each remain aligned in the
chief nadir direction and perform non-Keplerian motions. To an
external observer the two physically unconnected craft would ap-
pear to both be performing perfectly circular motions, but with a
non-Keplerian orbit period for their individual altitudes. The invis-
ible Coulomb tether is applied to get the required inter-spacecraft
force, similar to how a cable tether could provide the required ten-
sion between the craft to maintain such non-Keplerian orbits.

Since the Coulomb tether formation considered has only two
spacecraft, the CW equations in Eq. (2) for satellite 1 can be sim-
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Figure 2: Coulomb Tethered Two Satellite Formation with the Satellites Aligned Along the Orbit Nadir Direction

plified as

ẍ1 − 2Ωẏ1 − 3Ω2x1 =
kc

m1

(x1 − x2)

L3
q1q2 (3a)

ÿ1 + 2Ωẋ1 =
kc

m1

(y1 − y2)

L3
q1q2 (3b)

z̈1 + Ω2z1 =
kc

m1

(z1 − z2)

L3
q1q2 (3c)

where L is the distance between the satellites 1 and 2. As the Hill
frame O origin is assumed to be identical to the formation center
of mass, the center of mass condition dictates that5, 6

m1ρ1 +m2ρ2 = 0 (4)

Thus, by controlling the motion of satellite 1, the motion of the
second satellite is also determined implicitly through the center of
mass constraint.

In order for this top-down spacecraft formation to remain stati-
cally fixed relative to the rotating orbit frameO, the CW equations
in Eq. (3) must be satisfied with zero initial velocity and accelera-
tion for each vehicle

ẋi = ẍi = ẏi = ÿi = żi = z̈i = 0

For a two-craft Coulomb formation, this is possible if the relative
positions are expressed through:

m1x1 +m2x2 = 0 (5a)
x1 − x2 = L (5b)

x1 =
m2

m1 +m2
L (5c)

x2 = − m1

m1 +m2
L (5d)

y1 = y2 = z1 = z2 = 0 (5e)

Substituting the above conditions and constraints in Eq. (3), one
obtains the following two spacecraft charge conditions for a static
nadir-aligned formation.

kc

m1

q1q2
L2

+ 3Ω2 m2L

m1 +m2
= 0 ⇒ q1q2 = −3Ω2L

3

kc

m1m2

m1 +m2

(6a)

kc

m2

q1q2
L2

+ 3Ω2 m1L

m1 +m2
= 0 ⇒ q1q2 = −3Ω2L

3

kc

m1m2

m1 +m2

(6b)

The ideal product of charges Qref needed to achieve this static
Coulomb formation is

Qref = q1q2 = −3Ω2L
3

kc

m1m2

m1 +m2
(7)

Thus, if the satellites are placed at the locations shown in Eq. (5),
and have the charges q1 and q2 satisfying Eq. (7), then the satellites
will appear to be frozen or fixed as seen by the rotating frame O.
Note that this reference charge product term will be negative! This
dictates that the spacecraft charges q1 and q2 will have opposite
charge signs. However, there are an infinite number of charge pairs
which satisfy Qref = q1q2. When implementing charge control
strategies in this study, the charge magnitudes are set equal. If
one craft is capable of higher charge levels, it is possible to have
unequal charges as long as their product satisfies the required Q =
q1q2 value.

III. Linearized Orbital Perturbation
The constant charge computed in accordance with Eq. (7) will

only result in the static nadir formation if there are no position
or velocity errors, and no perturbations are present. Otherwise,
the relative separation will become unstable and the satellites will
separate. This problem can be overcome by allowing a suitable
variation of charges. In this section, a relationship between these
position and charge states is established by considering small per-
turbations about the established reference states.

Let the two-craft formation be treated as if it were a rigid
body. Accordingly, consider a body-fixed coordinate frame B :

{b̂1, b̂2, b̂3} where b̂1 is aligned with the relative position vector
ρ1. Note that if the body is at the ideal Coulomb tether orientation
where the masses are aligned exactly along the orbit nadir direction
ôr , then the O and B frame orientation vectors are identical. The
relative position vector of mass m1 in body fixed axes is given by

ρ1 =
m2

m1 +m2
Lb̂1 + 0b̂2 + 0b̂3 (8)

Let the 3-2-1 Euler angles (ψ, θ, φ) represent the Coulomb tether
B frame attitude relative to the orbit frame O for small angular
perturbations as shown in Figure 3. Because point masses are being
considered, the rotation about b̂1 ( angle φ) can be neglected. The
direction cosine matrix [BO(ψ, θ)], which relates the O frame to
B frame, is given by

[BO] =

"
cos θ cosψ cos θ sinψ − sin θ
− sinψ cosψ 0

sin θ cosψ sin θ sinψ cos θ

#
(9)

Using small angle approximations for the trigonometric functions,
the position vector of mass m1 in O frame can be written as

 
x1

y1
z1

!
= [BO]T

0@ m2
m1+m2

L

0
0

1A ≈

0@ m2
m1+m2

L

ψ m2
m1+m2

L

−θ m2
m1+m2

L

1A (10)

Taking the derivative of this expression, the linearized Hill frame
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ôh

ôθ
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Figure 3: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the Orbit Frame

relative velocity coordinates are found to be 
ẋ1

ẏ1
ż1

!
≈ m2

m1 +m2

0@ L̇

ψL̇+ ψ̇L

−θL̇− θ̇L

1A (11)

The distance L between the two masses m1 and m2 is given by

L2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 (12)

Using the center of mass condition in Eq. (4), this can be simplified
to

L2 =

„
m1 +m2

m2

«2

(x2
1 + y2

1 + z2
1) (13)

Differentiating Eq. (4) twice and substituting Eq. (3) into the re-
sulting expression yields,

L̇2 + LL̈ =

„
m1 +m2

m2

«2 “
ẋ2

1 + x1

“
2Ωẏ1 + 3Ω2x1

+
kc

m1

(x1 − x2)

L3
Q
”

+ ẏ2
1 + y1

“
− 2Ωẋ1 +

kc

m1

(y1 − y2)

L3
Q
”

+ ż2
1 + z1

“
− Ω2z1 +

kc

m1

(z1 − z2)

L3
Q
””

(14)

Transforming the Cartesian coordinates (x1, y1, z1) to spherical
coordinates (L,ψ, θ) using Eq. (10) and Eq. (11), while neglect-
ing higher order terms in ψ and θ, we get the linearized differential
equation of the separation distance L.

L̈ = (2Ωψ̇ + 3Ω2)L+
kc

m1
Q

1

L2

m1 +m2

m2
(15)

Note the following special case. Assume that the charge product
term Q is zero (i.e. classical Keplerian motion), and that the satel-
lites are initially at rest with ψ̇ = 0. In this case the separation
distance equations of motion simplify to

L̈− 3Ω2L = 0

This unstable oscillator equation demonstrates that without any
Coulomb force active, this formation could not remain at the spe-
cific nadir locations.

Next the separation distance equations of motion are linearized
about small variations in length δL and small variations in the
product charge term δQ. The reference separation length Lref is de-
termined by the mission requirement. The reference charge product
term is determined through the Lref choice and the constraint in
Eq. (7).

L = Lref + δL (16a)
Q = Qref + δQ (16b)

Substituting these L andQ definitions into Eq. (15) and linearizing
leads to

δL̈ = (2ΩLref)ψ̇ + (9Ω2)δL+

„
kc

m1

1

L2
ref

m1 +m2

m2

«
δQ (17)

This equation establishes the desired relationship between the ad-
ditional charge product δQ required and the change in relative
separation of the satellites. It is observed that this relation is cou-
pled to the body frame yaw rate ψ̇. The Coulomb tether attitude
differential equations will be developed later using angular mo-
mentum expressions.

To develop a feedback law to control the separation distance us-
ing the Coulomb forces, the small charge product variation δQ
is treated as a control variable. Because the charge of each craft
causes a force along the relative position vector, the Coulomb
charges can be used to control the spacecraft separation distance.
By defining

δQ =
m1m2L

2
ref

(m1 +m2) kc
(−C1δL− C2δL̇) (18)

the closed-loop separation distance dynamics become

δL̈+ (C1 − 9Ω2)δL+ C2δL̇− (2ΩLref)ψ̇ = 0 (19)

This control law provides both proportional and derivative feed-
back of δL. Because the δL differential equation does not contain
a damping term δL̇, the inclusion of the derivative feedback is es-
sential to ensure asymptotic convergence. Note that in the absence
of the yaw rate term ψ̇, these closed-loop dynamics would be stable
if C1 > 9Ω2 and C2 > 0. However, due to the coupling with the
yaw (in-orbit-plane) rotation, the complete Coulomb tether motion
must be analyzed for stability.

To implement this charge feedback control law, the spacecraft
charges q1 and q2 must be determined. The value of Qref is de-
termined through Eq. (7), while the value of δQ is given by the
feedback law expression in Eq. (18). Thus, the spacecraft charges
q1 and q2 must satisfy

q1q2 = Qref + δQ (20)

There are an infinite number of solutions to the above constraint.
To keep the charges equal in magnitude across the craft, the fol-
lowing implementation was used.

q1 =
p
|Qref + δQ| (21)

q2 = −q1 (22)

Note that here Qref + δQ < 0 because δQ � Qref and Qref < 0.
With this charging convention we find q1 > 0 and q2 < 0.
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IV. Stability Analysis Using Gravity Gradient
In this section the stability of both the Coulomb tether attitude

(ψ, θ) and the separation distance L is analysed. The gravity gradi-
ent torque is included to exert an external torque onto the Coulomb
tether. Let the orbit angular velocity vector relative to the inertial
frame N be given by

ωO/N = Ωôh (23)

To develop the tether attitude differential equations of motion, the
2-craft formation is treated as a continuous body. This is motivated
by the stable Coulomb tether formation acting as a rigid dumbbell
spacecraft. The formation inertia matrix is expressed as9

[I] = −m1[ρ̃1][ρ̃1]−m2[ρ̃2][ρ̃2] (24)

where [ρ̃1] is a skew-symmetric matrix which is equivalent to the
vector cross product operator a × b ' [ã]b. For the 2-craft
Coulomb tether formation, using the center of mass definition in
Eq. (4), the inertia matrix is trivially given in the body frame B as

B[I] =

"
0 0 0
0 I 0
0 0 I

#
(25)

where

I =
m1m2

m1 +m2
L2 (26)

Note that these moments of inertia vary with time due to their de-
pendence on the variable formation length L. The B-frame deriva-
tive of the inertia matrix is

B[İ] =

240 0 0

0 İ 0

0 0 İ

35 (27)

where

İ = 2
m1m2

m1 +m2
LL̇ = 2

m1m2

m1 +m2
(Lref + δL)δL̇ (28)

because Lref =constant.
To develop the attitude differential equations, the total inertial

angular momentum of the 2-craft formation is

H = [I](ωB/O + ωO/N ) (29)

Because the Coulomb control forces are all formation internal
forces, one finds that the inertial derivative of H is equal to the
total external torque acting on the system. Euler’s rotational equa-
tion of motion with a time varying inertia matrix [I] and gravity
gradient torque vector LG is given in body frame B components
by

B[I] Bω̇ + B[İ] Bω + B[ω̃] B[I] Bω = BLG (30)

where Bω = BωB/N and the notation [ω̃]x ≡ ω × x is used.
Using the direction cosine matrix definition in Eq. (9), the orbit
angular velocity vector can be written as

BωO/N = [BO]OωO/N =

"−Ω sin θ
0

Ω cos θ

#
(31)

The yaw and pitch rates of the Coulomb tether body frame B rela-
tive to the orbit O frame yield

BωB/O =

"− sin θ 0
0 1

cos θ 0

#»
ψ̇

θ̇

–
(32)

The Coulomb tether body frame angular velocity vector relative to
the inertial frame N is

BωB/N = BωB/O + BωO/N =

B24− sin θψ̇ − Ω sin θ

θ̇

cos θψ̇ + Ωcos θ

35 (33)

Linearizing the Eq. (33) about small yaw and pitch angles, we get

BωB/N ≈
B24 −Ωθ

θ̇

ψ̇ + Ω

35 (34)

Taking the inertial derivative of this vector and noting that Ω is
constant in this application, the B frame angular acceleration is

Bω̇B/N ≈
B24−Ωθ̇

θ̈

ψ̈

35 (35)

The gravity gradient torque LG also has to be expressed using
the tether coordinates. The center of mass position vector rc, given
in O frame components as

rc =

O rc

0
0

!
(36)

is transformed to the B frame as

rc =

B rc1

rc2

rc3

!
=

B cos θ cosψ
− sinψ

sin θ cosψ

!
rc (37)

Reference 9 provides the following expression for gravity gradient:

B"LG1

LG2

LG3

#
=

3GMe

r5c

24rc2rc3(I33 − I22)
rc1rc3(I11 − I33)
rc1rc2(I22 − I11)

35 (38)

After substituting for rci from Eq. (37) and using the known value
of Ω from Kepler’s equation, namely,

GMe

r3c
= Ω2 (39)

the gravity gradient torque vector acting on the Coulomb tether
body frame is written as

BLG
∼= 3Ω2

"
0
−Iθ
−Iψ

#
(40)

Substituting these results for LG, B[İ], B[I], ωB/N and ω̇B/N
back into Euler’s rotational equations of motion in Eq. (30) and
after simplifying the algebra, the resulting linearized attitude dy-
namics of the Coulomb tether body frame B are written along with
the separation distance differential equation as:

θ̈ + 4Ω2θ = 0 (41a)

ψ̈ +
2Ω

Lref
δL̇+ 3Ω2ψ = 0 (41b)

δL̈+ C2δL̇− (2ΩLref)ψ̇ + (C1 − 9Ω2)δL = 0 (41c)

Thus, Eqs. (41a) – (41c) are the linearized equations of motion
of the Coulomb tether body about that static nadir reference con-
figuration. It should be noted that only the linearized δL dif-
ferential equation was obtained using the Clohessy-Wiltshire-Hill
equations, while the linearized differential equations of ψ and θ
were derived from the full formation angular momentum expres-
sion along with Euler’s equation. These equations have terms that
depend on orbital rate Ω which happens to be a small value at GEO.
In order to avoid numerical issues while carrying out numerical in-
tegrations, it is desired to have these equations be independent of
Ω. This can be achieved by using the following transformation.

dτ = Ωdt (42a)

(∗)′ =
d(∗)
dτ

=
1

Ω

d(∗)
dt

(42b)



6 NATARAJAN ET AL: TWO-CRAFT COULOMB TETHER

By carrying out the above transformation in Eqs. (41a) – (41c),
the orbit rate Ω independent linearized equations of motion of the
Coulomb tether body are given by

θ′′ + 4θ = 0 (43a)

ψ′′ +
2

Lref
δL′ + 3ψ = 0 (43b)

δL′′ + C̃2δL
′ − (2Lref)ψ

′ +
“
C̃1 − 9

”
δL = 0 (43c)

where C̃2 = (C2/Ω) and C̃1 = (C1/Ω
2) are non-dimensionalized

feedback gains. It can be observed from these equations that the
out-of-plane motion θ(t) is decoupled and its equation is that of a
simple oscillator. This decoupling is analogous to what occurs with
the linearized rigid body attitude dynamics subject to a gravity gra-
dient torque. Because the θ(t) motion is not coupled to the tether
charge product term δQ, or the separation distance variation δL,
it is not possible to control the pitch motion θ with the Coulomb
charge in this linearized analysis. The yaw motion ψ(t) is cou-
pled with the δL(t) motion in the form of a driving force which
may make it amenable to asymptotic stabilization by controlling
the charge.

The values of gain C̃1 and C̃2 can be tuned to meet the stability
requirements using Routh-Hurwitz stability criterion. The charac-
teristic equation for the coupled δL and ψ equations is

λ4 + C̃2λ
3 + (C̃1 − 2)λ2 + 3C̃2λ+ 3(C̃1 − 9) = 0 (44)

While the linearized closed-loop dynamics do depend on the
Coulomb tether reference length Lref, note that the characteristic
equation does not. To ensure asymptotic stability, roots of this
equation should have negative real parts. The constraints on the
gains C̃1 and C̃2 for meeting this condition are identified by con-
structing a Routh table and are found to be

C̃1 > 9 (45a)

C̃2 > 0 (45b)

Incidentally, these constraints also ensure the stability of δL equa-
tion ignoring the ψ′ term.

The stability criterion imposes constraints on the choice of the
feedback gains C̃1, C̃2 but is not enough to actually decide their
values. One needs to look for alternate criteria for fixing them. One
satisfying way would be to fix the gains by demanding conditions
of critical or near critical damping. For ease of discussion, let the
feedback gains be expressed in terms of scaling factor n and α,
both taken as positive and real. The gains can be rewritten as

C̃1 = n > 9 (46)

and

C̃2 = α
√
n− 9 (47)

The natural frequency of the ψ equation is
√

3 and is not affected
by the choice of C̃1 and C̃2, whereas the natural frequency for δL
equation is

p
(n− 9). The value of n = 12 will match these

frequencies making the ψ′ coupling term in δL equation serve as
defacto damping term. A similar remark applies to the ψ equation.
In Eq. (47), α = 2 ensures that the δL equation without the ψ′

term is critically damped. For effective damping with the inclusion
of ψ′ term, the value of α and n need to be modified. However,
one expects the value of α to be in the vicinity of α = 2 and n
to be around 12. Hence, root locus plots for the coupled δL and
ψ equations are studied with a range of α values in the vicinity
of α = 2 with n varying between 9 and 20. Figure 4 shows the
root locus plots for two different α values . Studying the root locus
plots, it can be observed that as the n value increases beyond 12
the rate of convergence of one of the modes increases and the other
decreases. Therefore, n = 12 is ideal for ensuring good rates of
convergence for both the modes. It is also noted that α = 2.28
resulted in effective damping for the modes.
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Figure 4: Root-Locus Plot of the Linearized Spherical Coordi-
nate Differential Equations for Different gain α values.

V. Numerical Simulation
A numerical simulation is presented to illustrate the performance

and stability of a 25 meter Coulomb tether formation. The simu-
lation parameters that were used are listed in Table 1. The initial
attitude values are set to ψ = 0.1 radians and θ = 0.1 rad. The
separation length error (Coulomb tether length error) is δL = 0.5

meters. All initial rates are set to zero through ψ̇ = δL̇ = θ̇ = 0.
The choice of values for the gains C̃1 and C̃2 should not only

satisfy the stability criterion mentioned in Eq. (45) but also should
be such as to lead to near-ideal damping. Studying the root locus
plots where the parameters n and α are varied, the values n = 12
and α = 2.28 were chosen. Hence, using Eq. (47) the gain C̃2 was
found to be 2.28

√
3.

The Coulomb tether performance was simulated in two differ-
ent manner. First the linearized spherical coordinate differential
equations were integrated. This simulation illustrates the linear
performance of the charge control. Second, the linearized results
were compared with those obtained from the exact nonlinear equa-
tion of motion of the deputy satellites given by

r̈1 +
µ

r31
r1 =

kc

m1

Q

L3
(r1 − r2) (48a)

r̈2 +
µ

r32
r2 =

kc

m2

Q

L3
(r2 − r1) (48b)

where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial
position vectors of the the masses m1 and m2, while L =p

(r2 − r1) · (r2 − r1). The gravitational coefficient µ is defined
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Figure 5: Simulation Results of Integrating either the Linearized Spherical Coordinates Differential Equations (solid lines) or the
Nonlinear Inertial Coordinate Differential Equations (dashed lines).

Table 1: Input Parameters Used in Simulation

Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99× 109 Nm2

C2

Qref −2.07911 µC2

Ω 7.2915× 10−5 rad/sec
n 12
α 2.28

δL(0) 0.5 m
ψ(0) 0.1 rad
θ(0) 0.1 rad

as µ ≈ GMe. After integrating the motion using inertial Cartesian
coordinates, the separation distance L, as well as the in-plane and
out-of-plane angles ψ and θ, are computed in post-processing us-
ing the exact kinematic transformation. The Debye length is kept
at zero during this simulation to study in detail the effects of the
relative motion linearization.

Figure 5(a) shows the Coulomb tether motion in the linearized
spherical coordinates (ψ, θ, δL), along with the full nonlinear
spherical coordinates shown as dashed lines. With the presented
charge feedback law, both the yaw motion ψ and the separation
distance deviation δL converged to zero. By stabilizing the δL
state to zero, the in-plane rotation ψ(t) also converges to zero. For
the set of initial conditions used in this simulation, the δL and ψ
states have converged after about 0.9 orbits. As expected, the pitch
motion θ(t) was a stable sinusoidal motion. Further, Figure 5(a)
shows that the nonlinear simulation closely follows the linearized
simulation. However, there is one notable difference. The δL states
converge to zero asymptotically in the linearized simulation, while
they achieve a steady-state oscillation in the nonlinear simulation.

This difference in behaviour occurs because the same reference
charge product Qref (computed using Eq. (7)) is used in both simu-
lations. This charge will achieve a static formation in the linearized
CW equations. However, this charge value will not achieve a static
formation in the nonlinear problem. Thus, the charge feedback
control is not actually operating about a proper steady-state charge
of the nonlinear problem. As the δL and ψ tracking errors go to
zero, the orbital dynamics will perturb the system and cause these
states to grow again. This persistent disturbance results in the fi-
nal steady-state oscillations shown. To implement such a control
strategy for an actual mission, the Qref value would be recomputed
numerically for the nonlinear problem. Even with this deviation,
the nonlinear and linear performance predictions compare very
well, thus verifying the presented linearization results.

Figure 5(b) shows the spacecraft control charge q1 for both the
linearized and full nonlinear simulation models. Both are converg-
ing to the reference value pertaining to the static equilibrium. As
defined, the control charge q2 is just the negative of q1. Note that
the deviation from the value of reference charges is small, justi-
fying the linearization assumptions used. The magnitude of the
control charges is in the order of micro-Coulomb which is easily
realizable in practice using charge emission devices.

VI. Conclusion
The concept of a Coulomb (electrostatic) tether is introduced to

bind two satellites in a near-rigid formation. While the Coulomb
force cannot directly stabilize the attitude, the gravity gradient
torque is exploited to stabilize the Coulomb tether formation about
the orbit radial direction. The formulation allows for unequal
masses. The analysis is based on a linearized dynamics and charge
behavior model whose validity is also shown. It was observed that
a linear charge feedback law in terms of separation distance errors
and separation rate is adequate for stabilizing the separation dis-
tance and in-plane angular motion. The control charges needed are
small in the order of micro-Coulombs and realizable in practice.
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