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Abstract

A novel method is presented to evaluate on the graphics processing unit (GPU) the force and torque on a spacecraft due to solar
radiation pressure. The method employs efficient ray tracing techniques, developed in the graphics rendering discipline, to resolve space-
craft self-shadowing and reflections at faster than real-time computation speed. The primary algorithmic components of the ray tracing
process which contribute to the method’s computational efficiency are described. These components include two-level bounding volume
hierarchy acceleration data structures, fast ray to bounding box intersection testing using the slab intersection algorithm and fast triangle
intersection testing using the Moller-Trumbore algorithm. Spacecraft material optical properties are represented as a combination of
Lambertian diffuse and ideal specular reflections. Both diffuse and specular ray-surface interactions are modeled. The approach is imple-
mented using C++ and OpenCL and executed on a consumer grade GPU. Model validation is presented comparing ray traced force and
torque values to the same quantities produce by a faceted analytic model. Numerical results illustrate the impact of self-shadowing on the

force and torque calculation, and demonstrate the fast computational speed that is enabled with this implementation.

© 2019 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Effective orbit determination, maneuver and mission
design and mission numerical simulations require tools that
enable accurate modeling of the spacecraft dynamical sys-
tem. Solar radiation pressure (SRP) is the momentum
imparted to a body by impinging solar photons. The
SRP force and torque is often the dominant non-
conservative force for missions operating at and above
the Low Earth Orbit (LEO) region (Vallado, 2007). This
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dominance motivates the pursuit for improved knowledge
of the resultant SRP forces and torques through the mod-
eling and analysis of a spacecraft’s dynamics (Fliegel and
Gallini, 1996; Marshall et al., 1992). For example, to main-
tain a desired spacecraft attitude, the SRP-induced torque
on a spacecraft is absorbed using reaction wheel devices.
Under the influence of sustained torque in a constant direc-
tion, the reaction wheels will reach an operational maxi-
mum angular rate and require desaturation. The
requirement to perform desaturation operations may be
mitigated through a judicious choice of reaction wheel ori-
entation or more typically by a momentum unloading pro-
cess using spacecraft thrusters (O’Shaughnessy et al.,
January 2014).

Effective modeling of the SRP induced perturbation of a
spacecraft enables mission designers to consider SRP a
valuable actuator rather than a disturbance. Such a novel
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use of the SRP force in maneuver and mission design is
exemplified by the MErcury Surface, Space ENvironment,
GEochemistry and Ranging (MESSENGER) mission. The
MESSENGER mission designers employed a solar sailing
technique to perform each trajectory change maneuver
(TCM) and accurately target each of the mission’s six plan-
etary flyby maneuvers. Using SRP as the TCM actuator
allowed the MESSENGER team to perform TCM’s with
more accuracy and finer control due to the smaller magni-
tude of the SRP induced AV (O’Shaughnessy et al., 2009).
Recent research is exploring how to create control formu-
lations to exploit the SRP forces further to assist with atti-
tude and orbital considerations (Mashtakov et al., 2018;
Kenneally, 2016). In all these applications a fast tool to
model the complex SRP forces on general shapes that
include reflections and self-shadowing is critical to validate
the dynamics and control solutions.

A survey of the current landscape of SRP research
reveals a variety of approaches. The nature of the
approaches can be characterized as analytic, semi-analytic
or empirical. Whereas analytic models rely only on
pre-launch engineering information, empirical models are
constructed post-launch using flight data. Commonly, a
semi-analytic model is used during a mission. These models
are comprised of both analytic and empirical components
with tunable parameters. Prior to flight, the tunable param-
eters are determined using an analytic model. Following
launch, the parameters are incorporated into a parameter
estimation process which tunes the model to more closely
match flight data. Prominent examples of the three model-
ing approaches include the ROCK42 analytic model
(Fliegel and Gallini, 1989), the various semi-analytic
approaches which combine the Extended CODE Model
(ECOM) with analytic box and wing models
(Montenbruck et al., 2015) and the Jet Propulsion Lab
(JPL) empirical model (Bar-Sever, 1997).

The simplest analytic model employed is referred to as
the cannonball model. The cannonball model assumes the
spacecraft presents a constant cross sectional area to the
sun and the SRP force is strictly pointing opposite sun-
spacecraft direction (Lucchesi, 2002). Increased accuracy
in analytic models is often achieved by representing the
spacecraft as an approximation of various volumes. A
common approximation is to model the spacecraft bus
and solar panels as a box and panels respectively (Rim
et al., 2006). Modeling fidelity is improved by increasing
the number of spacecraft surfaces with which the incident
solar radiation interacts (Marshall and Luthcke, 1994).
Additionally, the individual reflection, absorption and
emission material characteristics are kept distinct for each
surface and set based on known spacecraft material prop-
erties. However, common among shape approximation
methods is that they are augmented and become semi-
analytic models where much of the modeling uncertainty
is delegated to a parameter estimation process and the
model is ‘tuned’ post-launch to more accurately match
spacecraft tracking data.

Early ray tracing approaches employed Monte Carlo
ray tracing techniques to resolve SRP (Klinkrad et al.,
1991). Notably, Ziebart developed an analytic modeling
approach based on a Whitted ray tracing technique for
the assessment of SRP force analysis of spacecraft in the
GLONASS constellation (Ziebart, 2001). Ziebart’s method
precomputes the body forces over all 4x steradian attitude
possibilities, outputting results to a lookup table which can
then be used in analysis such as online simulation and pre-
cise orbit determination (POD) campaigns. Ziebart’s
approach is also capable of modeling self-shadowing and
multiple ray reflections by ray tracing a spacecraft model
that comprises a set of volume primitives (boxes, cylinders
etc.). While Ziebart’s method is able to resolve spacecraft
articulations, these kinematics must be known prior to
model evaluation. There is currently no approach reported
in the literature which is able to capture unplanned arbi-
trary spacecraft articulations and time evolution of mate-
rial optical properties during execution of an online
spacecraft dynamical simulation. A range of further efforts
to use ray tracing to produce reference force and torque for
use in POD are demonstrated by Darugna et al. (2018) and
Li et al. (2018).

McMahon and Scheeres extend Ziebart’s approach to a
semi-analytic model by aggregating the resultant SRP
forces into a set of Fourier coefficients of a Fourier expan-
sion (McMahon and Scheeres, 2010). The resulting Fourier
expansion is available for both online and offline evalua-
tion within a numerical integration process. Evaluation of
the Fourier expansion in numerical simulation demon-
strates successful prediction of the periodic and secular
effects of SRP. Additionally, the Fourier coefficients may
replace spacecraft material optical properties as parameters
estimated during the orbit determination effort.

More recently, methods that make use of the parallel
processing nature of GPUs have been developed. Tanygin
and Beatty employ modern GPU parallel processing tech-
niques to provide a significant reduction in time-to-
solution of Ziebart’s ‘pixel array’ method (Tanygin and
Beatty, 2016). An OpenCL ray tracing implementation is
demonstrated by Grey et al. (2017). Kenneally et al.
(2016) demonstrate the use of the OpenGL vector graphics
application programming interface (API) to dynamically
evaluate the force of the incident solar radiation across a
spacecraft triangular mesh model with many thousands
of triangular facets.

Wetterer et al. (2014) demonstrate that accurate bidirec-
tional reflection distribution functions (BRDF) representa-
tion is necessary in simulating the long duration
propagation of spacecraft dynamics. A material’s BRDF
governs the amount of impinging solar radiation absorbed
and reflected and the directions in which the radiation is
reflected. A typical BRDF description is comprised of dif-
fuse Lambertian and ideal, ‘mirror like’, specular reflection
portions (Guarnera et al., May 2016). Absent in previous
ray tracing approaches is the modeling of scattered ray
propagation due to diffuse ray reflections.
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Regarding the field of ray tracing techniques, the video
game industry’s pursuit for more vivid artificial worlds
has driven the development of highly optimized vector pro-
cessing software and graphics processing unit (GPU) com-
puter hardware capable of carrying out many thousands of
floating point operations in parallel (Owens et al., 2008). In
the animation and movie industry, the pursuit of photo-
realistic modeling has pushed the techniques employed in
ray tracing algorithms to produce rendering results at near
real-time computation speeds. Two key themes in ray trac-
ing research are the pursuit of algorithmic techniques and
efficient hardware utilization, which increase computing
efficiency and therefore reduce the time of a photo-
realistic model rendering (Wald and Slusallek, 2001). The
method presented here leverages advances in ray tracing
techniques and the OpenCL API to produce a ray tracing
SRP modeling approach at faster than real-time computa-
tion speeds. In this work real-time computation speed is
defined as the compute time required to simulate the space-
craft’s dynamics due to SRP being less than the actual time
being simulated. For example, in a spacecraft dynamic sim-
ulation with an integration rate of 10 Hz an algorithm must
return a result in less than 0.1 s to be considered faster than
real-time. Of course, the computational load is dependent
on the number of rays cast and the time step of any
dynamic simulation where a smaller time step may be less
than the compute time. Therefore, the description of this
method being faster than real-time is given on the basis
of appropriate modeling fidelity for a vehicle’s dynamical
time spans. OpenCL is an API and C based programming
language which facilitates the execution of massively-
parallel computations on heterogeneous computation
devices. OpenCL is a cross-platform standard for parallel
programming across a range of devices including multi-
core CPUs, GPUs and other computation accelerators.

This work improves on previous analytic modeling
approaches in two key areas. The first improvement is
the direct modeling of diffuse ray reflections. While detail
on vehicle material BRDF definitions is limited, modeling
the physical reflection behavior allows for varied and more
accurate BRDF selection. The second, and primary,
improvement is the implementation of proven ray tracing
algorithms, implemented with OpenCL on the GPU, to
provide a faster-than-real-time computation duration.

In the remainder of this paper the fundamental compo-
nents and validation results are outlined for the OpenCL
ray tracing methodology. In the following section the
ray-surface interaction theory is established and the ideal-
ized combined Lambertian and specular BRDF intro-
duced. The following section provides a summary of the
often overlooked formalism for particle tracing for SRP.
With the theoretical basis complete the next section details
the modeling steps of model definition, intersection testing,
and force and torque evaluation. The penultimate section
presents modeling validation by comparing the results
from the faceted evaluation methodology with those from
the OpenCL ray tracing approach. Additionally, multiple

ray bounces are validated and a demonstration of the
impact of resolving multiple ray bounces on the final
SRP force value. Finally, the paper discusses computa-
tional performance by characterizing the methods ability
to produce evaluations at faster than real-time speeds.

2. Ray-surface interactions

The resultant force vector due to an impinging light ray
is coupled to the nature of the ray’s interaction with the
spacecraft surface materials. The total spatial distribution
of a reflected light ray is described by the reflecting mate-
rial’s BRDF. The BRDF is defined as the ratio of reflected
radiance dL, to the incident radiance dE; (Nicodemus et al.,
1977).

The geometry of the reflection interaction is shown in
Fig. 1. The ray intersection point on a surface is denoted
as x, with w; the direction of the incident radiation and
, the direction of the outgoing radiation. An orthonormal
basis is constructed using the unit normal to the surface ny,
with #, and §, completing the basis. The normalized vector,
hy is in the direction of the angular bisector of @, and ;,
and is defined by h, = (0, + @;)/|®, + ;. In this paper
a particular notation convention from the field of computer
graphics is used for the various directional quantities
denoted by w. For instances where the quantity is solely
directional the quantity is denoted as w. Where it is mean-
ingful to be used as a vector the quantity is written as @
and is assumed to be a unit vector.

It is assumed that the incident light-surface interactions
are occurring in the optical linear regime. Under this linear
regime it has been shown experimentally that there is a pro-
portional relationship between exitant radiance and irradi-
ance, dL,(w,) o< dE(w;). This allows for the development
of the bidirectional reflectance distribution function,
(i — w,), given in Eq. (1), where the proportionality
relationship describes the observed radiance leaving a
reflecting surface in the direction w, and the projected solid
angle defined as do*(w) = |o - i|da(w).

dL,(w,) dL,(w,)

[y — w,) = dE(w;) - Li(w;)do+(oy) (1)

The relationship between the outgoing radiance and the
incoming radiance for a particular optical surface is
described at Eq. (2).

dL,(w,) = dL(wy) f(w; — wo)da™(w;) (2)

Integrating Eq. (2) yields the total radiance, over the hemi-
sphere, leaving a surface area element as (Veach, 1997)

Lo(we) = / o) (= 004 (). 3)

This work employs physically plausible BRDFs. A physi-
cally plausible BRDF adheres to the symmetry expression
given at Eq. (4) and energy conservation condition given
by Eq. (5).
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Fig. 1. Illustrations of two common BRDF geometry descriptions.

fi(oi = o) = fi(wo — o) forall o, o, (4)

/qur(wi — wo)dot(w,) <1 forall o; € &7 (5)

For a large majority of materials a BRDF can be
described as the combination of a specular component
and diffuse component. Whereas specular reflection is due
to surface reflection, diffuse reflection is due to subsurface
scattering and surface microgeometry. While subsurface
scattering contributes to the generation of diffuse reflec-
tions this work does not model internal material refraction
nor transmission between transparent layers. As a result
the contribution of subsurface scattering is represented by
adding a diffuse term to the specular term giving the com-
plete BRDF description

Si(wi — @) = pR4 + sR, (6)

where p and s are the proportions of the surface behaving
as a diffuse and specular respectively and p + s = 1.

The BRDF which will be computed directly is the typi-
cal combination of diffuse Lambertian and ideal specular
mirror-like reflection. This BRDF expression is given in
Eq. (5)

P Foo(@ —7)
on = o) =a(2) +[F20@ =P, :
lor = on) =a(2) 45|22 )
where F is the Fresnel reflection coefficient, p the diffuse
scaling constant of the material. The outgoing mirror
reflected direction # is given by

P = 2(é; - )it — G, 8)

3. Radiation pressure particle tracing formulation

In this section a formalism is introduced which describes
the process of generating and evaluating a set of weighted
sample rays. This formalism initially introduced by Veach
(1997), rigorously describes the ray tracing algorithm

employed in this work. Veach presents a general descrip-
tion of how an estimate of some quantity can be computed
with respect to some measure, by generating a set of
weighted sample rays. Here, the quantity will be the solar
radiation pressure force due to radiance incident on the
spacecraft. Two key assumptions will greatly simplify the
resulting description. The first assumption is that ray sam-
ples are taken uniformly from a plane wave, discretized
into smaller square areas, of collimated radiation. The side
length of a discretized unit area is referred to as the ray’s
resolution (e.g. | mm x 1 mm unit area, is a ray resolution
of 1 mm). The second assumption is that the mechanism
controlling ray continuation is a predetermined maximum
number of ray-surface interactions rather than a proba-
bilistic measure such as Russian Roulette (Veach, 1997).

This path tracing algorithm produces an unbiased esti-
mate of the integral of force over the spacecraft mesh sur-
face. In the case of radiation pressure the sample weight o;
is the radiation throughput of each sample ray. The unbi-
ased estimate is constructed by generating a set of weighted
sample rays

(OC,-,Vi), (9)

where r; is a ray and o; the corresponding weight/through-
put. The goal is to produce samples that give an unbiased
representation of the equilibrium force F over the space-
craft that holds for any importance function W,. This esti-
mator is given in Eq. 10 where N is the number of rays.
Again the first assumption dictates that all samples are
given equal importance, therefore W, is trivially set as 1.

E

%Z%We(yi)‘| = (We, F), (10)

n=i

To begin the particle tracing process, an initial ray is
defined as ryo = (xo, ®y) where X, is an origin vertex and
w, a direction. Each sample ray has a corresponding weight
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o and each ray has an initial state of («, ¥y). For radiation
transport the initial weighting is the incident radiance
throughput
L
)
Po(ro)
where p,(ro) is the probability density from which ry is sam-

pled. Here, the first assumption, of uniformly distributed
rays, simplifies the throughput to simply

o :L(V()). (12)

(11)

Given the current state of a ray (o, r;), if i < k, with k being
the maximum number of ray-surface interactions, the ray is
continued. If an intersection occurs, X;, is the intersection
point of the ray r; = (x;, ®;). A random scattering direction
;11 is chosen from the BRDF, f.(xi1, w1 — —o;),
according to a probability density function approximating
the BRDF p,_, (w;1). Employing importance sampling, the
next ray throughput (weight) is computed as

Sr(Xir1, 01 = — ;)| @1 - A(Xis1)| (13)
pi+l(wi+1)

Oiy1 = &

From the recursive relationship in (13), the ray continua-
tion step is repeated until the maximum number of ray-
surface interactions is reached and results in a set of sample
rays with weights given as

i—1

o = L<X07 (‘00)

J
y (X1, 041 — —))|@;4, "A'(Xj+1)|. (14)
Pj+1(wj+1)

Il
=}

The process computes a set of sample rays ry, ...r;, each
with weight o;.

4. Modeling steps
In the following sub-sections the key modeling steps

are introduced in the order shown in Fig. 2. The grey col-
ored CPU stages indicate operations which are computed

only once for an entire simulation, while the blue CPU
stages are computed at each simulation time step. The
gold colored stages are carried out on the GPU. The par-
allel GPU computing environment requires two primary
changes to the serial ray tracing algorithm. The first is
required because recursive function execution is not avail-
able in current GPU execution environments. The second
change is that rather than making the algorithm parallel
by pixel as is suggested by the serial implementation,
the algorithm should be parallel by ray. The Single
Instruction Multiple Device (SIMD) GPU execution envi-
ronment is most efficient when each compute unit on the
GPU is actively working. In the case that the algorithm is
parallel by pixels, rays from certain pixels will terminate
sooner than others. This leaves compute units inactive
resulting in poor utilization of the GPU’s computing
resources. Rather, an algorithm which is parallel by rays
cast may discard terminated ray paths at each iteration.
Continued ray paths are then repacked for a second iter-
ation ensuring marshaled compute units are maximally
active. Fig. 3, exemplifies these two algorithmic changes
and shows the notional state of two OpenCL GPU work
groups stepping through two ray bounces and three itera-
tions of computing ray-surface interactions. Depicted in
both Fig. 3(a) and (b) are two GPU work groups each
containing four compute units. In Fig. 3(a) the relation-
ship between data and a single compute unit is configured
as one ray’s data allocated to one compute unit, whereas
in Fig. 3(b) the relationship is one pixel’s data per com-
pute unit. In both configurations the two work groups
are initially fully occupied with either eight active rays
or eight pixels. Imagining that of the eight rays traced,
if four intersections are found, then four ray continua-
tions are computed in a second iteration. A GPU is most
efficient when the compute units within a work group are
maximally utilised. Mapping pixel data to compute units
produces inactive compute units and underutilized work
groups. Mapping rays to compute units and compacting
ray data after each iteration yields maximally utilized
work groups.

Prepare CAD Model .
* Intersection Testing
Generate 2-level BVH * GPU OpenCL execution
+ SRP Computation GPU execution
* CPU initialization execution
l Compute Ray Plane ]
Ray
* Terminated?
Ray Generation Yes
* y
Return Force and
BVH Traversal Torque

Fig. 2. Parallel ray tracing algorithm steps.
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Pl v v

(a) SIMD by ray (b) SIMD by pixel

Fig. 3. Increased GPU Work Group occupancy when tracing by ray
rather than by pixel.

4.1. Spacecraft mesh model definition

This presented approach uses a triangulated mesh
model to approximate the spacecraft shape with high
geometric accuracy. A triangulated mesh model provides
a commonly available and consistent model definition
input to the method and removes the need for code
which handles a multitude of other primitive types. The
model data format used in this work is the Wavefront
Object (OBJ),3 however, any of the many triangulated
mesh file formats are easily employed. The OBJ format
stores vertex positions and facet normal vectors in lists.
Vertices are defined as x, y, z and w where w is an
optional scaling component and defaults to 1.0. Primitive
normal vectors may be provided as x, y, z coordinates. If
normal vectors are not defined in the file the import code
will generate consistent facet normal vectors using the
counter clockwise ordered list of vertices defining the
facet.

The OBJ format is accompanied by one or more Mate-
rial Template Library (MTL) files. In the computer graph-
ics context, the MTL file defines common material
properties associated with model shading or rendering.
For this work a number of the MTL file variables have
their meaning overloaded. Two key examples of this are
the Kd and Ks parameters which indicate the RGB color
mixture of the diffuse and specular optical phenomena
for a material. Here, these variables are used as the diffuse
and specular reflection coefficients associated with Eq. (7).
Overloading these variables allows for rapid manipulation
of the spacecraft mesh model’s material properties. Finally,
model validation operations such as dimensions, being
‘water-tight’, and without non-manifold geometry are also
easily carried out via existing Python scripts in the Blender
3D animation tool®.

4.2. Ray plane generation

At each time update a dedicated OpenCL ray creation
kernel generates a new wave of ray vectors. The ray plane
is divided into unit areas determined by the resolution

3 http://paulbourke.net/dataformats/obj/.
4 https://www.blender.org

chosen by the user. For example, a 2 m x 1| m plane can
be divided into areas of 1 mm x 1 mm giving a plane of
2000 x 1000 squares, producing 2,000,000 rays. Ray inter-
section testing must occur in the same coordinate frame in
which the spacecraft vertices are defined. As a result, the
ray vectors are mapped from sun-frame S to the body-
frame B using the [BS] rotation matrix (Schaub and
Junkins, 2014).

4.3. Bounding volume hierarchy

A bounding volume hierarchy (BVH) reduces the ray
intersection search space and therefore the required num-
ber of ray intersection tests. The use of BVH testing has a
long heritage for ray tracing within the computer graphics
discipline. In the context of SRP, ray tracing BVH struc-
tures have appeared only recently in Li et al. (2018). In
the case of a naive BVH implementation, the BVH is a
static data structure computed once at the beginning of
an evaluation. Were a portion of the spacecraft mesh
model to undergo some transformation, then the BVH
structure would need to be rebuilt entirely. This is a com-
putationally costly process. The key difference presented
in this work is the application of a two-level BVH struc-
ture (Smits, 1999). As shown for the Aqua spacecraft in
Fig. 4, a mesh model is divided into a number of sub-
meshes each with their own bounding box. A BVH hier-
archy structure is generated for each sub-mesh of the
spacecraft model. These sub-BVH data structures are then
combined into a coarse top level BVH which contains all
the model’s sub-meshes as demonstrated in Fig. 5. Asso-
ciated with each sub-mesh is a homogeneous transforma-
tion matrix. If a sub-mesh is to be transformed then that
sub-mesh’s homogeneous transformation matrix is inver-
sely applied to each ray being tested for an intersection
on that sub-mesh’s volume. Mapping rays in this way is
a relatively computationally cheap operation carried out
on the GPU and therefore avoids the computational cost
of rebuilding the BVH.

An efficient method of traversing the BVH is a key
aspect of the development of real-time SRP ray tracing.
This implementation uses a depth-first search array
BVH traversal method as described by Smits (1999)
and demonstrated in Fig. 6. For the depth-first search
array, if bounding volume A is intersected, then the next
node to be tested is the next node sequentially in the
array, node B. If the bounding volume at node B is
not intersected, the next node is found by following
the precomputed skip pointer to the next sibling in
the array, which for node B is node C. The depth-first
search array avoids the function call overhead inherent
in a recursive search-tree traversal and takes advantage
of the fact that the next node in the search-tree can
be precomputed and stored with the left-most sibling
as a skip-pointer to the next node. An additional benefit
to the array type BVH traversal, particularly for large
meshes, is the greater memory coherency which yields
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Fig. 4. Illustration of spacecraft bounding volumes.
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Fig. 5. Two-level BVH allowing for articulation of each of the volumes at the second level.
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Fig. 6. A notional BVH illustrated on the left. On the right, the notional BVH shown as a recursive depth-first search-tree and depth-first search array

with precomputed node skip pointers.

more efficient contiguous memory accesses on the GPU
(Smits, 1999).

4.4. Bounding volume intersection

Bounding volume intersection uses the algorithm origi-
nally presented by Kay and Kajiya (Kay and Kajiya,
1986). The algorithm models the bounding box as three sets
of parallel planes. The algorithm employs each set of par-
allel planes as clipping planes. As demonstrated in Fig. 7,
once the ray is clipped by each set of planes, any remaining
portion of ray inside the bounding volume indicates an
intersection. The algorithm is particularly suited to imple-
mentation in the GPU environment because it does not
require code branching (the execution of divergent code
paths based on conditional code statements). This parallel
plane algorithm employs the non-branching min() and
max () functions and results in an intersection test with
no code branching or division operations.

, 7 t_min /

Fig. 7. Example result of the parallel plane bounding box intersection
algorithm. For the top left ray intersection, the algorithm returns t_max as
greater than or equal to t min. For the bottom right ray miss, the
algorithm returns t_max as less than t_min.
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4.5. Triangle facet intersection

The spacecraft mesh model is comprised of many thou-
sands of triangular facets. To compute a ray-triangle inter-
section, the Moéller-Trumbore algorithm is used. The basis
of the algorithm is the knowledge that the point of intersec-
tion of a line through a triangle in barycentric coordinates
(u, v) must lie within coordinate frame’s bounds which are
easily testable as boolean values. The bounds defined by
the barycentric coordinate system require u = 0,v = 0
and u +v < 1 (Moller and Trumbore, 1997). It is assumed
that the spacecraft mesh model does not contain any
degenerate triangles. Mesh editing tools such as Blender
are used during a model preprocessing step to find and
resolve degenerate geometry (non-manifold geometry,
degenerate triangles, non-triangle primitives). As a result,
this algorithm is a fast and memory-efficient ray-triangle
intersection algorithm making it particularly suited for
use in the memory constrained GPU computation
environment.

4.6. Evaluating ray-surface interaction

Monte Carlo importance sampling is used to evaluate
the integral in Eq. (3). In the context of graphics rendering,
Monte Carlo ray tracing casts many rays from a single
pixel to estimate the radiance received at that pixel. The
number of rays cast for a single pixel is given by the quan-
tity N in Eq. (10). With a sufficiently large value for N a
good estimate of the scattering equation can be attained
and in turn its effect on the resultant SRP force direction
and magnitude. However, this typically requires casting
many rays per pixel in multiple ray waves. Each ray wave
incurs the communication and data overhead of launching
the various OpenCL ray generation and tracing kernels.
This communication overhead is a significant source of
latency in general purpose GPU (GPGPU) programming.
To overcome this latency and thus maintain faster than
real-time evaluations, it is assumed that features of the
spacecraft mesh model surface area are much larger (10’s
of cm?) than the ray cross sectional area (mm?) and that
each feature on the spacecraft mesh model possess a com-
mon BRDF. As a result, rather than casting N = 100
waves of rays at a particular ray resolution e.g. 1 cm?, a sin-
gle densely packed wave of rays at ray resolution 1 mm? is
cast. This densely packed wave of 1 mm? rays is equal to
the 100 waves of 1 cm? rays.

At each ray-surface interaction the ray throughput o, its
directional force F; and reflected direction w,, must be
computed. Due to the importance sampling approach,
the throughput of the ray continuation is a function of
the BRDF and probability density function from which
the outgoing ray direction w, is sampled. This importance
sampling is accommodated in Eq. (14).

Computing w;;; and p;,(w;1) for a specular reflection
is the reflected direction computed by Eq. (8) and

Pji1(®;1) = 1. The reflected ray direction for a diffuse
interaction is computed by uniformly sampling the hemi-
sphere above the intersection point. The components of
w;. for a diffuse ray are given by Eq. (15) where ¢, and
€; are random samples chosen from a uniform distribution
(Pharr and Humphreys, 2017).

x =cos(2ne)y /1 — & (15a)
y=sin(2ne) /1 — & (15b)
z=¢ (15¢)

The probability of selecting this direction is given by Eq.
(16), where 6, corresponds to the angle marked in Fig. 1.

cos(0,
Pi(0o,,) = (©,)

(16)

TC

4.7. Force and torque evaluation

Where an intersection is found, the force on the space-
craft due to the incident throughput of the ray is evaluated
in the spacecraft body frame as

Sr(Xip1, 01 — — ;)| 01 - 1(Xi11)| (17)
pi+l(wi+l)

The flux of all ray-surface interactions of a ray originating
from a pixel is given as

Fi = o; + o

K
F, =) AF, (18)
i=1

where K is the maximum number of permitted ray-surface
interactions and A is the cross sectional area of the ray.

The total force is computed by summing the flux
components for each wave plane unit area (pixel) and
finally multiplying the flux by the solar irradiance and
scaling by the spacecraft distance to the sun as shown in
Eq. (19).

DA 2 N
F=22Y5"F, (19)
k=1

cr?

Here N denotes the total number of pixels, ® is the radia-
tion flux (solar radiation flux at 1 AU for SRP), AU is one
astronomical unit, ¢ the speed of light and r the sun-
spacecraft distance.

Following the force computation, the torque L; contri-
bution of a single intersection is given as

L,‘ = X4 X Fi' (20)

5. Model validation

Model validation is performed by computing the per-
centage error of the force vector for a surface evaluated
with the ray tracing approach relative to a surface evalu-
ated with the analytic faceted approach. The magnitude
percentage relative error is computed as
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|Fray - Ffacet| 7 (21)
|Ffacet‘
and similarly for each force vector component. Addition-
ally, to demonstrate the ray tracing method’s ability to cap-
ture the diffusely reflected rays, the relative error is
computed for a completely specular surface, completely
diffuse surface and a mixed specular and diffuse surface.
For the completely specular and completely diffuse surface
the cube mesh shown in Fig. § is evaluated at the sun head-
ing sg = (1.0,0.0,0.0). To demonstrate the dependence of
force direction and magnitude on ray resolution, the mixed
case is evaluated at sz = (0.7071,0.7071,0.0). The space-
craft model is a simple cube of side length one meter shown
in Fig. 8. Material characteristics are controlled by the
coefficients for absorption p,, diffuse p; and specular p
surface interactions as shown in Table 1. The error in the
¥ component is consistently 2.6x 107 %. This small rela-
tive error is attributed to single-precision floating point
errors in the representation of the model’s facet normal
vectors. These small errors manifest the same reflection
geometry for each evaluation at different ray resolutions
and therefore a small consistent force direction error. The
percentage force error yp and Zp directions are of order

107" and less.

For a Lambertian diffuse cube mesh evaluation the error
of ray traced force components relative to the faceted force
norm are shown in Fig. 9. In the following discussion an
error percentage of 1% is employed as a means to compare
error percentage across the specular, diffuse and mixed
material evaluations. It is evident that as the ray resolution
decreases the relative error to the faceted model also
decreases to less than half a percent. As the ray resolution
decreases, the number of rays being cast to approximate
the integral of the diffuse BRDF increases. For ray resolu-
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Fig. 8. Test cube spacecraft model. Black and cyan vectors indicate body-
frame sun headings evaluated. Red, green and blue vectors denote first,
second and third body-frame axes respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
SRP force for faceted evaluations.

Force [N] x 1073

—2.783188, 0, 0
—3.267220, 0, 0
—2.157385, —2.157385, 0

Method (pa7 Pd;> p:)
Diffuse (0.2, 0.8, 0.0)

Specular (0.2, 0.0, 0.8)
Mix (0.2, 0.4, 0.4)

tions less than approximately 5 mm the error remains
below one percent. The increased number of rays produces
an improved estimate to the integral. This simple test
demonstrates that this ray tracing method is accurately
capturing the diffuse ray reflections and their impact on
the resultant force.

The error of the ray traced force components relative to
the faceted force norm for a mixed (diffuse and specular)
material evaluation are shown in Fig. 10. The error relative
to the faceted evaluation decreases with increased ray den-
sity and remains below one percent for ray resolutions
approximately less than 3 mm. It is evident that for the
mixed material case a smaller ray size is required to achieve
a less than one percent error. For the mixed material the
ray resolution required is 3 mm, whereas in the solely dif-
fuse case a ray resolution of 5 mm is sufficient. This is
due to the number of rays being probabilistically selected
as either diffuse or specular reflection. For example, given
a 1 mm ray size, 100 rays will intersect an area of 1 cm?.
If the contributions of diffuse and specular phenomena
are equal then it is likely that 50 rays will reflect as specular
and 50 as diffuse. This reduces by half the number of diffuse
rays approximating the diffuse scattering function. A smal-
ler ray size therefore increases the number of rays intersect-
ing the 1 cm? area and provides an improved estimate of
the scattering integral of Eq. (3).

6. Multiple ray reflections

To demonstrate that multiple reflections are being
effectively captured, the model and sun-spacecraft
heading, shown in Fig. 11 is evaluated. A manual
computation of the faceted SRP approach is carried out
to compute the force direction for the two bounces which
will occur for the incoming sun-spacecraft direction. The
model material is completely specular with p, = 0.8,
pg=0.0 and p, =0.2. The resulting faceted force is
Frocer = (0.0, -2.977676,—-2.977676) x 107> [N]. Comput-
ing the ray traced evaluation with multiple bounces yields
the percent error in force relative to the faceted method
of the order 107 %.

To investigate the importance of resolving multiple ray
continuations an evaluation of a high-fidelity OSIRIS-
REx spacecraft model is carried out for a uniform distribu-
tion of spacecraft sun-headings #§ in the 4n str attitude
space. The ray resolution is set at 2.5 mm. The spacecraft
mesh model is shown in Fig. 12 and contains ~14,500 ver-
tices, which define ~26,000 triangular facets. To convey an
intuitive sense for the magnitude of the percentage differ-
ence, the percentage difference is computed with respect
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Fig. 9. Error of the ray traced force components relative to the faceted force norm for a diffuse material evaluation.
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Fig. 10. Error of the ray traced force components relative to the faceted force norm for a mixed (diffuse and specular) material evaluation.
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Fig. 11. Right angled test model. The dotted blue vector indicates body-
frame sun heading evaluated. Red, green and blue vectors denote first,
second and third body-frame axes respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

to a baseline value as shown in Eq. (22). The baseline value
is computed using the force or torque computed from a sin-
gle ray bounce. In both plots the percentage difference is
computed according to Eq. (23), where i indicates the num-
ber of bounces used to compute the force F.

1 N

Fbase :N;‘FKJ (22)
Fi.|| — |F;

Fij _Eal=1EL 69 (23)

base

The force magnitude percentage difference between the first
and second ray bounce is shown in Fig. 13(a), and the dif-
ference between second and third shown in Fig. 13(b). It is
evident that the majority of the force difference from scat-
tered radiation is captured in tracing rays beyond the first
intersection. Fig. 13(a) demonstrates that if one is con-
cerned only with a sun point attitude, which is equivalent
to latitude and longitude of approximately (0°,0°), then
the resultant error for computing only the first surface
interaction is a small over prediction of approximately
2%. However, for most other attitudes computing only
the first intersection produces an under prediction of the
force of at least 3% up to almost 8%. The torque magnitude
difference between the first and second bounce is shown in
Fig. 14(a), and the difference between second and third
shown in Fig. 14(b). The same relative difference measure
as used in Eq. (23) is used here, yet for torque values rather
than force. Fig. 14(a) shows that computing torque for
only one bounce results in torque magnitude under predic-
tion of approximately 10% for almost all sun-headings. As
with the force magnitude results computing at least two
bounces results in a significant reduction in torque magni-
tude error.

In the interest of paper length, further validation efforts
using flight data are described in the recent publication by
Geeraert et al. (2019).

7. Computational performance

To recapitulate the metric of faster than real-time com-
putation; for a spacecraft dynamic simulation with an inte-
gration rate of 10 Hz the algorithm must return a result in
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(a) Front view
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(b) Side view

Fig. 12. OSIRIS-REx model.
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Fig. 13. Difference in force magnitude for resolving multiple bounces on high-fidelity OSIRIS-REx.
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Fig. 14. Difference in torque magnitude for resolving multiple bounces on high-fidelity OSIRIS-REx.

less than 0.1 s to be considered suitable for faster than real-
time application. This integration rate is common for
spacecraft simulations containing both attitude and orbital
motions as the attitude control system requires sub-second
control and sensor timings. The computation time, for the
same OSIRIS-REx model, is computed for a range of ray
resolutions and number of bounces. As shown in Fig. 15,
for the modest laptop GPU hardware employed (Radeon
Pro 560X), real-time computation speeds can be achieved
for ray resolutions of 6 mm or greater while resolving up
to ten bounces. Resolving each additional bounce beyond
the first is achieved in approximately constant time
increase.

The number of rays that a GPU can accommodate is
also dependent on the GPU’s maximum memory capacity.
Given this hardware limitation the significantly slower exe-
cution time of the 2 mm case is a result of the algorithm no
longer processing all rays in one pass. Rather, the C++

code which supports the interface between the spacecraft
dynamics simulation and OpenCL on the GPU, partitions
the ray plane into tiles of size sufficient to optimally fill the
GPU. Each tile is submitted to the GPU for evaluation and
recombined with all other tiles to provide the final ray
traced force evaluation. While this tiling allows for higher
resolution computation, the data communication latency
incurred by submitting multiple tiled ray waves to the
GPU, significantly slows the time to solution on the less
capable laptop GPU used here. When paired with the force
and torque resolutions shown in Figs. 13 and 14 respec-
tively, this result demonstrates that the ray resolution and
number of bounces are tunable parameters to this method.
These two parameters can be adjusted based on the task to
which the modeling method is being applied. One may
trade resolution to further increase computational speed.
The computational cost of model evaluation is directly
driven by the number of rays traced and the number of
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Fig. 15. High-fidelity OSIRIS-REx computation time for a range of resolutions and number of bounces from one to nine.

bounces resolved. An evaluation of the OSIRIS-REx
spacecraft model is carried out for a range of ray resolu-
tions and bounces. Fig. 16 demonstrates the attrition rate
of rays for each bounce at a given resolution. This evalua-
tion shows that at ten bounces at least 99.7% of all rays
have terminated.

An analysis is performed to characterize the execution
time of the ray tracing approach on a variety of GPU
hardware. The computation times for ray resolutions
from 1.5 mm to 10 mm, with a maximum of three ray
continuations recorded for an evaluation of the OSIRIS-
REx model. The three modest consumer grade GPUs
employed are an AMD Radeon Pro 560 4096 Mb, an
integrated Intel HD Graphics 630 1536 Mb and a NVI-

3.16 x 10°
1.00 x 108
3.16 x 10°
1.00 x 10°
3.16 x 10*
1.00 x 104
3.16 x 103
1.00 x 103

Ray Count

Bounces

DIA GTX 1070 8 Gb. The computation times for each
GPU are shown in Fig. 17. The most computationally
capable GPU (NVIDIA) exhibits computation times
below 10 ms for ray resolutions of 5 mm or greater. At
the lowest resolution of 1.6 mm the computation time is
30 ms. It is interesting to note that a comparison of both
the integrated Intel GPU and discrete AMD GPU trace
the same performance curve for ray resolutions of less
than 6 mm. The integrated GPU benefits from low
latency shared memory access with the CPU. However,
the discrete AMD GPU has greater compute units than
the integrated GPU. Therefore it is clear that the reduced
communication overhead of the integrated GPU is
matched by the increased computational power of the

2
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Fig. 16. Number of active rays at each successive bounce for various ray resolutions.
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Fig. 17. Execution times for ray resolutions from 0.01 mm to 0.0016 mm, for a maximum of three bounces.
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discrete AMD GPU. This demonstrates that the GPU ray
tracing approach is appropriately computationally bound
rather than communication bound.

8. Conclusions

This paper demonstrates how SRP forces and torques
can be resolved for complex spacecraft structures accu-
rately at faster than real-time computation speeds using
an OpenCL GPU ray tracing methodology. Previous ana-
lytic SRP modeling techniques resolved the dynamics due
to diffuse ray-surface interactions but not diffuse reflection.
This paper advances analytic SRP modeling approaches by
directly generating ray continuation based on the space-
craft surface material BRDFs. Capturing the effect of both
diffuse and specularly reflected rays is validated by compar-
ison to the same evaluation computed with the faceted SRP
evaluation technique. Additionally, it is shown that with
increasing ray density the resultant force vector converges
towards a ‘truth’ evaluation for ideal specular and Lamber-
tian BRDFs. Multiple ray continuation is validated for
both a simple mesh model and a complex spacecraft mesh
model. The importance of capturing spacecraft radiation
self-reflection is revalidated where a spacecraft mesh model
evaluation shows that three or four ray continuations is
frequently sufficient to reduce the relative force error to less
than one percent. Further work will implement complex
spacecraft surface material BRDF representations and
augment the implementation to accommodate thermal
radiation effects.
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