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Abstract
High-fidelity representations of the gravity field underlie all applications in astrodynamics.
Traditionally these gravity models are constructed analytically through a potential function
represented in spherical harmonics, mascons, or polyhedrons. Such representations are often
convenient for theory, but they come with unique disadvantages in application. Broadly
speaking, analytic gravity models are often not compact, requiring thousands or millions
of parameters to adequately model high-order features in the environment. In some cases
these analytic models can also be operationally limiting—diverging near the surface of a
body or requiring assumptions about its mass distribution or density profile. Moreover, these
representations can be expensive to regress, requiring large amounts of carefully distributed
data which may not be readily available in new environments. To combat these challenges,
this paper aims to shift the discussion of gravity field modeling away from purely analytic
formulations and toward machine learning representations.Within the past decade there have
been substantial advances in the field of deep learning which help bypass some of the limi-
tations inherent to the existing analytic gravity models. Specifically, this paper investigates
the use of physics-informed neural networks (PINNs) to represent the gravitational potential
of two planetary bodies—the Earth and Moon. PINNs combine the flexibility of deep learn-
ing models with centuries of analytic insight to learn new basis functions that are uniquely
suited to represent these complex environments. The results show that the learned basis set
generated by the PINN gravity model can offer advantages over its analytic counterparts in
model compactness and computational efficiency.
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1 Introduction

One of the earliest high-fidelity representations of Earth’s gravity field was formed using
the spherical harmonic basis (Kaula 1966). This representation is particularly efficient at
capturing Earth’s largest gravitational perturbation—planetary oblateness or J2—making it
the de facto standard within the astrodynamics community. The popularity of the spherical
harmonic representation has helped motivate multiple missions like GRACE and GRACE-
FO to resolve increasingly high-degree spherical harmonic estimates of the Earth’s potential
(Tapley 2008). Similar missions like GRAIL sought to accomplish the same for the Moon
(Lemoine et al. 2014). As of the time of writing, the highest fidelity spherical harmonic
representation of the Earth is the 2008 EarthGravitationalModel (EGM-2008)which extends
Earth’s static gravity field to an impressive degree 2, 159—amodel containing over 4 million
parameters (Pavlis et al. 2012). Likewise, the highest fidelity static gravity field for the Moon
reaches degree and order 1200 or approximately 1.5 million parameters (Goossens et al.
2016).

While spherical harmonic gravity models are popular for many spacecraft operations, they
can become unreliable in certain circumstances. Specifically, the spherical harmonic gravity
model assumes that spacecraft operations occur outside of a sphere which circumscribes
all mass elements of the body: the Brillouin sphere. If a spacecraft enters the Brillouin
sphere, the representation of the potential begins to diverge which can generate numerical
difficulties when simulating trajectories near the surface of a body—a problem especially
apparent in small-body exploration (Werner and Scheeres 1997). Seeing as many asteroids
are irregularly shaped, the majority of an asteroid’s surface may exist within the Brillouin
sphere which makes landing or touch-and-go mission phases particularly risky when using
this representation. The ellipsoidal harmonic gravitymodel presents a slightlymore amenable
solution for this problem which allows for a tighter circumscribing ellipsoid about the body,
but it also remains prone to the same diverging representation once inside of the ellipsoid
(Romain and Jean-Pierre 2001).

Alternative gravity models exist that attempt to combat this representation divergence
(Fig. 1). One such alternative is to use mascons to represent the potential (Koch and Morri-
son 1970). By distributing discrete mass elements across the surface of the body and making
use of the linearity of the Laplace operator, a potential function can be approximated as the
summation of the potentials generated by distributed point-mass elements. This approach
yields stable dynamics inside the circumscribing sphere; however, the representation gener-
ates inconsistent dynamics near the surface where the discrete nature of themascons becomes
increasingly apparent (Tardivel 2016). In 1996, Werner and Scheeres introduced the poly-
hedral gravity model to solve this problem. The polyhedral model forms a representation
of the potential directly from a shape model of the body. The representation can generate
stable dynamics all the way down to the surface of the body; however, it comes at the cost of
assuming a density profile for the object which is often difficult to uniquely estimate (Taka-
hashi and Scheeres 2014). In addition, both the mascon and polyhedral models come with a
large computational cost if left unparallelized which can be limiting both in simulation and
on-board spacecraft (Russell and Arora 2012; Wittick and Russell 2019).

Beyond the divergence of the representation inside of the Brillouin sphere, spherical har-
monics also suffers from the same ailments as other periodic bases. Just as Fourier series
struggle to converge over discontinuities in 1D (as best demonstrated through Gibbs phe-
nomenon), so too do spherical harmonics struggle to capture discontinuity in three dimensions
(Gottlieb and Shu 1997; Hewitt and Hewitt 1979). This becomes problematic whenmodeling
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Fig. 1 Popular gravity modeling options include spherical harmonics (left), mascons (center), or polyhedral
(right) representations of the potential

the Earth’s gravity field where the gravitational perturbations aside from J2 are generated
from discontinuous features—e.g., mountain ranges, tectonic subduction zones, hotspots,
etc. Consequently spherical harmonic gravity models can require tens-of-thousands of coef-
ficients/parameters to begin representing these features and hundreds-of-thousands more to
suppress the oscillations around them.

The size of spherical harmonic gravitymodels can thereby grow to be a challenge aswell—
particularly in regard to efficient computation. The algorithm required to evaluate a spherical
harmonic model and produce a corresponding acceleration scales as O(n2) where n is pro-
portional to the largest degree in the model. Such scaling makes the highest fidelity spherical
harmonic models prohibitively expensive to evaluate. In addition, spherical harmonics are
one of the only gravity models that cannot be easily parallelized. The inherent recursion
of the associated Legendre polynomials makes it particularly challenging to evaluate these
harmonics on a GPU or with a multiprocessed algorithm (Martin and Schaub 2020). The
spherical harmonic computational constraints therefore leave dynamicists to trade between
computational efficiency and accuracy.

This research aims to directly address each of these challenges. While the aforementioned
gravity field representations are powerful in certain conditions, they all comewith limitations
or assumptions as a result of the analytics. Ideally there can exist a representation that is
flexible enough to capture the most dominant perturbations, robust enough to work across all
operational conditions without making assumptions, and efficient enough to compute quickly
both on-board spacecraft and in simulation. This research posits that machine learning and
artificial neural networks are capable of navigating through each of these constraints.

Machine learning is a field markedly successful at regressing accurate models from data
observed in complex environments, typically through the use of artificial neural networks
(LeCun et al. 2015). These neural networks are trained to learn an optimal mapping between
some desired input variable and output variable, while making no inherent assumptions
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about the problem formulation. This is immediately advantageous for the gravity modeling
problem, as the prescribed analytics are precisely what cause divergence of the spherical
harmonic representation within the circumscribing sphere, or require prior knowledge about
the shape and density of the body for the polyhedral model. By training an artificial neural
network to learn the mapping between position and acceleration from the data alone, there
is not an a priori expectation of how the gravitational potential must be represented. Instead
the network’s only goal is to resolve a basis that is maximally efficient at mapping between
these two spaces.

While the focus of this paper is on the use of neural networks to construct such bases,
there exist other approaches to discovering convenient representations of unknown problem
dynamics. Recently Manzi and Vasile (2020) introduced deep symbolic regression which
incrementally constructs a tree of elementary functions which can be used to represent
unknown dynamics using a combination of sparse regression and symbolic regression. Their
approach offers a compelling method to reconstructing unmodeled dynamics particularly
when those dynamics are sufficiently well behaved such that they can be reconstructed using
a relatively sparse tree. In the case ofmore complex dynamics with frequent discontinuity and
highly nonlinear behavior, such approach may suffer as the tree would need sufficient depth
to adequately capture these ill-behaved regions. Neural networks bypass these challenges by
effectively preconstructing the tree. This approach eliminates the chance of a minimal and
analytically expressible set of basis functions, but instead offers greater modeling flexibility
capable of quickly capturing discontinuous behaviors. As will be discussed later, gravity
fields can have highly discontinuous features which is why neural networks are the primary
machine learning model studied in this paper.

Using machine learning models to represent gravity fields has been demonstrated with
some level of success in the literature (Cheng et al. 2020; Gao and Liao 2019; Furfaro
et al. 2021). These works center on small-body applications using neural networks, extreme
learningmachines, andGaussian processes to predict gravitational accelerations produced by
these bodies in lieu of the computationally expensive polyhedral representation. The literature
shows that these alternative gravity models are often efficient to evaluate, but the analyses
do not fully compare the advantages and disadvantages of these representations with their
analytic predecessors. For instance, it is unclear what data conditions are required to resolve
an accurate representation of the gravity field. Are these models capable of generating a
more efficient basis set than their analytic counterparts? Under what conditions do these
models begin to overfit or diverge? Are these representations universally convenient for
all planetary bodies? This paper aims to address these questions and broaden the discussion
about the robustness of the neural network gravitymodel particularly applied to large celestial
bodies. While similar questions exist for modeling small-body gravity fields, such studies
are purposefully left to a future article as there exist sufficiently different analyses necessary
to characterize the robustness of the model in these more exotic environments.

In addition to studying these questions, this paper investigates how network performance
can be improved by adding physics constraints into the training process. Specifically, artificial
neural networks are powerful tools capable of solving high-dimensional problems; however,
their flexibility often comes at the expense of interpretability. Because machine learning
models are data driven, there are no explicit analytic insights embedded into the learning
process—that is until recently. In 2019, Raissi et. al. introduced the physics-informed neural
network (PINN) which injects underlying physics equations into the cost function of a tra-
ditional neural network (Raissi et al. 2019). Using automatic differentiation, the PINNs are
trained not only to prioritize an accurate mapping from an input space to an output space,
but also to enforce that the solution/function resolved by the network satisfies pertinent dif-
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ferential equations and boundary conditions. PINNs are therefore able to unify the flexibility
of neural networks with centuries of analytic insights derived from physics. This makes the
PINN a natural candidate to apply to the gravity modeling problem. Rather than forcing
a solution to be of a preconstructed analytic form (e.g., spherical harmonics), a PINN can
learn a convenient basis to represent the problem and simply ensure that the final function
represented by the network satisfies the equations of Newton and Laplace.

The PINN gravity models in this paper are trained to represent the gravity fields of two
representative celestial bodies: the Earth and Moon. Both bodies are commonly modeled
using high-degree spherical harmonic representations, but their gravitational perturbations
are appreciably different. When looking beyond the oblateness term, Earth’s gravitational
perturbations are relatively sparse and infrequent—formed by large geologic discontinuities
at tectonic boundaries andnearmountain ranges. In contrast, theMoon’s perturbations beyond
degree and order 2 form an almost random surface topology due to the excessive cratering
and mascons. Contrasting the performance of the neural network gravity model on these
large bodies provides a more complete picture of the conditions necessary for the networks
to outperform their analytic predecessor.

The paper is divided into the following sections: Sect. 2 discusses the current spherical
harmonic model used for the Earth and investigates the performance of this model at varying
levels of fidelity. These results serve as the baseline metrics to which the traditional and
physics-informed neural network gravity models are compared. Following this characteri-
zation, Sect. 3 provides a discussion of the neural networks used for this paper along with
information about the data and hyperparameters used to train them. The paper then com-
pares the performance of the neural network gravity models to that of the spherical harmonic
representation focusing specifically on arguments of representational compactness (Sect. 4),
generalization ability (Sect. 5), and evaluation speed (Sect. 6). The analyses are then repeated
for the Moon in Sect. 7, before finally concluding in Sect. 8.

2 Spherical Harmonic Representation

The spherical harmonic expansion of the gravitational potential, U , is defined as:

Ulmax(r) = μ

r

lmax∑

l=0

l∑

m=0

(
R

r

)l

Pl,m[sin(φ)][Cl,m cos(mλ) + Sl,m sin(mλ)
]
, (1)

where r is the distance to a point defined with respect to the gravitational body’s center-of-
mass,μ is the gravitational parameter of the body, R is the circumscribing radius of the body,
l is the degree of the spherical harmonic model, m is the order of the spherical harmonic
model, Cl,m and Sl,m are the regressed spherical harmonic coefficients, λ is the longitude, φ
is the latitude, and Pl,m are the associated Legendre polynomials (Kaula 1966).

This representation of the potential is particularly advantageous when applied to near-
spherical celestial bodies, as it is captures one of the most common and prominent
gravitationally perturbing features (planetary oblateness) with the first nonzero term in the
expansion beyond the point mass. As such, spherical harmonics remains a strong candidate
solution to represent planetary gravity fields to 1st order. This initial efficiency, however,
does not persist at higher degrees.

To demonstrate, consider the prominent gravitational features that remain after removing
the point mass and planetary oblateness and obliquity accelerations (i.e., the features beyond
degree and order 2). These features will henceforth be referred to as perturbations. To view
these perturbations, one can define:
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Fig. 2 Map of δa at the Earth’s Brillouin sphere
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Fig. 3 Map of δa of the Earth at a LEO altitude (approximately 420 km)

δa(r) = ∣∣−∇USH
Truth(r) − (−∇USH

2 (r)
)∣∣ , (2)

whereUSH
Truth is constructed using EGM-2008 expanded to degree l = 1, 000, and the gradient

of the potential is taken using Pines’ algorithm to avoid singularities at the poles (Pines 1973;
Martin and Schaub 2020). Figure 2 shows Eq. (2) applied across the Brillouin sphere of
Earth and verifies that the perturbations are typically discontinuous features in the crust like
mountain ranges such as the Himalayas and Andes, tectonic subduction zones as best seen
in the Pacific, and hotspots scattered across the globe. Such findings are intuitive as the
accelerations are directly proportional to the gradient of the potential (a = −∇U ) and large
displacements in landmass generate large changes in the potential.

The perturbations shown in Fig. 2 are important signals to capture with a gravity model,
so it is reasonable to ask how efficiently do spherical harmonic models represent these per-
turbations? If a lower-degree model is used, howmuch error remains in these important parts
of the gravity field? To investigate, a mean root-squared error (MRSE) metric is introduced:

MRSE(A) = 1

N

N f∑

i=1

δap(r i ) ri ∈ A, (3)
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Fig. 4 Plot of MRSE(A), MRSE(F), and MRSE(C) as a function of total parameters, p, used in the spherical
harmonic gravity model where p = l(l + 1)

where A is the set of positions for which the gravity field is evaluated, i.e., field points, N f

is the total number of field points in set A, and δap is a generalization of Eq. (2) such that:

δap(ri ) = | − ∇USH
Truth(r i ) + ∇Umodel

p (r i )|, (4)

where p represents the maximum number of parameters/coefficients used in the gravity field
model being evaluated.

The MRSE metric of Eq. (4) is applied to three sets: The first set includes N f = 250, 000
field points distributed in a Fibonacci grid at the Brillouin sphere of Earth (A : {r i ∀i <

N f }). The Fibonacci grid is chosen to ensure a near-isotropic distribution of data about the
Brillouin sphere, thereby avoiding the clustering of data at the poles where the set to be
distributed uniformly in latitude and longitude (Swinbank and Purser 2006). The second set,
F , is a subset ofA that only includes the prominent perturbations. Specifically,F is generated
by selecting the field points withinA whose acceleration exceeds 2 standard deviation of the
mean acceleration ofA, δā, such that F : {|δa(r i ) − δā| > 2σa(A)}. The third and final set,
C, is the compliment of set F (C : A/F) representing the “background” of the gravity field.
The MRSE metric is applied to setsA,F and C and presented in Fig. 4 as a function of total
parameters used in the spherical harmonic representation.

Figure 4 quantifies the relationship between spherical harmonic model size and model
accuracy. While MRSE(A) and MRSE(C) have relatively low error independent of the num-
ber of spherical harmonic coefficients, the same cannot be said about MRSE(F). When the
spherical harmonic model includes less than 10,000 coefficients (degree l = 110), MRSE(F)
has significantly higher error than MRSE(A) implying that low-degree spherical harmonics
models struggle to efficiently capture the prominent perturbations. Only after a spherical
harmonics model exceeds degree l = 110 do these perturbations begin to get represented
accurately. The modeling inefficiency of the low-degree spherical harmonic models sug-
gests that the majority of these features can only be represented with harmonics wavelengths
smaller than those generated by an l = 110 spherical harmonic field. To a dynamicist, this
implies that the next most important perturbations beyond J2 require, at the minimum, a
spherical harmonic model that exceeds degree l = 110 if they aspire to incorporate the
dynamic effects of the Earth’s high-order perturbations into their application.
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The discrepancy between the modeling error ofA andF showcases how the spherical har-
monic representation struggles to capture perturbations in order of dynamical significance.
While the initial efficiency of representing Earth’s oblateness is undeniable, the convenience
does not extend into the next most important perturbations. This is because spherical har-
monics prioritize fitting prescribed geometries onto a system in which those geometries are
not naturally present. As a consequence, the spherical harmonic model must superimpose
many high-order frequencies/harmonics before capturing these perturbations.

In some circumstances this may not be a problem.When a sufficiently high-fidelity model
exists and the researcher is not computationally limited, spherical harmonics will eventually
converge even over the discontinuous features. On-board spacecraft, however, computational
resources may be limited or a high-fidelity spherical harmonic model may not exist for the
body in question. In these conditions, operations over short timescales and near large surface
features could be negatively affected by spherical harmonics inability to efficiently represent
these perturbations.

The results shown in Fig. 4 motivate why this research turns to learned neural network
gravity representations as an alternative to spherical harmonics. The spherical harmonics basis
is inherently limited in resolvingdiscontinuousperturbationswhile retaining a compactmodel
size. The perturbations present on the Earth require small-wavelength harmonics which are
only present in high-degree expansions. Neural networks, in contrast, do not have prescribed
basis functions and corresponding characteristic wavelengths. There is no inherent minimum
of 10,000 parameters needed to represent a specific mountain range or other discontinuity.
Rather, the neural networks learn a convenient basis that represents the most important
perturbations of the field independent of their geometry or scale. In principle, neural network
gravity models can therefore yield more compact representations that achieve comparable,
if not greater, accuracy than traditional spherical harmonics.

3 Machine learning representations

3.1 Traditional neural network

Artificial neural networks are a series of learned, nonlinear transformations that map data
from an input space to a desired output space by minimizing a prescribed loss function such
as mean squared error:

J (�) = 1

N f

N f∑

i=1

∣∣(yi − ŷ(xi |�))2
∣∣ , (5)

where yi is the true output, ŷi (xi |�) is predicted output by the artificial neural network given
the vector of trainable parameters � which includes the weights, w, and biases, b, of the
network, and N f is the total number of points used to train the network.

The networks for this paper are constructed as a series of densely connected hidden layers
with N nodes per layer:

h(k)
i = σ

(
w

(k−1)
i j h(k−1)

j + bi
)

k ∈ {1, . . . , kmax}, (6)

where h(k) is the k-th hidden layer, i is the node in the layer, wi j are the weights connecting
the hidden layers, bi are the biases attached to the nodes in the layer, and σ is the nonlinear
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transformation (typically sigmoid, hyperbolic tangent, or rectified linear unit). Note that
h(0) = x , and h(kmax) = ŷ.

The neural network is trained by iteratively updating the weights and biases to minimize
Eq. (5) such that:

w∗ = argmin
w∈�

(J (w)); b∗ = argmin
b∈�

(J (b)), (7)

which can be solved using a gradient descent algorithm like Adam or SGD (Kingma and Ba
2014; Bottou 2012):

�m+1 = �m − η∇�mJ m(�), (8)

where η is the learning rate and m is the training iteration.

3.2 Physics-informed neural networks

One of the disadvantages of using traditional neural networks to represent a function found
in physics is that the learned representation may not inherently satisfy the fundamental
properties of said function. For example, in the gravity field modeling problem, physics
implies that gravitational accelerations are really by-products of a more fundamental scalar
potential:

a = −∇U , (9)

In addition that scalar potential must be a solution to Laplace’s equation for all field points
that exist outside of the body:

∇2U = 0, (10)

Eq. (10) is precisely why spherical harmonics is a popular basis to represent the potential—
spherical harmonics are one of the general solutions to Laplace’s equation (Courant and
Hilbert 1989).

Traditional neural networks are not trained with these physics properties in mind. Instead
they prioritize predicting an accurate acceleration from a position vector, irrespective of the
more fundamental properties. In this sense, the network will be trained agnostic to the fact
that the gravity field it represents produces conservative forces, and the underlying potential
must be sufficiently smooth and continuous for sensible dynamics.

In 2019, Raissi et. al. recognized this problem and suggested that neural networks models
do not need to be agnostic of the physics which govern the function they are attempting
to represent (Raissi et al. 2019). Instead, networks can be trained specifically to ensure that
learned representations obey some underlying differential equations. To this end, Raissi et. al.
introduced the physics-informed neural network (PINN). PINNs inject differential equations
into the cost function of a traditional neural network and use automatic differentiation to
ensure that these equations are respected by the function learned by the network.

For example, consider the following arbitrary differential equation:

f ′′(x) + f ′(x) + f (x) = 0, (11)

Assume there exist measurements of x and the corresponding values of f (x). A traditional
neural network can use these observations as training data to learn a mapping from x →
f̂ (x |�) by minimizing the cost function J (x |�) = | f (x) − f̂ (x |�)|2. The risk of training
the network with this particular cost is that the network does not know that the mapping,
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f̂ (x |�), must also satisfy Eq. (11). PINNs change this paradigm by inserting the original
differential equation into the cost function:

J (�) = 1

N f

⎛

⎝
N f∑

i=1

∣∣∣ f (xi ) − f̂ (xi |�)

∣∣∣
2 +

∣∣∣ f̂ ′′(xi |�) + f̂ ′(xi |�) + f̂ (xi |�)

∣∣∣
2

⎞

⎠ , (12)

where the derivatives of the network f̂ (xi |�) are taken with automatic differentiation. This
cost function,while similar to Eq. (5), not only penalizes erroneous values of f̂ (x |�), but also
penalizes when the learned function violates the differential form of the problem. This extra
term serves as a form of regularization in the training process which can lead to improved
solutions that conveniently also satisfy important physics properties.

Applying this formulation to the gravity modeling problem yields the following cost
function:

J (�) = 1

N f

N f∑

i=1

∣∣∣∣ai + AD∇ Û (ri |�)

∣∣∣∣
2

, (13)

where ai is the measured acceleration at position ri , and Û is the learned potential function.
Note how the neural network is not directly representing the acceleration. Instead, it is learning
a model of the scalar potential, Û , and enforcing that the negative gradient of the learned
potential (taken with automatic differentiation) matches the measured acceleration. In this
sense, the network is providing a model capable of generating accelerations, but doing so in
a way which requires that those accelerations are a function of a more fundamental scalar
potential.

A few important notes on applying physics constraints to neural network gravity models:
First, a = −∇U is the only physics-informed constraint applied to the PINNs trained in this
paper though additional constraints can be used. For example, the cost function could also
include a penalty for (i) violating the boundary condition U (r) = 0 as |r | → ∞, (ii) for
mis-modeling the potential function itself, U (r) − Û (r |�) = 0 (this assumes an accurate
representation of the potential already exists), and (iii) not satisfying conservative vector field
properties like ∇2Û = 0 and ∇ × Û = 0.

This paper purposefully omits these additional physics-informed constraints for two
reasons. In regard to omitting optional constraint (ii), the domain of the potential is order-
of-magnitudes larger than the domain of the corresponding accelerations. This discrepancy
can be disruptive to training neural networks as machine learning models prefer data that is
normalized (via min-max transform, normal transform, or other). This normalization serves
to avoid excessively large gradients during backpropagation and to minimize the effect of
round-off error. Given that most machine learning frameworks train with 32-bit floats rather
than 64-bit for rapid evaluation, calculations with particularly large or small numbers can
stunt efficient and accurate network training. These scaling issues can likely be addressed
with proper nondimensionalization of the physics equations—however this is left to future
work. This choice to exclude the potential in the cost function also conveniently reflects the
more common data circumstances—i.e., a high-fidelity potential of the body in question does
not exist.

The reason optional constraints (i) and (iii) are not applied is because, in the authors’
experience, they tend to drive the PINN solution for Û toward zero or slow convergence. This
is attributed to the multi-objective optimization that gradient descent algorithms struggle to
accommodate (Mertikopoulos et al. 2018). Explicitly, the constraints of a conservative vector
field can be satisfied if the network identifies U = 0 as the optimal solution. This can force
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the network away from the nonzero solution guided by the constraint a+∇U = 0. In theory
these competing objectives can be better balanced through dynamically adjusting learning
rates for each of the objective costs as demonstrated inWang et al. (2020) or by using extreme
learning machines which use least-squares rather than gradient descent to solve for network
weights (Huang et al. 2006). It is also possible that by modifying the network structure such
constraints may perform better. For the sake of brevity, these studies are left for future work.

Another observation of the physics-informed constraint applied to the gravity field mod-
eling problem is the inherent efficacy of training the network to represent the potential rather
than accelerations directly. When training a traditional neural network to learn the mapping
from position to acceleration, the three components of the acceleration vector are effectively
treated as distinct and individual features for the network to learn. In fact, these components
are, by construction, orthogonal such that there is no observable relationship between them.
As such, a traditional neural network must learn a basis set that can solve three distinct
problems simultaneously.

This is an inefficient construction. By instead training the network to represent the scalar
potential, the network only has to learn a basis to represent one feature. In this sense, a
single training datum uses all three components of the acceleration vector to constrain just
the potential, rather than distributing that knowledge between three learned features. As a
consequence, PINNs can make more efficient use of the same amount of training data—
decreasing training times while increasing sample efficiency.

Finally, it is worth stressing that the PINN gravitymodel does not require that a preexisting
analytic gravitymodel exists fromwhich training data can be generated. PINNs can be trained
in situ, relying on estimates of accelerations either via finite differencing of relative velocities
or more advanced filtering techniques. This paper chooses to focus primarily on the gravity
modeling problem, not the gravity estimation problem. As such, a high-fidelity spherical
harmonic model is used in the following studies to generate accurate and representative
training data. Future work will investigate how these PINNs can be trained online to regress
a field in situ, without a pre-existing gravity model.

3.3 Networks and hyperparameters

The networks tested for the remainder of the paper are divided equally between traditional
neural networks and physics-informed neural networks. Each of these networks is densely
connected with N nodes per layer and eight hidden layers. The choice of eight hidden layers
offered a desirable balance between network capacity and reasonable training times. All
networks share near-identical hyperparameters as expressed in Table 1.

For this study, the hyperparameters that have the largest effect on performance are the
learning rate andmini-batch size. If the batch size is too small, the gradient descent algorithm
can move in directions other than the local minimum resulting in longer training times.
Unfortunately small batches are often unavoidable when the available GPU does not have
sufficient VRAM to store the entire dataset on the device. In this case, smaller and more
cautious learning rates should be used to ensure the optimizer does not quickly lead the
network to a suboptimal minimum that later becomes challenging to escape. Conversely,
if a large batch size can be used, larger learning rates are encouraged as they yield shorter
training durations that are more likely to descend in the direction of the true gradient of the
cost function.

Independent of initial learning rate magnitude, it can be advantageous to slowly decrease
the learning rate toward the end of training to prevent the weights from oscillating above the
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cost function’s local minimum (Ruder 2016). For this study, an exponential decay is applied
to the learning rate:

ηi =
{

η0 i < i0

η0 ∗ pow
(
α,− i−i0

σ

)
i ≥ i0

, (14)

where ηi is the learning rate at epoch i , i0 is the reference epoch after which the decay begins,
σ is the scale factor, α is the decay rate, and η0 is the initial learning rate.

The other critical hyperparameter is the activation function. When training a physics-
informed network, it is important that the activation function selected has a sufficiently high
order of continuity. If the activation function does not have smooth high-order derivatives and
if gradients of the network are taken using automatic differentiation to enforce the physics
constraints, the cost function will no longer be well-behaved for gradient descent. As such,
readers are encouraged to avoid using the popular rectified linear unit (ReLU) or leaky ReLU
and instead opt for functions with infinite orders of continuity like hyperbolic tangent or the
Gaussian exponential linear unit (GELU).

Each network is trained for 100,000 epochs using the Adam optimizer in TensorFlow 2.41

on a Nvidia RTX 2060 graphics card. The decision of setting the training length to 100,000
epochs was based on preliminary results which for 100,000 epochs was the maximum train-
ing length needed for the validation loss to plateau. This hyperparameter was kept fixed
for all networks to minimize the number of confounding variables. All network weights are
initialized according to the definition provided in Glorot and Bengio (2010). The traditional
neural networks preprocess the input data using a min-max transformation fit to each com-
ponent of r . The outputs of the network are the acceleration vectors at the corresponding
field points with the point mass and degree and order 2 contribution of the potential removed.
The accelerations that remain are then also preprocessed using a min-max transformation on
each component.

The PINNs preprocess the training data slightly differently. Only r is preprocessed using
the min-max transformation along each component. The outputs, a, also have the point mass
and degree and order 2 contributions removed, but they are instead preprocessed using a
uniform min-max transformation such that the data are scaled by the minimum and maxi-
mum across all components rather than each component individually. This guarantees that
the learned potential function is also scaled in a manner consistent with the accelerations.
Together the hyperparameters shared across all networks are expressed in Table 1, and the
unique hyperparameters for each network are listed in Table 2.

4 Representational compactness

The first analysis comparing spherical harmonicswith the neural network gravitymodel seeks
to identify howmany free parameters, p, are necessary to obtain a certain level of accuracy for
the Earth’s gravity field. Free parameters refer to the coefficients used in a spherical harmonic
model or the trainable weights and biases of a network model. This analysis assumes that a
sufficiently high-fidelity gravity field representation already exists (spherical harmonic, poly-
hedral, mascon, or otherwise) to provide perfect acceleration training data for the network,
though this is not necessarily a requirement as discussed in Sect. 3.2.

1 https://www.tensorflow.org/.
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Table 1 Shared hyperparameters
for the traditional and
physics-informed neural
networks trained in this paper

Hyperparameter Value

η0 0.005

i0 25,000

α 0.5

σ 25,000

Optimizer Adam

Initializer Glorot uniform

Epochs 100,000

x transform MinMax

Activation GELU

Number of layers 8

Table 2 Unique hyperparameters for the traditional and physics-informed neural networks trained in this
paper

Network type Nodes per layer (N ) Model parameters Batch size a Transform

Traditional 10 843 262144 MinMax

Traditional 20 3083 262144 MinMax

Traditional 40 11763 262144 MinMax

Traditional 80 45923 262144 MinMax

PINN 10 820 262144 Uniform

PINN 20 3040 262144 Uniform

PINN 40 11680 262144 Uniform

PINN 80 45760 131072 Uniform

As shown earlier in Fig. 4, spherical harmonics takes nearly 10,000 coefficients before
beginning to capture the Earth’s high-order perturbations. This section aims to quantify
how many parameters traditional and physics-informed neural networks require to achieve
comparable performance. This is tested by training each of the networks presented in Table
2 on 5,000,000 position/acceleration vector pairs which are drawn randomly from a uniform
distribution in altitude (0–420 km), latitude, and longitude. Once trained, MRSE metric (Eq.
(3)) is used to evaluate the performance of each network using the same Fibonacci grid
data as was used to generate Fig. 4—r i ∈ {A,F, C}. The Fibonacci test samples provide a
entirely decoupled dataset from the training data to ensure a fair evaluation of the network
performance. The MRSE for the networks is juxtaposed with the MRSE of the spherical
harmonic model and presented in Fig. 5.

Figure 5 demonstrates that there exists a wide domain in which the neural networks
generate a more compact representation of the gravity field compared to their spherical
harmonic counterparts. This range spans between 1,000 and 50,000 parameters (between
spherical harmonic degree l = 30 and l = 225). While the network performance across
the sets A and C remained comparable to that of the spherical harmonic representation, the
performance inF demonstrates that thePINNs canoffer amodel that is an order-of-magnitude
more compact than the equivalent spherical harmonic model.

There are conditions, however, where the compactness advantage becomes less apparent.
Specifically, note the N = {10, 80} traditional networks and PINNs. These particular net-
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Fig. 5 Plot of MRSE as a function of total model parameters, p. Solid lines represent the spherical harmonic
representation. Dashed lines represent traditional neural networks. The lines with circle markers represent the
physics-informed neural networks

works have a less pronounced compactness advantage which is theorized to be a result of
two factors. In the case of N = 10, the networks do not have a sufficiently high modeling
capacity to represent the nonlinear perturbations of the gravity field. With a mere p ≈ 1, 000
trainable parameters, these small networks do not have the parametric flexibility necessary to
capture the discontinuous high-order perturbations. The N = 80 case, in contrast, has such
a large network capacity that it manages to model these features quite well—so well in fact
that the network begins to overfit to the training data and suffer when tested on new datasets.

This overfitting can be combattedwith additional training data.Not onlywill the overfitting
in the N = {80} network be resolved by using a larger training dataset, but the performance
for each network is expected to improve. Networks that are exposed to more data will observe
a more representative cost landscape and larger batches assist stochastic gradient descent in
traversing that landscape toward a local minimum. It is therefore reasonable to assume the
compactness advantage of these networks would grow even more apparent given a larger
training dataset.

The compactness advantages demonstrated in the other networks suggest that the machine
learningmodels are able to learn a set of basis functions that are substantiallymore efficient at
representing the high-order perturbations of Earth’s gravity field. In the case of the traditional
neural networks, these basis functions and the intermediate nonlinear transformations used
to generate them can be directly plotted as shown in Fig. 6.

Figure 6 can be interpreted as follows: The top row represents the first layer in the
network—i.e., the normalized Cartesian position vectors inputs. Because these images are
generated at the Brillouin sphere, the x and y components of the position vectors grow small
at the poles and large at the equator, whereas the z component grows linearly from the south
to north pole. The second row represents weighted, linear combinations of the first three
inputs that are then passed through the Gaussian exponential linear unit (GELU) activation
function. This row corresponds to the outputs of the first hidden layer of the network. This
nonlinear transformation is repeated for each intermediate hidden layer until the 9th row of
the figure (the 8th hidden layer) which represents the learned basis functions. These penulti-
mate functions are then combined linearly without the GELU transformation to produce the
three predicted acceleration components at the Brillouin sphere of Earth (Fig. 7).
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Fig. 6 Subset of the intermediate transformations and resulting basis function of the N = 40 traditional neural
network. Each row correspondswith a single layer of the network in order of input (top) to output (bottom). The
individual plots represent the normalized and dimensionless output of a particular node’s activation function
when evaluated across the Earth’s Brillouin sphere

Fig. 7 Zoomed in final layer of Fig. 6 representing the predicted Cartesian components of the acceleration
vectors plotted at the Brillouin sphere

Notably, as the inputs propagate deeper into the network, the corresponding outputs of the
hidden layers grow increasingly complex. The earlier layers activate over broad regions across
the entire Brillouin sphere, whereas the deeper layers activate over more localized features.
This highlights how the shallower layers in networks tend to resolve high-level, abstracted
feature spaces, while the deeper layers begin conforming to the specific perturbations of the
body in question.

Figure 8 visually demonstrates the difference between modeling Earth’s discontinuous
perturbations using low parameter spherical harmonic model and the more flexible neural
network representation. Figure 8a shows how the network representation is able to generate
a sensible and accurate basis set capable of representing the most prominent perturbations.
Conversely, spherical harmonics prescribe oscillatory basis functionswhich are not amenable
to modeling discontinuous mountain ranges and subduction zones as shown in 8b. In fact,
the spherical harmonic basis can leave unintended wave patterns that obfuscate the important
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(a) PINN N = 20 ⇔ p = 3, 040
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(b) Spherical harmonics l = 55 ⇔ p = 3, 080

Fig. 8 Gravity model of Earth using (a) the neural network representation and (b) the spherical harmonic
representation given approximately the same number of free parameters (p ≈ 3000)

perturbations. Figure 8 thereby highlights one of the important takeaways of this research:
Astrodynamicists do not need to apply a “one-size-fits-all” basis (i.e., spherical harmonics)
to every gravity field; instead, neural networks provide astrodynamicists with the choice
of generating unique basis functions that are maximally efficient for their specific gravity
modeling problem.

5 Generalization

The prior analysis focuses on the network gravity models’ accuracy at the Brillouin sphere
where the perturbations are most prominent. While the surface of the body offers the most
complex dynamics due to the unattenuated perturbations, most spacecrafts operate at higher
altitudes where dynamics tend to simplify. As shown in Fig. 3, the perturbations tend to
decrease in magnitude and span larger spacial scales as altitude increases. Such is a function
of the (R/r)l termwithin Eq. (1) which rapidly reduces the contribution of high-degree/small
wavelength harmonics at larger radii. This second analysis investigates howwell the network
models generalize to these higher altitudes.
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Fig. 9 MRSE of Am (top) and Fm (bottom) for the traditional (dashed) and physic-informed (solid) neural
networks converted into the equivalent spherical harmonic degree as function of altitude. The blue histogram
represents the training data distribution

5.1 Uniform distribution

Beginning with the 250,000 data Fibonacci grid used in Sect. 4, the same latitude and longi-
tude of sets A and F are reused, but their altitudes are varied between 0 and 500 km in 10
km increments to generate sets Am and Fm, where m ∈ [0, 500]. The MRSE metric is then
applied to these altitude-specific sets, converted into an equivalent spherical harmonic model
degree, and plotted in Fig. 9.

Figure 9 demonstrates that the networks’ performance tends to decay as a function of
altitude. On average the networks outperform their corresponding spherical harmonic equiv-
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alent for the first 100 km, but beyond 100 km spherical harmonics become the more compact
representation. Across all tested altitudes, however, the networks remain more accurate than
degree and order 25 spherical harmonic model suggesting the networks are well-behaved
within the domain of the training data and remain a viable option for gravity field modeling
up to a LEO altitude.

The altitude-dependent accuracy of the networks is attributed to the attenuation of the
high-order perturbations at higher altitudes. Neural networks are trained specifically to min-
imize error, and the largest errors come from mis-modeling low-altitude samples where the
perturbations are the largest. At higher altitudes, the features decay resulting in a smaller cost
penalty during training. The features also spread over larger wavelengths such that spheri-
cal harmonics can often capture the smoothed perturbations with relatively low-parameter
models in a manner that was not possible at the Brillouin sphere.

These results suggest that the network gravity models are most advantageous when used
near the surface of a body. For Earth-based spacecraft operations, this is not a common
operating regime as, at these altitudes, atmospheric drag alonewould produce greater dynamic
uncertainty than the high-order gravity perturbations. For bodieswith very thin or nonexistent
atmospheres however (e.g., the Moon or small-bodies), lower orbit altitudes are feasible and
present a viable use case for the network representations.

5.2 Nonuniform distributions

The generalization analysis in Fig. 9 assumes that the training data for the networks are
uniformly distributed in altitude as shown by the histogram in blue. The uniform training
data distribution, however, is a luxury that is afforded only if a sufficiently high-resolution
gravity field model exists from which artificial training data can be generated. In more
realisticmission circumstances, a high-fidelity representation of thefieldmaynot exist and the
network can only train using samples collected from orbit. To reflect these circumstances,
two new datasets of 1,000,000 position/acceleration pairs are drawn from the following
exponential distribution:

E(x, x0, β) = exp

{
−|x − x0|

β

}
, (15)

where x0 is the reference altitude of 420 km, and β is the scaling parameter. The first dataset
sets β = 10 km and simulates a data distribution collected by a spacecraft that begins in a
high-altitude orbit before gradually deorbiting. As such, the majority of the data would come
from an operational orbit regime with sparser measurements closer to the surface of the body.
The second distribution sets β = 3 km and represents a satellite in an eccentric orbit that
remains at—and collects data from—an operational orbit altitude. Theremay exist infrequent
measurements near the surface, but virtually all of the data are collected at altitudes greater
than 200 km. Note that to prevent sampling from inside the Brillouin sphere, the distribution
for both datasets is restricted to x ∈ [0, 420] km. The results of the N = {20, 40, 80}
traditional networks and PINNs are shown in Fig. 10.

Figure 10 demonstrates that both the traditional neural network and PINN gravity models
are most productive when exposed to low-altitude samples, even if infrequently. Figure 10b,
d shows that the networks struggle to predict accurate accelerations at the Brillouin sphere
given no data, but with a mere 2,000 data collected near the surface (Fig. 10a, c) the networks
achieve substantially better performance at lower altitudes. This again highlights how the
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(d)MRSE(F) β = 3

Fig. 10 Training data distribution and equivalent spherical harmonic degree at varying altitudes for the β = 3
and β = 10 datasets. Solid lines represent the PINNs and dashed lines represent the traditional neural networks

networks are often biased to focus their modeling effort on low-altitude samples because
they quickly dominate the training cost when poorly modeled.

In general, the physics-informed networks consistently outperform the traditional net-
works with the exception the N = {40, 80} PINNs in the low-altitude regime of the β = 3
distribution. While sub-optimal performance of the more powerful PINN seems counter-
intuitive, this ultimately matches expectation. As discussed in Sect. 3 physics-informed
networks are typically better at extracting more information from training data than tra-
ditional networks. Unfortunately this can lead to overfitting. Given that the majority of data
in the β = 3 distribution comes from samples that exist at an altitude greater than 200 km,
the physics-informed networks generate a better model than their traditional counterparts in
this regime, but when it comes time to extrapolate into the lower altitudes, the PINNs begin
to diverge from truth. In principle this can be improved using traditional L2 regularization
techniques on the network weights (Loshchilov and Hutter 2017) or by supplementing the
PINN cost function with additional constraints. The latter of these two approaches should
narrow the set of permissible basis functions found by the network, but such exploration is
left for future work.

6 Computational speed

The last analysis investigates how quickly the trained network models can be executed as
compared to other popular gravity representations. The neural network gravity models are
written in TensorFlow 2.4 and executed on an NVIDIA RTX 2060 GPU and on the Ryzen
3400G for the GPU andCPU cases, respectively. Figure 11 shows the execution time required
to evaluate the accelerations of 10,000 randomly distributed position data for models of vary-
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Fig. 11 Total evaluation time to evaluate 10,000 random data using the various gravity models

ing levels of fidelity/parameters. The PINN performance is compared first to the spherical
harmonic representation, and then to a second analytic gravity representation often used to
model small-bodies—the polyhedral gravity model. The spherical harmonics representations
are each generated from the EGM-2008 model with different truncation degrees. The poly-
hedral models tested use increasingly degraded shape models of 433-Eros generated using
Blender.2 The two analytic representations are written in Python, just-in-time compiled using
Numba,3 and executed on a Ryzen 3400G CPU.

Figure 11 demonstrates that the spherical harmonics representation is relatively efficient to
evaluate at low degree, but it also has the steepest gradient as the truncation degree increases
which verifies its O(n2) complexity. The polyhedral representation is by far the most time
consuming to evaluate—taking nearly two orders-of-magnitude longer than that of a spher-
ical harmonic model equipped with the same number of parameters. The neural network
representation run either on the GPU or CPU is considerably more efficient than both of
these representations—with performance that is nearly an order-of-magnitude more efficient
than the lowest spherical harmonic model tested (l = 10), independent to the number of
parameters by these networks.

These results are encouraging for two reasons. First, the PINN gravity model has clear
advantage for use in simulation—especially when generating trajectories using high-order
integration schemes. In such use cases, these gravity models would need to be evaluated
multiple times to evolve the simulation forward a single time-step. As such, the results
presented here can be considered a lower bound on performance and greater speedups may
exist depending on the specific application. The second application of PINNs quick runtimes
comes in the form of on-board control purposes. As recently demonstrated in Blacker et al.
(2019) neural networks can be executed on radiation hardened processors. Consequently,
PINNs could be considered for use within spacecraft control solutions—allowing for feed-
forward terms that efficiently account for high-order gravitational perturbations.

2 https://www.blender.org/.
3 https://numba.pydata.org/.
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Fig. 12 Contrasting gravity field and acceleration distributions of the Earth and Moon

7 Network performance applied to theMoon’s gravity field

The analyses presented thus far are focused specifically on the Earth, but the conclusions
on model compactness and generalization are not necessarily universal to any celestial body
whose gravity field is traditionally represented by spherical harmonics. To demonstrate this,
the prior experiments are repeated for a body with characteristically different perturbations:
the Moon.

The Moon offers an interesting point of comparison to the Earth, as the gravitational
perturbations of the Moon are substantially more frequent and of larger magnitude. The
Earth’s perturbations are typically generated by large, infrequent, and localized geologic
structures (mountains, tectonic plate boundaries, etc). The Moon’s perturbations, in contrast,
are generated by craters and associated mascons which cover most of its surface. As will
be shown, the complexity of the Moon’s gravity field makes efficient modeling of such
perturbations more challenging for the networks.
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Fig. 13 Plot of MRSE as a function of total model parameters for the Moon. Dashed lines represent traditional
neural networks. The lines with circle markers represent the physics-informed neural networks

Figure 12 aims to contrast the differences between the two bodies and their fields. Quali-
tatively, note how much simpler the Earth’s gravity field (Fig. 12a) is compared to that of the
Moon (Fig. 12b). The craters on the Moon not only form a near-random surface topology,
but also they intermingle some of the strongest perturbations with the weakest. The Earth’s
perturbations, in comparison, are much more well-behaved. The complexity of the two fields
is quantified by estimating the Shannon entropy of the acceleration distributions shown in
Fig. 12c, d. For the Earth, the field entropy is 4.31 nats (unit of information expressed in base
e), whereas the entropy for the Moon is 5.93 nats. This suggests that the Moon’s gravity field
contains approximately five times more information on average than that of Earth’s gravity
field—a significantly more challenging modeling task for the neural networks. These distri-
butions are preprocessed before using them as training data for networks, so Fig. 12e, f shows
how the distributions change once having applied the uniformmin-max transformation to the
acceleration vectors as detailed in Sect. 3. After the preprocessing, the Moon’s gravity field
still contains more information compared to the Earth, albeit by only 50%. This suggests
in both the raw and preprocessed form, the Moon’s gravity field is the more challenging
modeling task.

7.1 Compactness

The modeling efficiency of the networks applied to the Moon’s gravity field is shown in
Fig. 13. The figure replicates the same experiment of Sect. 4, but instead of training the
networks from field points drawn uniformly between 0 and 420 km altitude, the training data
span between a 0 and 50 km altitude. This narrower training domain attempts to reflect the
fact that spacecraft can orbit at lower altitudes around bodies like theMoon given its very thin
atmosphere. In addition, the true potential,USH

Truth, is generated using the lunar GRGM1200A
gravity field model (Goossens et al. 2016).

In Fig. 13, note how the spherical harmonic curve differs substantially from the Earth’s
curve (Fig. 5). In the case of the Earth’s gravity field, nearly 10,000 spherical harmonic coef-
ficients are required to begin converging on the feature set, F . Such requirement implies that
only the small-wavelength harmonics are useful when modeling the localized perturbations
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(a) True Field
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(b) PINN N = 20 ⇔ p = 3, 040
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(c) SH l = 55 ⇔ p = 3, 080

Fig. 14 Gravity model of Moon using (a) the full l = 1, 000 spherical harmonic model, (b) the PINN
representation with p = 3040, and (c) the low fidelity l = 55 ⇔ p = 3080 spherical harmonic representation

found on the Earth. A similar high-parameter requirement is not exhibited for the Moon’s
gravity field. Rather, a mere 300 spherical harmonic coefficients are needed to begin converg-
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ing on the Moon’s perturbations. This suggests that long-wavelength harmonics provide a
meaningful contribution to the modeling effort. This is attributed to the near-isotropic nature
of the perturbations. Even if the low-degree harmonics cannot efficiently reduce the error
of a single crater, they do contribute a small amount to all of the craters covering the entire
surface. This collective contribution generates a measurable reduction in error seen within
the feature set, F . To this end, spherical harmonics are substantially better suited to model
the Moon’s gravity field features than was the case for the Earth.

Turning to the neural network performance, Fig. 13 shows that only the PINN representa-
tion offers a representational advantage over spherical harmonics and by a small margin (≈
30% instead of the 1000% seen for the Earth). The relatively small performance gain is an
interesting result attributed to two factors: First is the aforementioned efficiency of the long
wavelengths in the spherical harmonic representation. The analytic model is simply more
effective for the Moon than it was for the Earth, so the networks are competing with a more
productive representation.

The second contribution to the performance discrepancy is the greater complexity/higher
entropy of the Moon’s gravity field. The networks are being tasked to generate a distribution
that contains more information than was present in the Earth’s gravity field—i.e., the net-
works have to work harder. It remains possible that greater network performance exists, but
to witness that performance the networks would likely require additional training data, addi-
tional feature engineering, and longer training times to compensate for this more complex
problem.

Future work is required to determine whether there is a more fundamental relationship
between the entropy of a gravity field and the capacity for a successful neural network
gravity model. As is shown in Fig. 14, the learned, custom basis functions provided by the
PINNs do not seem to offer a major advantage to modeling the Moon’s gravity environment.
Because environments with high gravitational entropy will generate accelerations that appear
unstructured or random, it is possible that all basis sets (learned or analytic) will struggle
equally to model these types of fields.

7.2 Generalization

Repeating the methodology presented in Sect. 5, the trained network model performance is
tested at varying altitudes to determine how these networks generalize to different orbits. The
altitudes tested vary only between 0 and 55 km instead of the 0–500 km domain to remain
consistent with Sect. 7.1. Otherwise the same analysis is repeated and presented in Fig. 15.

The general performance trend of the Moon networks is similar to that of the Earth net-
works. Both the traditional and physics-informed neural networks tend to have degraded
accuracy at higher altitudes. There is, however, a difference in the magnitude of the per-
formance peak in the low-altitude regime. In the original Earth networks (Fig. 9b), the
performance peaked around 15 km above the Brillouin sphere. This performance peak for
the Earth networks demonstrates that the learned representation is about 15% less efficient
at the Brillouin sphere than at a 15 km altitude. This sizeable dip in performance is attributed
to the fact that neural networks often struggle when tested at the boundaries of their original
training data as there was nothing to constrain the fit from the “other side.” Interestingly, the
performance peak for the Moon networks is less pronounced (the fit at the Brillouin sphere
is ≈ 5% less compact) and occurs at a lower altitude of 5 km.

This discrepancy is again a by-product of theMoon’s high-entropy gravity field. The field’s
greater complexity ultimately acts as a type of regularization that helps prevent the networks
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Fig. 15 MRSE of Am (top) and Fm (bottom) for the traditional (dashed) and physic-informed (solid) neural
networks converted into the equivalent spherical harmonic degree as function of altitude for the Moon. The
blue histogram represents the training data distribution

from overfitting to the training data. The perturbations are so diverse and ever-present that
the networks can not develop an overconfidence in their representation. Analogous effects
are seen when using small mini-batch sizes to train neural networks. These small batches
can cause a noisier gradient descent which takes longer to converge but assists the optimizer
in exploring the cost landscape (Goodfellow et al. 2016). The difference here is instead of
decreasing the batch size, the complexity of the cost landscape is increased to achieve a
similar effect. This prevents large extrapolation error near the bounds of the training data
domain.
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8 Conclusions

Combining newmachine learning techniques and artificial neural networks to solve the grav-
ity field modeling problem offers an interesting alternative to more traditional and analytic
approaches. For the case of the Earth, the neural network representation of the gravity field
offers strong advantages to modeling highly discontinuous and perturbing features without
the need for excessive parameters. While the accuracy of such representations tends to decay
as a function of altitude, they ultimately remain stable up to a LEO orbit—achieving accuracy
greater than a degree l = 25 field at their weakest. Finally, the neural network representa-
tion also has the advantage of fast execution times which could make it a viable modeling
alternative both on-board spacecraft and within simulation.

There remain conditions, however, for which the network representation’s appeal grows
less prominent. Early results suggest that gravity fields with high information content like the
heavily cratered surface of on the Moon tend to limit neural network performance. Modeling
such complex environments using neural networks may require additional physics informed
constraints, training data, and feature engineering to achieve appreciably superior perfor-
mance.

Altogether the physics-informed neural network gravity model is a novel and powerful
way to represent the gravity field of large celestial bodies and offers a number of encouraging
prospects for future research. In particular, all PINNs in this paper included only one physics
constraint (a = −∇U ). There exists many more constraints that can be applied to the gravity
modeling problem. Such efforts will likely require adaptive scaling of the differing physics
constraints as demonstrated recently inWang et al. (2020) to improve performance.Moreover,
there remains many opportunities for exploration of more advanced architectures and more
carefully selected hyperparameters.
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