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A spacecraft formation flying control strategy is discussed where the desired orbit is prescribed
in terms of specific orbit element differences, and the actual relative orbit is measured in terms of
Cartesian coordinates of the rotating chief-satellite-centric reference frame. A direct method to map
orbit element differences to their corresponding local Cartesian coordinates is presented. A numerical
study illustrates the accuracy at which this transformation performs this coordinate transformation.
A hybrid continuous feedback control law is then developed which has the desired relative orbit
geometry explicitly given in terms of orbit element differences, and the actual orbit given in terms
of local Cartesian coordinates. A numerical simulation illustrates the performance and limitations
of such feedback control laws. Using the linearized mapping between the relative orbit coordinates
causes only a small performance penalty. However, it is advantageous to work in mean element space
when determining the relative orbit tracking error.

Introduction
When describing and controlling spacecraft formations of

equal type and built, it is convenient to do so by describ-
ing the closed relative orbit geometry in terms of relative
orbit element differences, rather than using the relative
Cartesian coordinates of the rotating Local-Vertical-Local-
Horizon (LVLH) coordinate frame. If the closed relative
orbit is a natural solution of the relative orbital mechan-
ics, then the corresponding orbit element difference of the
deputy satellite relative to the chief satellite remains con-
stant. Thus, the actual orbit element difference between
deputy and chief satellites can be compared at any point
of time to their desired values. This greatly facilitates the
task of determining any relative orbit errors and correcting
them. Establishing relative orbits using mean orbit element
differences has been discussed in References 1–4. As a com-
parison, if a general closed relative orbit is described through
some Cartesian initial conditions, then these starting values
must be forward integrated to obtain the desired Cartesian
coordinates of both the deputy and chief spacecraft. For
some special cases it is possible to find closed form solu-
tions to these relative orbits, such as is the case with the
elliptic relative orbits obtained using the Clohessy-Wiltshire
equations5 (sometimes also referred to as Hill’s equations).
However, these special solutions typically require the chief
orbit to be circular and the Earth be perfectly spherical.
Using orbit element differences to describe the relative or-
bit does not suffer from these constraints and is thus more
easily applied to the general formation flying problem.

However, a relative orbit is typically sensed or measured
in terms of LVLH local coordinates or inertial Cartesian
coordinates differences, and typically not directly in terms
of orbit element differences. One method to map these lo-
cal position and velocity measurements into corresponding
orbit element differences is to use these local coordinates,
along with the inertial chief position and velocity vectors,
to reconstruct the deputy inertial position and velocity coor-
dinates. These inertial quantities are then mapped uniquely
into corresponding orbit elements which then lead to the de-
sired orbit element differences.

This paper outlines an alternate, more direct approach.
Using various celestial mechanics properties, a direct map-
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ping between the local Cartesian position and velocity co-
ordinates and the osculating orbit element differences is
developed. This transformation is a first order approxi-
mation to the true nonlinear transformation, where it is
assumed that the relative orbit dimensions are very small
compared to the inertial orbits. The good accuracy of this
mapping is illustrated through a numerical simulation. Both
references 6 and 7 have developed a similar linear mapping
between orbit element differences and small differences in
relative position and velocity coordinates. The mapping
presented in this paper is in terms of orbit elements which
lead to non-singular equations for the circular orbit case.
While the previous mappings expressed the relative coordi-
nates rates relative to the true latitude angle, we provide
direct expressions for the time rate of change of the relative
position vector.

Further, a hybrid continuous feedback control law in
terms of both the actual local Cartesian relative orbit co-
ordinates and the desired orbit element differences is pre-
sented. The linear mapping between local Cartesian coor-
dinates and orbit element differences will provide a direct
method to determine the relative orbit errors at any instant
without having to forward integrate any desire relative or-
bit initial conditions. The accuracy and limitation of such
a feedback control law are compared to a similar feedback
control law, where the full nonlinear transformation between
Cartesian local coordinates and their corresponding orbit
elements is utilized. Further, the effect of adding the J2

gravitational perturbation on the tracking accuracy is dis-
cussed.

Linear Coordinate Mapping
Since the actual relative orbit of a deputy satellite relative

to a chief satellite is typically measured or sensed in terms
of LVLH Cartesian coordinates, it would be convenient to
be able to map these coordinates directly into corresponding
orbit element differences. This would greatly facilitate the
process of determining relative orbit errors when the desired
relative orbit is provided as fixed orbit element differences.

LVLH Position Coordinates

The rotating LVLH coordinate frame has it’s x axis
aligned with the chief’s radial position vector and the z axis
aligned with the chief angular momentum vector. Let the
LVLH deputy state vector X be given as

X = (x, y, z, ẋ, ẏ, ż)T (1)

Let a be the semi-major axis, θ be the true latitude angle
(sum of argument of perigee and true anomaly), e be the

1
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eccentricity, i be the inclination angle, Ω be the ascending
node and ω be the argument of perigee. The orbit element
vector e is given through

e = (a, θ, i, q1, q2, Ω) (2)

with q1 and q2 being defined through

q1 = e cos ω (3)

q2 = e sin ω (4)

All coordinates are assumed to be osculating quantities with
the J2 perturbation not considered at this stage. Since the
relative orbit is small compared to the inertial orbit, the
deputy orbit element vector is written as

ed = ec + δe (5)

A subscript d denotes deputy spacecraft quantities and a
subscript c indicates chief spacecraft quantities. Let us de-
fine the following three coordinates systems. Let C and D be
the LVLH coordinate frame of the chief and deputy satel-
lites respectively, and let N be the inertial frame. Then
T CN = T CN (Ωc, ic, θc) is the direction cosine matrix map-
ping vector components in the inertial frame to components
in the chief LVLH frame. To relate the orbit element dif-
ference vector δe to the corresponding LVLH Cartesian
coordinate vector X, we write the deputy spacecraft in-
ertial position vector rd in chief and deputy LVLH frame
components as

Crd = C(Rc + x, y, z)T (6)
Drd = D(Rd, 0, 0)T (7)

where R is the inertial orbit radius. The deputy position
vector rd is now mapped from deputy LVLH frame vector
components to chief LVLH frame vector components using

Crd = T CNTND Drd (8)

To simplify the notation from here on, the subscript c is
dropped and any parameter without a subscript is implied
to be an chief orbit parameter. Taking the first variation of
TND and Rd about the chief satellite motion leads to the
first order approximations

TND ≈ TNC + δTNC (9)

Rd ≈ R + δR (10)

Eq. (8) is then expanded to yield

Crd = (I3×3 + T CN δTNC)

 
R + δR

0
0

!
(11)

Dropping second order terms, the deputy position vector is
written as

Crd =

 
R + δR

0
0

!
+ R T CN

0@δTNC11

δTNC21

δTNC31

1A (12)

with the matrix components δTNCi1 given by

δTNC11 = TNC12 δθ − TNC21 δΩ + TNC31 sinΩ δi (13)

δTNC21 = TNC22 δθ + TNC11 δΩ− TNC31 cosΩ δi (14)

δTNC31 = TNC32 δθ + sin θ cos i δi (15)

Substituting Eqs. (13) - (15) into Eq. (12), the deputy po-
sition vector is written in terms of orbit element differences
as

Crd =

 
R + δR

0
0

!
+R

 
0

δθ + δΩ cos i
− cos θ sin iδΩ+ sin θδi

!
(16)

To be able to write Eq. (16) in terms of the desired orbit
elements and their differences, the orbit radius R must be
expressed in terms of the elements given in Eq. (2).

R =
a(1− q2

1 − q2
2)

1 + q1 cos θ + q2 sin θ
(17)

Thus, the variation of R is expressed as

δR =
R

a
δa +

Vr

Vt
R δθ − R

p
(2aq1 + R cos θ)δq1

− R

p
(2aq2 + R sin θ)δq2 (18)

where the chief radial and tangential velocity components
Vr and Vt are defined as

Vr = Ṙ =
h

p
(q1 sin θ − q2 cos θ) (19)

Vt = Rθ̇ =
h

p
(1 + q1 cos θ + q2 sin θ) (20)

with h being the chief orbit momentum magnitude and p be-
ing the semilatus rectum. Comparing the chief LVLH frame
components of the deputy position vector descriptions in
Eqs. (6) and (16), the local Cartesian LVLH frame coordi-
nates x, y and z are expressed in terms of the orbit element
differences as

x = δR (21)

y = R(δθ + cos i δΩ) (22)

z = R(sin θ δi− cos θ sin i δΩ) (23)

LVLH Velocity Coordinates

At this point half of the desired mappings between orbit
element differences and the corresponding LVLH Cartesian
coordinates have been developed. To derive the linear re-
lationship between the orbit element differences and the
Cartesian cooridnate rates, a similar approach as has been
used to derive Eqs. (21) through (23) could be used. In ref-
erence 8, the deputy velocity vector is expressed in both the
chief and deputy frame. The desired Cartesian coordinate
rates are then extracted by comparing the two algebraic ex-
pressions.

However, it is also possible to optain the Cartesian coor-
diante rate expressions in terms of orbit element differences
by differentiating Eqs. (21) through (23) directly with re-
spect to time. The only time varying quantities in these
three expressions are the chief true latitude θ and the differ-
ence between deputy and chief latitude δθ. Only the later
quantity needs special consideration. Using the conserva-
tion of angular momentum h, we express the true latitude
rate θ̇ as

θ̇ =
h

R2
(24)

The variation of Eq. (24) yields

δθ̇ =
δh

R2
− 2

h

R3
δR (25)

Using the angular momentum expression h =
√

µp, the δh
variation is expressed as

δh =
h

2p
δp (26)

where δp is given by

δp =
p

a
δa− 2a(q1δq1 + q2δq2) (27)
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Thus the desired variation in the true latitude rate is ex-
pressed as

δθ̇ =
h

R2

„
δp

2p
− 2

δR

R

«
(28)

After differentiating Eqs. (21)-(23) and making use of
Eq. (28), the Cartesian coordiante rates are expressed in
terms of orbit element differences as

ẋ = −Vr

2a
δa + (

1

R
− 1

p
)hδθ

+ (Vraq1 + h sin θ)
δq1

p
+ (Vraq2 − h cos θ)

δq2

p

(29)

ẏ = −3Vt

2a
δa− Vrδθ + (3Vtaq1 + 2h cos θ)

δq1

p

+ (3Vtaq2 + 2h sin θ)
δq2

p
+ Vr cos i δΩ

(30)

ż = (Vt cos θ + Vr sin θ)δi

+ (Vt sin θ − Vr cos θ) sin iδΩ
(31)

Non-Dimensional Cartesian Coordinates

Even the feedback control law discussed in this paper re-
quires the dimensional relative Cartesian coordinates and
associated time rates, in some applications it is more conve-
nient to work with non-dimensional quantities. Let (u, v, w)
be the non-dimensional relative Cartesian coordinates. Di-
viding Eqs. (21)-(23) by the orbit radius R, they are defined
as:

u =
x

R
=

δa

a
+

Vr

Vt
δθ − (2aq1 + R cos θ)

δq1

p

− (2aq2 + R sin θ)
δq2

p

(32)

v =
y

R
= δθ + cos i δΩ (33)

w =
z

R
= sin θ δi− cos θ sin i δΩ (34)

Instead of differentiating (u, v, w) with respect to time, we
choose to use the true latitude angle θ as the time depen-
dend variable. Let a prime symbol indicate a derivative with
respect to θ. To differentiate the expressions in Eqs. (32)-
(34), only the δθ terms must be give special consideration.
Note that

∂(δθ)

∂θ

dθ

dt
= δθ′θ̇ = δθ̇ (35)

Using Eq. (28), the partial derivative of δθ with respect to
the true latitude is given by:

δθ′ =
δp

2p
− 2u (36)

Taking the partial derivative of Eqs. (32)-(34) while making
use of Eq. (36) yields the following non-dimensional rate

with respect to true latitude.

u′ = −3

2

Vr

Vt

δa

a

+

 
R

p
(q1 cos θ + q2 sin θ)−

„
Vr

Vt

«2
!

δθ

+ (3V raq1 + RVt sin θ + RVr cos θ)
δq1

pVt

+ (3V raq2 + RVt cos θ −RVr sin θ)
δq2

pVt

(37)

v′ = −3

2

δa

a
− 2

Vr

Vt
δθ

+ (2R cos θ + 3aq1)
δq1

p

+ (2R sin θ + 3aq2)
δq2

p

(38)

w′ = cos θδi + sin θ sin iδΩ (39)

Note that these non-dimensional rates expressions are not
simpler that their their dimensional counter parts. To map
these rates with respect to true latitude into the correspond-
ing dimensional (x, y, z) time rates, the follwing equations
are used.

ẋ = Vtu
′ + Vru (40)

ẏ = Vtv
′ + Vrv (41)

ż = Vtw
′ + Vrw (42)

Linear Mapping Accuracy

Combined, Eqs. (21) - (23) and (29)-(31) provide a direct
first order mapping of orbit element differences into corre-
sponding LVLH Cartesian coordinates. These six equations
are written in matrix form as

X = A(e) δe (43)

where the 6× 6 matrix A(e) is the linear mapping between
the two coordinate sets. To obtain the inverse transforma-
tion, the six equations can be solved for δe in terms of the
X components to yield

δe = A(e)−1X (44)

Since this inverse mapping is not used in this paper, it has
not been included. However, it can be found in the Ap-
pendix of Reference 9.

The following numerical study illustrates what level of
errors are introduced to the LVLH Cartesian coordinates
when the linear mapping in Eq. (43) is used. Given the
chief orbit elements shown in Table 1, specific sets of orbit
element differences are used to compute the corresponding
LVLH Cartesian position and velocity coordinates.

Table 1 Chief Orbit Elements

Orbit Elements Value Units
a 7555 km
e 0.05
i 48.0 deg
Ω 20.0 deg
ω 10.0 deg
M 120.0 deg

A semi-major axis, eccentricity, inclination angle, ascend-
ing node, argument of perigee and mean anomaly difference
is prescribed individually for each test run. The orbit el-
ement differences are swept from zero to a value which
corresponds to a relative orbit having a maximum radius
of approximately 1 kilometer. The results are shown in Fig-
ure 1.
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Fig. 1 RMS Errors of the Linear Transformation Matrix A(e) Mapping Orbit Element Differences to LVLH Cartesian
Position (solid line in m) and Velocity (dashed line in mm/s) Coordinates

Note that the semi-major axis causes essentially no trans-
formation errors in the position magnitudes. This result is
easily verified analytically. With only the orbit element dif-
ference δa being non-zero for this case, using Eqs. (21) - (23)
we find

|x| = R

a
δa (45)

The chief orbit radius Rc is given by

Rc = ac(1− ec cos Ec) (46)

with Ec being the chief eccentric anomaly. The deputy ra-
dius vector is expressed as

Rd = (ac + δa)(1− ec cos Ec) = Rc +
R

a
δa (47)

since only the semi-major axis is different between chief and
deputy satellites for this special case. Here the x coordinate
is simply the difference in orbit radii. Thus the true position
vector magnitude is the same as the one predicted by the
linear transformation in Eq. (45).

The remaining RMS position or velocity errors grow only
up to 0.1 m or mm/s respectively. Considering that for the
largest orbit element differences considered here the relative
orbit has a radius of about 1 km with relative velocity mag-
nitudes in the meters range, these transformation errors are
very small at typically less than 0.1 %.

Note that the transformation errors shown are not meant
to provide a global bound on the mapping errors. These

errors would depend on the chief orbit itself and on at which
orbit latitude angle they were evaluated. However, for the
given chief orbit with a desired inclination angle difference of
the order of 0.01 degrees, this study shows that any control
law that utilizes the linear mapping in Eq. (43) could only
expect a final position tracking error of about 0.1 meter
under the best of circumstances. Using the A(e) mapping
instead of the precise nonlinear mapping will result is a small
performance loss.

Continuous Feedback Law
Various feedback laws have been proposed for the space-

craft formation flying control task. In Reference 10, con-
tinuous feedback laws are presented in terms of mean orbit
element tracking errors and mean inertial Cartesian coor-
dinates tracking errors. Reference 11 presents an impulsive
feedback law in terms of mean orbit elements. References 12
and 13 present continuous feedback laws in terms of Carte-
sian coordinates, and Reference 14 discusses a feedback law
in terms of orbit elements.

The use of Eq. (43) is investigated here to create a hybrid
continuous feedback control law in terms of Cartesian LVLH
frame coordinates, while describing the desired relative orbit
geometry through a desired set of orbit element differences
δe∗. Any desired states are denoted in this paper with a
superscript asterix. The advantage of this type of hybrid
control law is that the actual relative orbit is expressed in
terms of coordinates in which it would actually be measured
(i.e. the chief frame local LVLH coordinates), while the
desired relative orbit is conveniently expressed as a set of
orbit element differences.
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Let x = (x, y, z)T be the deputy position vector and v =
(ẋ, ẏ, ż)T be the deputy velocity vector expressed in the chief
LVLH frame. The general linearized relative equations of
motion for a Keplerian system are expressed as15

ẋ = v (48)

v̇ =

242 µ
R3 + θ̇2 θ̈ 0

−θ̈ θ̇2 − µ
R3 0

0 0 − µ
R3

35
| {z }

A1

x

+

24 0 2θ̇ 0

−2θ̇ 0 0
0 0 0

35
| {z }

A2

v +

 
ux

uy

uz

!
| {z }

u

(49)

These relative equations of motion are valid for both cir-
cular and elliptic chief orbits. The latitude acceleration is
computed through

θ̈ = −2
µ

R3
(q1 sin θ − q2 cos θ) (50)

Let us define the relative orbit tracking errors as

∆x = x− x∗ (51)

∆v = v − v∗ (52)

with the desired position and velocity vectors computed us-
ing

X∗ =

„
x∗

v∗

«
= A(e)δe∗ (53)

Note that if the desired orbit element differences call for a
fixed mean anomaly difference, as is done in References 1,
10 and 11, then the vector δe∗ is not constant, but rather
δθ must be computed at each instant by solving Kepler’s
equation. Further, note that ∆ẋ = ∆v.

Let us define the control law u as

u = v̇∗ −A1x−A2v −K∆x− P∆v (54)

with K and P being positive definite matrices. To prove
that u is asymptotically stabilizing, a positive definite Lya-
punov function V is defined as

V (∆x, ∆y) =
1

2
∆vT ∆v +

1

2
∆xT K∆x (55)

Substituting Eqs. (49) and (52), the derivative of V along
the state trajectory must be negative semi-negative

V̇ = ∆vT (∆v̇ + K∆x) = −∆vT P∆v (56)

which guarantees that u is globally stabilizing. To proof
that the control law is also asymptotically stabilizing, the
higher order time derivatives of V are investigated. The
second derivative of V is zero when evaluated on the set
where V̇ = 0. The third derivative

...
V (∆v = 0) = −2∆xT KPK∆x (57)

is negative definite in the state vector ∆x. Since this first
non-zero derivative is an odd derivative, the control u is
asymptotically stabilizing.16

Note that v̇∗−A1x
∗−A2v

∗ is zero if the desired relative
motion is a natural solution to the linearized equations of
motion shown in Eq. (49). Assuming that our chosen v̇∗

abides by

v̇∗ = A1x
∗ + A2v

∗ (58)

the control law u is written as

u = −
»
A1 + K 03×3

03×3 A2 + P

–„„
x
v

«
−A(e)δe∗

«
(59)

Note however that the desired relative motion must not nec-
essarily be a natural solution. The control law in Eq. (54)
is also valid for forced relative orbits. Studying this form
of control law in Eq. (59), the hybrid nature of u is evi-
dent in that the desired relative orbit is prescribed through
a set of orbit element differences, while the actual motion is
expressed in terms of the chief LVLH frame Cartesian com-
ponents. The advantage here is that we able able to express
the actual and desired relative motion in coordinates which
best suit their task.

Since the A2 matrix is skew-symmetric, it could be
dropped from the control expression in Eq. (59). The Lya-
punov based stability proof remains the same and asymp-
totic stability is still guaranteed. However, computing V̇
the term ∆vT A2∆v is dropped since it is always zero. The
modified control expression is then

u = −
»
A1 + K 03×3

03×3 P

–„„
x
v

«
−A(e)δe∗

«
(60)

This control would no longer feedback linearize the closed
loop dynamics, but it still guarantees asymptotic stability.

Note that while the control expression in Eq. (59) takes
advantage of the linear mapping A(e) between orbit element
differences and their corresponding LVLH Cartesian coordi-
nates, the control expression in Eq. (54) does not rely on
this mapping. In fact, the relative orbit tracking errors ∆x
and ∆v could be computed using the complete nonlinear
mapping between orbit elements and local Cartesian coor-
dinates. Further, it is possible to incorporate the J2 effect
here by using Brouwer’s theory to compute the relative orbit
errors in mean element space and then map the error vector
back to osculating space for control purposes. The follow-
ing numerical simulations will demonstrate the performance
and limitations of either control law.

Numerical Simulations
The performance of the two continuous feedback control

laws in Eqs. (54) and (59) is illustrated through the follow-
ing numerical simulations. Case 1, shown as a solid line
in the figures, uses the simplified control in Eq. (59) which
computes the tracking errors in osculating orbit space and
takes advantage of the linear mapping between orbit element
differences and their corresponding LVLH Cartesian coordi-
nates. Case 2, shown as a dashed line in the figures, uses the
more general control expression in Eq. (54). Instead of using
the linear mapping, the relative orbit errors are computed
using the complete nonlinear mapping between orbit ele-
ments and Cartesian coordinates. The development of the
control law in Eq. (54) makes no assumption on whether the
orbit elements and Cartesian coordinates are osculating or
mean quantities. Therefore case 2 uses Brouwer’s first order
artificial satellite theory17 to compute any orbit errors in
mean element space. The control in case 2 will thus ignore
the J2 induced short term oscillations and should provide a
higher performing control algorithm than case 1.

Table 2 Deputy Orbit Element Differences

Orbit Element
Difference Value Units

δa 1.92995 m
δe 0.000576727
δi 0.00600 deg
δΩ 0.0 deg
δω 0.0 deg
δM 0.0 deg



6 SCHAUB ET AL: NEW PENALTY FUNCTIONS

-4
-2

0
2

4

-5

0

5

0

2

4

-4
-2

0
2

4

A
lo

ng
-T

ra
ck

 (
km

)

O
u
t-

o
f-

P
la

n
e 

(k
m

)

Radial (km)

a) Relative Orbit shown in Chief LVLH Frame

0 0.5 1 1.5 2

1

10

100

1000

time  [Orbits]

b) Tracking Error (m)

0 0.5 1 1.5 2

1e-6

1e-5

1e-4

1e-3

1e-2

time  [Orbits]

c) Control Magnitude (m/s)

time  [Orbits]

0.5 1 1.5 2

10

20

30

d) Tracking Error Difference (m)

Fig. 2 Simulation Results including the J2 through J5

Zonal Harmonics

The chief satellite orbit has the mean orbit elements
shown in Table 1. A J2-invariant relative orbit is designed
using the two constraints developed in References 1 and 4.
Prescribing an inclination angle difference of 0.06 degrees,
the necessary δa and δe are shown in Table 2. The remain-
ing three orbit element differences are set to zero. Initially,
the deputy orbit has a relative orbit error of δa = −0.1 km,
δi = 0.05 degrees and δΩ = −0.01 degrees. The position
and velocity feedback matrices K and P are replaced with
the scalar gains

K = 0.000032 sec−2

P = 0.03 sec

The numerical simulation solves the nonlinear equations
of motion of each satellite including the J2 through J5 zonal
harmonics. The results are shown in Figure 2. The initial
relative orbit tracking error is over 1 kilometer. Figure 2(a)
illustrates the relative orbit dictated by the desired relative
orbit element differences shown in Table 2. This illustration
shows the tracking error being essentially canceled after 0.5
orbits. Control cases 1 and 2 do not distinguish themselves
at this scale and their performance difference cannot be ob-
served here. Figure 2(b) shows the magnitude of the relative
orbit tracking error on a logarithmic scale. For the first half
orbit, both control cases perform in a near identical man-
ner. This portion of the control maneuver is dominated by
the feedback portion of the tracking errors. The tracking
error for case 1 stabilizes about a mean value in the ten’s
of meters range. The ∆v demanded for this two orbit ma-
neuver is 9.98382 m/s. The tracking error for case 2 decays
to a much smaller value of less than 1 meter with a com-
manded ∆v of 8.42372 m/s. To isolate the cause for this
performance improvement, another case 3 was run where
the nonlinear transformation is used to map orbit element
differences into corresponding LVLH Cartesian coordinates,
but the tracking errors are computed in osculating element
space, not in mean element space as is done in case 2. The
tracking error difference between case 1 and this new case
3 is shown in Figure 2(d). Using the nonlinear mapping
does result in a slightly better tracking performance ini-
tially. However, both case 1 and 3 stabilize on the same
relative orbit tracking error. This indicates that the reduc-
tion in final tracking error in case 2 is due to computing the
relative orbit tracking error in mean element space. Using
the linear mapping A(e) instead of the nonlinear mapping
thus only causes a relatively minor transient tracking per-
formance loss. To improve the steady state tracking error,
it is necessary to operate in mean element space.

time  [Orbits]
0 0.5 1 1.5 2

1

10

100

1000

a) Tracking Error (m)

time  [Orbits]
0 0.5 1 1.5 2

1e-6

1e-5

1e-4

1e-3

1e-2

b) Control Magnitude (m/s)

Fig. 3 Simulation Results of Case 1 and Case 2 Using
Keplerian Dynamics

To see the performance of the controls in Eqs. (54) and
(59) without the J2 gravitational perturbation, another set
of numerical simulations was performed. No zonal harmon-
ics are included in these simulations. The desired relative
orbit is determined through the orbit element differences
shown in Table 2, with the exception of δa = 0 km. This is
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necessary for the relative orbit not to have a secular drift.
A non-zero δa would cause the Keplerian orbits to have
different orbit periods. The resulting relative orbit shape
is essentially the same as the one shown in Figure 2(a).
Note that the only difference between case 1 and case 2
test runs is that case 2 uses the nonlinear mapping between
LVLH Cartesian coordinates and orbit element differences.
Without gravitational perturbations present, the notion of
osculating and mean element space has no meaning. These
simulations illustrate the performance penalty of using the
A(e) matrix under the most ideal circumstances.

Figure 3 shows the simulation results for this Keplerian
motion case. Note that the relative orbit tracking errors
are reduced to a lower level in case 1 than they were with
J2 gravitational perturbations included. The steady-state
tracking errors hover around the 1 meter point. The fuel
consumed for the maneuver in case 1 is ∆v = 8.46227 m/s.
If the nonlinear mapping is employed, than the tracking er-
rors asymptotically decay to zero as predicted in the control
analysis. The fuel consumed for case 2 is ∆v = 8.38649m/s.

The linear mapping A(e) provides a convenient method to
map between the orbit element differences (which describe
the relative orbit) and the LVLH Cartesian coordinates
(which are likely to be the measured quantities). The error
introduced through this simplification causes only a small
loss in performance of typical control laws.

Conclusion
When describing and controlling natural (i.e. control-

free) relative orbits, it is convenient to describe the desired
relative orbit geometry in terms of orbit element differences.
However, the actual relative orbit of a deputy satellite rel-
ative to a chief satellite will likely be measured in terms
of Cartesian coordinates in the rotating chief LVLH frame.
A direct linear mapping between the local Cartesian coor-
dinates and the corresponding orbit element differences is
outlined here. This mapping is used in the construction of
a hybrid continuous feedback control law. The term hybrid
is used here since the desired orbit is explicitly expressed
in terms of orbit element differences, while the actual or-
bit measurements are provided in terms of LVLH Cartesian
coordinates. Numerical simulations illustrate that the per-
formance loss due to using the linear mapping is minimal.
A more general form of the feedback control law also allows
the relative orbit errors to be computed using the full non-
linearities of the relative orbit dynamics. In particular, the
nonlinear mapping between Cartesian coordinates and orbit
element differences, as well as the transformation from os-
culating to mean orbit element space, can be incorporated.
The latter shows a substantionally improved performance if
the J2 gravitational perturbation is included.
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Appendix

The inverse of the matrix A(e) is presented in this ap-
pendix.9 To simplify the expressions, the following notation
is introduced:

α =
a

R
ν =

Vr

Vt

κ1 = α
“ p

R
− 1
”

κ2 = αν2 p

R
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The non-zero matrix elements are given by:

A−1
11 = 2α

“
2 + 3κ1 + 2κ2

”
(61a)

A−1
12 =

2α2νp

Vt
(61b)

A−1
13 = −2αν

“
1 + 2κ1 + κ2

”
(61c)

A−1
14 =

2a

Vt

“
1 + 2κ1 + κ2

”
(61d)

A−1
23 =

1

R
(61e)

A−1
25 = (cos θ + ν sin θ)

cot i

R
(61f)

A−1
26 = − sin θ cot i

Vt
(61g)

A−1
35 =

sin θ − ν cos θ

R
(61h)

A−1
36 =

cos θ

Vt
(61i)

A−1
41 = (3 cos θ + 2ν sin θ)

p

R2
(61j)

A−1
42 =

p sin θ

RVt
(61k)

A−1
43 = − 1

R

“ p

R
ν2 sin θ + q1 sin 2θ − q2 cos 2θ

”
(61l)

A−1
44 =

p

RVt
(2 cos θ + ν sin θ) (61m)

A−1
45 = −q2 cot i

R
(cos θ + ν sin θ) (61n)

A−1
46 =

q2 cot i sin θ

Vt
(61o)

A−1
51 =

p

R2
(3 sin θ − 2ν cos θ) (61p)

A−1
52 = −p cos θ

RVt
(61q)

A−1
53 =

1

R

“ p

R
ν2 cos θ + q2 sin 2θ + q1 cos 2θ

”
(61r)

A−1
54 =

p

RVt
(2 sin θ − ν cos θ) (61s)

A−1
55 =

q1 cot i

R
(cos θ + ν sin θ) (61t)

A−1
56 = −q1 cot i sin θ

Vt
(61u)

A−1
65 = −cos θ + ν sin θ

R sin i
(61v)

A−1
66 =

sin θ

Vt sin i
(61w)


