
HYPERSPHERE STEREOGRAPHIC ORIENTA-
TION PARAMETERS
Jeffery Mullen and Hanspeter Schaub

Simulated Reprint from

Journal of Guidance, Navigation and Control
Volume 33, Number 1, Jan.–Feb. 2010, Pages 249–254

A publication of the
American Institute of Aeronautics and Astronautics, Inc.

1801 Alexander Bell Drive, Suite 500

Reston, VA 22091



Hypersphere Stereographic Orientation

Parameters

Jeff Mullen∗ and Hanspeter Schaub†

University of Colorado at Boulder, Boulder, 80303, USA

I. Introduction

Euler Parameters (EPs), also referred to as quaternions, are a non-singular set of four

attitude coordinates which are constrained to a unit norm. The first analytical mapping

from EPs to Modified Rodrigues Parameters (MRPs) is performed by Wiener in his 1962

dissertation,1 where he discovered a singularity at the 360o rotation. In Reference 2, Marandi

and Modi exploit the non-uniqueness property of the MRPs by formulating a non-singular

minimal attitude description. Shuster also mentions the MRPs in his well-known survey of

attitude parameterizations, and gives the parameters the name Modified Rodrigues Param-

eters.3 Tsiotras points out that the MRPs can be viewed as the result of a stereographic

projection of the EP constraint unit hypersphere onto a three-dimensional projection hyper-

plane.4,5 He also discovers that the natural logarithm function forms an elegant attitude cost

(Lyapunov) function in terms of MRPs which leads to linear MRP feedback with nonlinear

stability.

Schaub and Junkins6 further develop this work by showing that the MRP stereographic

projection description discovered by Tsiotras can be expanded to describe general families of

attitude parameters called the Stereographic Orientation Parameters (SOPs). In particular,

Reference 6 present the sub-group of Symmetric Stereographic Orientation Parameters and

shows that the MRPs and Classical Rodrigues Parameters are a sub-set of this family. Later

on Southward et. al.7 develop the full kinematic properties of they Symmetric Stereographic

Orientation Parameters by allowing the projection point to be placed anywhere on the scalar

EP coordinate axis within the EP constraint hypersphere. These Symmetric Stereographic
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Orientation Parameters are expressed algebraically in terms of a scalar projection point

coordinates and yield minimal set attitude coordinates where the singularity can occur at

any desired orientation within 0o < Φ < 360o. In contrast, the Asymmetric Stereographic

Attitude Parameters (ASOPs) of Reference 6 place the projection point at ±1 along one of the

vector EP coordinate axes. This leads to an interesting behavior where singularities are only

encountered if a pure rotation about a particular principle body axis is performed. Further,

a +180o rotation may lead to a singular attitude description, but a -270o rotation (exact

same orientation) is non-singular. Only a -630o in the negative direction leads to a singular

description. The non-symmetric nature of the singular rotations and their dependency of

the path to a particular orientation, lead to the name asymmetric SOPs.

Other recent attitude coordinates that relate to the MRPs include the Higher Order

Rodrigues Parameters.8 Here higher order Cayley transforms are used to develop attitude

coordinates which grow infinitely large at multiples of 360o. These Higher Order Rodrigues

Parameters are convenient to develop minimal sets of attitude coordinates where the dif-

ferential equation can be made arbitrarily linear through the use of higher order Cayley

transformations. Hurtado uses the MRPs to create inner and outer parameters for attitude

representations, and presents new Cayley-like transformations.9

This paper investigates a sub-family of attitude coordinates called the Hypersphere Stere-

ographic Orientation Parameters (HSOPs) which contains both the previous MRPs (partic-

ular set of Symmetric Stereographic Orientation Parameters) and the ASOP, allowing for

all this work to be combined into a single, minimal attitude parameter description. HSOPs

allow the projection point to lie at any point on the EP unit hypersphere constraint. Thus,

depending on the choice of the project point, these attitude coordinates can display a singu-

lar behavior similar to that of the ASOP. The attitude of a spinning body can be described

singularity-free with a minimal three-parameter coordinate set as long as the body is not

spinning about a particular combination of principal body axes. Or, the HSOP coordinates

can be chosen such that their singular behavior matches that of the MRPs where a par-

ticular 360o degree rotation about any body axis leads to a singular description. When

different attitude coordinates are combined into a more general family of parameters, such

as the joining of Classical Rodrigues Parameters and MRP into Symmetric Stereographic

Orientation Parameters in Reference 7, the result is often a more complex set of algebraic

equations. This paper investigates how a general projection point on the surface of the EP

constraint hypersphere complicates the associated HSOP differential kinematic equations

and their mapping to the shadow set.

This paper is organized as follows: Section II describes the geometry and algebra of

a general stereographic projection. Section III provides the analytical mapping between

HSOPs from EPs, the direction cosine matrix, as well as the derivation of the shadow sets,
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kinematic differential equation, and singularity condition. Section IV discusses how the

HSOPs can be employed in attitude control strategies.

II. Generalized Stereographic Projections

The four EP attitude coordinates are expressed as a 4x1 matrix:

β =





β0

β1

β2

β3




(1)

Here each βi represents an EP coordinate, and the magnitude of this stack is β · β = 1.

In terms of the principal rotation angle Φ and principal rotation axis ê = (e1, e2, e3), the

EP coordinates are expressed as: β0 = cos(Φ/2) and βi = ei sin(Φ/2) with i = 1, 2, 3.

Geometrically, the EP constraint β · β = 1 defines the surface of a four-dimensional unit

hypersphere upon which all EPs must lie.10

Generalized Stereographic Orientation Parameters (SOPs) are a minimal coordinate rep-

resentation of a particular orientation. These generalized parameters are obtained by pro-

jecting the four-dimensional EP attitude description (β) onto a three-dimensional hyperplane

as illustrated in Figure 1. The coordinates of this intersection point form the SOPs. This

section presents first the general stereographic mapping of the unit constraint surface onto

a general projection hyperplane. This section considers the particular mapping where the

projection point a is constraint to the hypersphere surface. The projection point a, for now,

is a general location. The projection hyperplane is defined by the normal of a − p0, where

p0 is the closest hyperplane point to a. Therefore, in order to solve for general SOPs, the

line formed between the projection point and any EP attitude description is projected onto

the hyperplane. The projection of β onto the hyperplane is the intersection point k.

The vector equation for the line between the points a and β in n-dimensional space is:

L = a + t(β − a) (2)

where t is a free scalar parameter which can describe any point on this line. The generalized

equation for a plane in space with the normal vector a − p0 that crosses through point p0

is:

P = (a− p0) · κ = (a− p0) · p0 (3)

where κ is the intersection point on the hyperplane of the EP description through the
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Figure 1. General Stereographic Orientation Parameter Geometry

projection point. In order to solve for κ, the line defined in Equation 2 is intersected with

the plane described by Equation 3. Solving for the scalar parameter t and substituting into

Equation 2 yields:

κ = a +
(a− p0) · (p0 − a)

(a− p0) · (β − a)
(β − a) (4)

This four-dimensional intersection point, κ is to derive the HSOPs. The rest of the algebra

will project this four-dimensional point to a three-dimensional hyperplane.

III. Derivation of the HSOPs

III.A. Relationship to Euler Parameters

The Hypersphere Stereographic Orientation Parameter (HSOP) attitude set is formed by two

conditions: 1) The projection point a is constrained to the surface of the EP constraint unit

hypersphere and 2) the projection hyperplane passes through the center of this hypersphere:

With the projection point defined as a = [a0, a1, a2, a3]T , this means that a · a = 1.

Likewise, the EP stack will be defined by β = [β0, β1, β2, β3]T and from the EP constraint

β · β = 1. Finally we set p0 = [0, 0, 0, 0]T to ensure the projection hyperplane intersects

with the origin. This simplifies Equation 4 to:

κ = a− (β − a)

a · β − 1
(5)
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The 4D vector κ represents the projection point of the attitude description β onto the

hyperplane. In order to be a minimal set, this vector needs to be represented in terms of the

3 basis vectors that describe the projection hyperplane. The 3-D hyperplane is written in

the following vector form: P = ζ1e1+ζ2e2+ζ3e3. Here ζ1, ζ2, ζ3 are the in-plane coordinates

of the intersection, and thus the HSOP coordinates. The vectors e1, e2, and e3 form the

base vectors of the hyperplane by being mutually orthogonal to the projection point vector,

a. The projection point can be expressed as:

κ = [A]



 ζ

0



 (6)

where ζ is the 3x1 matrix:

ζ =





ζ1

ζ2

ζ3



 (7)

and [A] is:

[A] =





...
...

...
...

e1 e2 e3 a
...

...
...

...



 (8)

Note that the base vector ei are not unique. For example, the base vector can always

be rotated about a to form a new set. This would result in alternate numerical HSOP

descriptions which describe the same orientation. However, these alternate formulations

have identical singular behaviors and do not provide any practical benefits. A goal of this

paper is to determine a set of base vectors ei such that the resulting HSOPs are identical to

the prior MRP or ASOP coordinates if the proper projection point is chosen.

For the developments of this paper, a unit-length orthogonal basis will be used to describe

the projection plane. Therefore, this matrix is full rank and orthogonal meaning that [A]−1 =

[A]T . Solving for the matrix of HSOP coordinates ζ results in:



 ζ

0



 = [A]T
�
a− β − a

a · β − 1

�
(9)

In order to generate e1, e2, and e3, the composite rotation property of EPs10 is used. Because

a is constrained to the unit hypersphere, it can be treated as a valid EP attitude description.

Therefore, an orthogonal 4-D basis of EPs (ei) is created by simply adding rotations of −180o
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to a. This results in the following set of unit-length basis vectors.

e1 = [a1,−a0,−a3, a2]T

e2 = [a2, a3,−a0,−a1]T

e3 = [a3,−a2, a1,−a0]T

(10)

Substituting these vectors into Equation 9 and expanding results in the minimal HSOP

attitude description:

ζ =
1

1− a · β





a1β0 − a0β1 − a3β2 + a2β3

a2β0 + a3β1 − a0β2 − a1β3

a3β0 − a2β1 + a1β2 − a0β3



 (11)

It is important to note that the the ζ = 0 vector does not correspond to the zero attitude

of β0 = 1. Instead, the HSOP representation of the zero orientation is defined as:

ζ0 =
1

1− a0





a1

a2

a3



 (12)

By using this definition, it is clear that the HSOPs are simply a rotation of the MRPs by

the attitude described by the point a, however, the zero attitude is directly dependent on

the parameter a. This has implications on the singularity condition as well as the attitude

control which will be discussed in further detail in the following sections.

To verify these HSOP definitions are a family of attitude coordinates containing MRPs

and ASOPs, we perform the following checks. Reducing Equation 11 to the MRP case where

a lies at β0 = −1 results in the definition of the MRPs:10





ζ1 = σ1

ζ2 = σ2

ζ3 = σ3



 =





β1

1+β0

β2

1+β0

β3

1+β0



 (13)

Reducing Equation 11 to the ASOP case where a lies at β1 = −1 results in:





ζ1 = η1

ζ2 = η2

ζ3 = η3



 =





−β0

1+β1

β3

1+β1

−β2

1+β1



 (14)
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The original ASOP case (as presented in References 6 and 10) has a sign discrepancy on the

first and third parameters and the second and third parameters are switched. This is due to

the uniqueness issue when defining the basis of the projection plane. The orientation of the

original ASOP projection hyperplane was chosen at random without any further information.

The presented ASOP hyperplane definition is preferred because it allows the presented base

vector ei definition to map between EP and HSOP in a general way. Clearly there is no

practical difference between the ζi and ηi coordinates. Further advantages of this conventions

become apparent when considering the HSOP differential kinematic equations.

Solving for the inverse transformation from ζ to β is similar to solving for the intersection

point on the projection hyperplane. However, rather than solving for the intersection of

a plane the reverse will happen and the intersection of the projection line onto the unit

hypersphere will be accomplished.

Assume vectors a and κ (the projection point and intersection point, respectively) are

known. Therefore Equation 2 can be written in the equivalent form: L = a + u(κ − a).

Where u is a scalar parameter of the line. Because a and β lie on the unit hypersphere,

intersecting this line with the unit hypersphere results in two intersection points: one at a

and one at β. The equation of a n-dimensional unit hypersphere in space is given: |S|2 = 1.

Intersecting both of these equations results in the following vector equation:

|a + u(κ− a)|2 = 1 (15)

Solving for the parameter u and applying the unit hypersphere constraints results in the

following:

u =
1 ± 1

1 + ζ2
(16)

where ζ2 = ζT ζ = ζ2

1
+ζ2

2
+ζ2

3
. Due to the unit-length constraints for projection point vector

and the EP description, this means there are two solutions since both of these points lie on

the unit hypersphere. Substituting the non-trivial solution back into the general equation

for a line results in the desired EP description vector, β. The inverse relation between the

HSOPs and EPs is shown below:





β0

β1

β2

β3




=





a0 + 2

1+ζ2 (a1ζ1 + a2ζ2 + a3ζ3 − a0)

a1 + 2

1+ζ2 (−a0ζ1 + a3ζ2 − a2ζ3 − a1)

a2 + 2

1+ζ2 (−a3ζ1 − a0ζ2 + a1ζ3 − a2)

a3 + 2

1+ζ2 (a2ζ1 − a1ζ2 − a0ζ3 − a3)




(17)
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In the simple compact matrix form:

β = a +
2

1 + ζ2
([A]ζ − a) (18)

To verify this general inverse mapping from EP to HSOP, let us consider the special cases

of mapping from EPs to the previously developed MRPs or ASOPs. Calculating the inverse

relation for the MRP case (a = [−1, 0, 0, 0]T ) and switching coordinates from ζ to σ results

in the definition of the inverse for MRPs:10





β0

β1

β2

β3




=

1

1 + σ2





1− σ2

2σ1

2σ2

2σ3




(19)

Calculating the inverse relation for the ASOP case (a = [0,−1, 0, 0]T ) results in the definition

of the inverse relation for ASOPs:





β0

β1

β2

β3




=

1

1 + η2





−2η1

1− η2

−2η3

2η2




(20)

III.B. Direction Cosine Matrix Derivation

Because the HSOPs were derived from the EP set, the Direction Cosine Matrix (DCM)

definition for the EP is used:

[C] = [I3×3]− 2β0[
˜̄β] + 2[ ˜̄β][ ˜̄β] (21)

where β̄ is the vectorial component of the EPs and [ ˜̄β] is the cross-product matrix defined

as:

[ ˜̄β] =





0 −β3 β2

β3 0 −β1

−β2 β1 0



 (22)

Define ā to be:

ā =





a1

a2

a3



 (23)
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Substituting Equation 17 into Equation 22 results in the following expression:

[ ˜̄β] =
2

1 + ζ2

�
ζ2 − 1

2
[I3×3] + [ζ̃]

�
[˜̄a]− 2

1 + ζ2
(a0[I3×3] + [˜̄a])[ζ̃] (24)

Simplifying β0 results in:

β0 = a0

ζ2 − 1

ζ2 + 1
+

2

ζ2 + 1
āT ζ (25)

Reducing this DCM down to the MRP case where a = [−1, 0, 0, 0]T and performing a

variable switch from ζ to σ results in the same DCM as for MRPs:10

[C]MRP =
1

(1 + σ2)2





4(σ2

1
−σ2

2
−σ2

3
) + Σ2

σ 8σ1σ2 + 4σ3Σσ 8σ1σ3 − 4σ2Σσ

8σ2σ1 − 4σ3Σσ 4(−σ2

1
+ σ2

2
− σ2

3
) + Σ2

σ 8σ2σ3 + 4σ1Σσ

8σ3σ1 + 4σ2Σσ 8σ3σ2 − 4σ1Σσ 4(−σ2

1
− σ2

2
+ σ2

3
) + Σ2

σ





(26)

where Σσ = (1− σ2). Reducing the HSOP DCM to the ASOP case where a = [0,−1, 0, 0]T

and switching parameters from ζ to η results in a similar DCM as seen in Equation 26:

[C]ASOP =
1

(1 + η2)2





4(η2

1
− η2

2
− η2

3
) + Σ2

η −8η1η2 − 4η3Ση −8η1η3 + 4η2Ση

8η2η1 − 4η3Ση 4(η2

1
− η2

2
+ η2

3
)− Σ2

η −8η2η3 − 4η1Ση

8η3η1 + 4η2Ση −8η3η2 + 4η1Ση 4(η2

1
+ η2

2
− η2

3
)− Σ2

η





(27)

with Ση = (1− η2).

III.C. HSOP Shadow Set Derivation

Because EPs have four parameters, there is redundancy in the attitude description (a single

EP is not unique). The other EPs that describes the same attitude are known as the shadow

set βs = −β. The EP shadow set simply represents another way to rotate the object to

the desired attitude. For example: if the desired attitude is 45o about the e1 body axis, one

could either rotate 45o (short rotation) or −315o (long rotation) about the body 1 axis. Both

rotations describe the same orientation. However, there are two different EPs that describe

both a short and long rotation. Because of this shadow parameter with EPs, there is also a

shadow set of HSOPs. The geometry of this is illustrated in Figure 2.

Substituting the definition of the EP shadow set into Equation 6 results in the HSOP

shadow set solution.

ζs = [A]T
�
a− β + a

a · β + 1

�
(28)
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Figure 2. HSOP Shadow Set Geometry

Expanding this form results in the explicit HSOP shadow-set definition.

ζs =
1

a · β − 1





−a1β0 + a0β1 + a3β2 − a2β3

−a2β0 − a3β1 + a0β2 + a1β3

−a3β0 + a2β1 − a1β2 + a0β3



 (29)

ζs =
1

a · β − 1
(−β0ā + a0[I3×3] + [˜̄a]β̄) (30)

Substituting in the inverse relation between EPs and HSOPs (Equation 17) and simplifying

results in the elegant shadow set relation:

ζs
i = −(ζ1, ζ2, ζ3)/|ζ|2 (31)

This is the same shadow set algebraic relationship as found in the MRP shadow set transfor-

mation. This result is expected as the HSOPs, geometrically, can be represented as a rotation

of the MRPs about a particular attitude. The HSOP shadow set, much like the shadow set of

the MRP cases, can be used to avoid singularities during integration. As shown in Figure 2,

as one parameter nears the projection point, the HSOP description begins to grow infinitely

large whereas the shadow parameter stays well bounded. This switching could, however, oc-

cur at any point before a singularity is reached as the shadow set describes the same attitude

as the normal set. A property about the shadow sets of HSOPs is when one set magnitude

is greater than one, the shadow set is always less than one. When one set has a magnitude
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of 1, the other also has a magnitude of one. Switching at a magnitude of one is somewhat

arbitrary and can happen at any time, however, when |σ| = 1 always corresponds to a 180o

rotation from the null attitude. Likewise, when the HSOPs are at |ζ| = 1, it corresponds to

the 180o rotation from the attitude specified by the parameter a. By switching both sets at a

magnitude of one keeps the parameters well bounded by maintaining an attitude description

that is always less that 180o, while avoiding singularities.

III.D. Kinematic Differential Equation

The derivation of the HSOP differential kinematic equation requires the kinematic differential

equation of EPs:10

β̇ =
1

2





β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0









0

ω1

ω2

ω3




(32)

Differentiating Equation 11 results in:

ζ̇1 =
−a1β̇0 + a0β̇1 + a3β̇2 − a2β̇3

a0β0 + a1β1 + a2β2 + a3β3 − 1
+

(a1β0 − a0β1 − a3β2 + a2β3)(a0β̇0 + a1β̇1 + a2β̇2 + a3β̇3)

(a0β0 + a1β1 + a2β2 + a3β3 − 1)2

(33a)

ζ̇2 =
−a2β̇0 − a3β̇1 + a0β̇2 + a1β̇3

a0β0 + a1β1 + a2β2 + a3β3 − 1
+

(a2β0 + a3β1 − a0β2 − a1β3)(a0β̇0 + a1β̇1 + a2β̇2 + a3β̇3)

(a0β0 + a1β1 + a2β2 + a3β3 − 1)2

(33b)

ζ̇2 =
−a3β̇0 + a2β̇1 − a1β̇2 + a0β̇3

a0β0 + a1β1 + a2β2 + a3β3 − 1
+

(a3β0 − a2β1 + a1β2 − a3β3)(a0β̇0 + a1β̇1 + a2β̇2 + a3β̇3)

(a0β0 + a1β1 + a2β2 + a3β3 − 1)2

(33c)

Substituting in Equations 17 and 32, and applying the unit hypersphere constraint, results

in the kinematic differential equation for HSOPs which are independent of the projection

point a. Despite the generalities with this attitude parameter set, the result is extremely

elegant and given in the following matrix form:

ζ̇ =
1

4





1− ζ2 + 2ζ2

1
2(ζ1ζ2 − ζ3) 2(ζ1ζ3 + ζ2)

2(ζ2ζ1 + ζ3) 1− ζ2 + 2ζ2

2
2(ζ2ζ3 − ζ1)

2(ζ3ζ1 − ζ2) 2(ζ3ζ2 + ζ1) 1− ζ2 + 2ζ2

3



ω (34)

Due to the lack of information about a in these equations, we find that all HSOP differential

kinematic equations will have the exact same algebraic form! These equation are written in
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compact vector notation as:

ζ̇ =
1

4

��
1− ζ2

�
[I3×3] + 2[ζ̃] + 2ζζT

�
ω (35)

After applying the coordinate switch from ζ to σ, this kinematic differential equation is

the same as for MRPs.10 The only difference between HSOPs and MRPs is that the HSOPs

are simply a rotation of the MRPs by the attitude defined by a. Therefore, the kinematic

differential equations will be the same. With this new ASOP definition, the ASOP differential

kinematic equations assume the identical algebraic form as the MRPs. This elegant result

justifies why the ASOPs should be redefined as shown in this paper.

III.E. Singularity Condition

Because HSOPs is a minimal attitude coordinate set, there is a singular description that can

be arbitrarily placed. This condition arises when the denominator in Equation 11 equals

zero:

1− a0β0 − a1β1 − a2β2 − a3β3 = 0 (36)

Geometrically, this arises at one point on the unit hypersphere when a = β. Writing this in

terms of principal rotation angle Φ and principal axis components ei results in:

a0 = cos(Φ/2) = β0

a1 = e1 sin(Φ/2) = β1

a2 = e2 sin(Φ/2) = β2

a3 = e3 sin(Φ/2) = β3

(37)

Therefore, from Equation 37, the singularity can be placed in any desired direction with any

desired rotation angle. There are two rotations that can be performed in order to reach a

singularity. For example, if the singularity is placed in a certain direction at a Φ = 135o, a

rotation of +135o or −585o about the appropriate direction could be performed in order to

reach the singular point. This means that with HSOPs and its sub-sets, the rotational path

to a particular orientation determines if the attitude description will go singular.

It is important to note that because this singular point can be placed anywhere on the

unit hypersphere, there is only one attitude description that it can go singular at, and in

order for this to be a singularity it must lie exactly on a. However, attitudes around this

point will grow infinitely large and depending on the control technique applied, these large

values can be used to avoid a neighborhood of points in space.
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IV. Spacecraft Control

Because the HSOP differential kinematic equation are algebraically equivalent to the

MRP differential kinematic equations, any control development that exploits algebraic prop-

erties of the MRP differential equations,5,6, 11,12 can also be directly applied to the HSOP.

This process is illustrated in the following control development example based on the MRP-

based attitude control developed in Reference 6. For the purposes of this discussion, the

underlying rotational dynamics will be Euler’s equations of rotational motion of a rigid

body:

[I]ω̇ = −[ω̃][I]ω + u + L (38)

where [I] is the inertia tensor, u is the control torque, and L is any external torque acting

on the body. As developed for the MRP set, a logarithmic Lyapunov function will be used

to design a stabilizing control law.5,6

V (δω, ζe) =
1

2
δωT [I]δω + 2K ln

�
1 + ζe

2
�

(39)

where ζe is defined as the error attitude from the zero attitude of the body so ζe = ζ − ζ0

where ζ0 is defined in Equation 12. This is required because a zero HSOP attitude does

not correspond to the null attitude of a body, by adding in this offset factor, as ζe is driven

to zero, the attitude of the body is driven to the null attitude. To ensure global stability,

the Lyapunov rate is set equal to the negative semi-definite V̇ = −δωT [P ]δω. Because

δω = ω − ωr, we can plug in the equations of motion in order to generate the closed loop

dynamics and solve for the control variable. This leads to the stabilizing control law u:6

u = [ω̃][I]ω + [I](ω̇r − [ω̃]ωr)−Kζe − [P ]δω −L (40)

While this attitude control law has the exact same algebraic form as the MRP-based control

law, the closed-loop response will be different because the HSOP represent a different attitude

description in general, and has a completely different singular behavior.

V. Conclusion

The newly developed hypersphere stereographic orientation parameters are a generaliza-

tion of the MRPs and ASOPs. Direct analytical mappings are present from the HSOP to

the Euler parameters, as well as the direction cosine matrix. The key result of this paper is

that the HSOP have the same differential kinematic equation as the MRPs, and thus can be

applied to any control law which uses the algebraic form of MRP kinematic equation.

HSOPs are different than MRPs because of the different singular behaviors of each at-
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titude coordinate set. This offers great flexibility as the singular orientation can be placed

at a full revolution or at particular rotations about particular body axes. In all cases the

kinematic differential equation only has quadratic nonlinear terms equivalent to those of

the MRPs. This is highly beneficial in relation to non-linear spacecraft attitude control as

HSOPs will have the same stability guarantees as a controller designed using MRPs.
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