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a b s t r a c t

In order to reduce the debris population in LEO, remediation is necessary. An active debris
removal method is explored that utilizes fuel reserves on a recently launched upper stage
to rendezvous with, and tether to, debris. The system's tethered dynamics are explored
using a discretized tether model attached to six degree of freedom end bodies. The thrust
output is shaped to remove the spectral energy at the natural frequencies of the tether,
significantly reducing the post-burn relative motion between the vehicles. The sensitivity
of the input shaping performance due to imperfect knowledge of the debris mass
demonstrates that a double notch spanning multiple frequencies around the first mode
is necessary to be robust to unknown debris mass. On-orbit simulations show that input
shaping helps the tethered system achieve smooth oscillations about a gravity gradient
alignment, reducing collision likelihood.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Space debris is becoming a major concern for orbital
assets. While there are about 22,000 objects currently
tracked, there are many thousands of dangerous debris
objects in orbit [1]. In recent years, the creation of debris is
on the rise, including two major catastrophic events: the
Fengyun 1C anti-satellite test (ASAT) [2] that created over
3300 objects [3] and the Cosmos–Iridium collision [4] that
created over 1700 objects [5].

Because of these events and the continued heavy use of
low Earth orbit (LEO), the debris cascade effect predicted by
Kessler and Cour-Palais [6] is occurring [7]. Mitigation
methods have been shown to be important, but offer only
partial solutions to reduce the future debris environment.
Active Debris Removal (ADR) of five or more large objects
d by Elsevier Ltd. All rights

per),
per year is shown to be an effective way to reduce the
debris population [8]. Some proposed methods [9–14]
utilize harpoons, mechanical grapples, or nets to grab the
debris object. While the study of the debris capture system
is beyond the scope of this paper, all of these methods are
likely to use tethers to connect the debris to the ADR craft
to avoid close proximity operations between the tug and a
tumbling object. While tethers have been studied for years
[15] and actually flown on several missions [16], their use in
a high force, high thrust environment has been unexplored.

To deorbit debris, the tethers must operate in short-
term high stress environments during the large thrust
maneuvers (� 2000 N). This paper models the tether
dynamics using a series of spring–mass components to
discretize the tether into multiple, small masses able to
capture higher order modes of the tether (similar models
used in [17,18]). The ends of the tether have two, six
degree of freedom large rigid bodies: one is the ADR craft
and the other is the debris. The ADR craft provides thrust
that, transferred through the tether, changes the periapsis
of the debris object and reduces both objects' orbital
reserved.
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Fig. 1. Tethered tug–debris concept.
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lifetimes. Ideally, the ADR craft is a rocket body with remain-
ing fuel reserves that has recently put its payload into orbit.
The remaining fuel is used to rendezvous with, and deorbit,
the debris. The concept is shown in Fig. 1. Depending upon
initial starting altitude and amount of fuel available to the
ADR craft, the debris–tug system could be deorbited within a
single orbit revolution. The tethered tug–debris architecture
therefore provides a cost-effective ADR system because it
deorbits two pieces of potential debris each mission.

The challenge when using a tethered tug is avoiding post-
burn collision between the debris and tug. The residual post-
thrust strain in the tether pulls the two bodies toward each
other. Reducing strain and the relative motion between the
bodies is necessary to remove collision potential. This paper
uses two environments for analysis.
�
 Deep space: the gravitational field is zero, and the six
degree-of-freedom rigid body dynamics problem is
reduced to a one-dimensional scenario to analyze the
challenges of implementing input-shaped thrusting on
a multi-mode, tethered-tug debris system
�
 On-orbit: the LEO environment is used as well as the
full six degree-of-freedom dynamics
Fig. 2. Tether model: two rigid bodies, two tether point mass.
In the deep space analysis, the mass of the debris
object is assumed to not be well known. The effect of this
uncertainty on the thrust control and post-burn relative
velocity is explored. A deep space environment is a
reasonable first order assumption for approximating the
dynamics of the tethered system during thrusting because
the thrust maneuver only lasts a few minutes. The orbital
motion and the deep space motion will not vary signifi-
cantly during thrusting as low Earth orbits have periods
around 2 h.

The deep space environment allows for direct analysis of
the tethered-tug system's dynamics. However, to operate in
LEO on-orbit simulations are required. Of interest is investi-
gating how the post-burn relative velocities impact the
motion over a few orbits. The tether is also assumed to be
taut in this study because a slack tether results in an
undesirable whipping behavior, which will not be explored
in this paper. Higher order tether modes, whipping motion
and end body rotation are all left to future study. Such studies
warrant their own investigation because with the rotational
motion of the end bodies, the tether stiffness becomes a
function of the tether tension. This greatly complicates the use
of input shaping techniques. Rather, the presented analysis
uses a lumped mass model to set up the input-shaped
maneuver, while the simulations use a higher fidelity model
which accounts for the full relative translational and rotational
motion.
2. Tether model

The tether is modeled as multiple, discrete point
masses. Based upon the tether material and volume the
overall mass can be found. This is split into one or more,
equally spaced mass particles, commonly referred to as a
lumped-mass model [17,18]. Each point mass is connected
to its nearest neighbors through a spring. This is shown in
Fig. 2. This model allows for flexing of the tether as well as
the general motion of the tether due to thrusting forces.

For this paper the tug, debris, tether, and simulation
parameters are given in Tables 1 and 2. In Table 1 the mass
and inertia values for the Tug are similar to the Soyuz
upper stage rocket and the debris values are close to the
Cosmos-3 M 2nd stage. Kevlar is used as the tether
material because it is commonly used in tether analysis
[19] and the diameter of 3 mm is chosen to withstand the
stresses experienced. In Table 2 a � 2000 N thrust is
chosen to be representative for the Soyuz upper stage
thrusters while achieving the worst case, maximum tether
tension, as described in Ref. [11]. (Note that the ‘step-input’
thrust linearly ramps on and off, to and from the max
thrust over a period of 1 s.) The Δv capability is based upon
the fuel reserves that may be available in the Soyuz after
delivering a payload to orbit. Finally, the starting altitude
of 800 km is based upon the known high density of
Cosmos rocket bodies at that altitude and the fact that
they are considered high priority targets for ADR [20].

The values in Tables 1 and 2 are used as a case study for
this system, motivated by the original Omsk concept of
tugging an upper stage rocket body. Ref. [11] discusses that



Table 1
Vehicle parameters.

Tug mass 2500 kg
Tug inertia diag[10,208, 10,208, 2813] kg m2

Tug dimensions r¼1.5 m, h¼6.5 m
Debris mass 1500 kg
Debris inertia diag[1285, 6829, 6812] kg m2

Debris dimensions r¼1.2 m, h¼7 m
Tether length 1000 m, equal space between masses
Tether material Kevlar
Young's modulus 1470 GPa
Tether dimensions r¼1.5 mm, h¼1000 km
Tether cross sectional area 7.0686e�6 m2

Tether mass 11.822 kga

a http://www.matweb.com/index.aspx.

Table 2
Simulation parameters.

Thrust 2009 N
Δv 100 m/s
Starting altitude 800 km (circular)
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Fig. 3. Relative motion and tether tension response between tug and
debris for a step input 2009 N thrust, with two discrete tether masses.
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the uncontrolled system's behavior could vary noticeably
due to tether length and thrust level. Ongoing research is
investigating this complex dynamic response to determine
what tether length and material properties are preferable
when tugging larger upper stage rocket bodies. For the
scope of this paper, a single test case is discussed which
applies to the original Soyuz-tugging concept. In particular,
at this stage damping in the tether material is not
considered to illustrate how the coupled gravitational
and tension forces alone can cause desirable post-burn
motions. Future work will explore the tethered-tug sys-
tem's design space across different thrust levels, masses
and tether properties.

The system is made of two rigid end-masses, n�2
discrete tether masses, and a spring-like tether, making an
n body equation of motion, shown in Eq. (1).
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The spring constant KS can be expressed as shown in
Eq. (2).

KS ¼
EA
L0i

ð2Þ

Here L0i is the initial, unstretched length of the tether
between each mass, E is the Young's modulus of elasticity
for the tether, and A is the cross sectional area. In this
study, all L0i

are the same. Because Eq. (1) models a tether
as a spring, it is only accurate while the tether is in tension.
Eq. (3) demonstrates that the tether spring force for each
element is reduced to zero when there is no tension,
creating an overall nonlinearity in the system.

Ti ¼
0 for LirL0i

1
2
KSΔLi for Li4L0i

8<
: ð3Þ

Because the tether only pulls on the masses when in
tension, and does not provide a ‘pushing’ force when in
compression, collisions between the large end-masses
become possible. This is undesired as collisions could
cause more orbital debris, something that is unacceptable
from an ADR system. It therefore becomes important to
study the complex tether dynamics between high-force
and slack tether motion and to control those dynamics.
The possibility of collision is illustrated in Fig. 3 that
demonstrates the deep space motion simulation results
in collisions. The simulation used to produce Fig. 3 uses
two discrete tether masses. A general bang–bang thrust
profile leaves tension in the tether which pulls the masses
together, causing a collision.

When thrusting, the system oscillates between zero
tether tension and high tension. This oscillation occurs at
the natural frequency(ies) of the system. Therefore, one
very effective way to reduce this motion, and collisions, is
to remove these natural frequencies.
3. Thruster input-shaping

Input shaping is a common way to remove an unde-
sired frequency response in a linear system [21,22]. For
this specific application, a notch filter is used to remove
the natural frequency of the tethered system. A brief
summary of a notch filter is given for ease of reference.

http://celestrak.com/
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In the frequency domain, a first order notch filter is
defined as

g sð Þ ¼ s2þω2
c

s2þBWsþω2
c

ð4Þ

where s is the frequency, ωc is the cut-off or notch
frequency, and BW is the bandwidth of the notch filter.

It is also helpful to be able to notch two frequencies at
once. This is simply created by multiplying two notch
filters together, in the frequency domain, that have differ-
ent cut-off frequencies.

g sð Þ ¼ ðs2þω2
c1Þðs2þω2

c2Þ
ðs2þBW1sþω2

c1Þðs2þBW2sþω2
c2Þ

ð5Þ

ωc1 is the first cut-off or notch frequency, ωc2 is the second
cut-off or notch frequency, and BW1 and BW2 are the
bandwidths for each notch. Eqs. (4) and (5) can be
converted into the discrete domain and the time domain
in many ways. This process is not discussed here.

In order to properly reduce motion between the tug
and debris, the system's natural frequencies (Eigenvalues)
must be known. Because the tether system is modeled as a
linear spring when in tension, eigenvalue analysis lends
itself perfectly to this model.

Unfortunately, it becomes very difficult to analytically
solve for the eigenvalues and frequencies of the tether as
more nodes are added. The Abel–Ruffini theorem demon-
strates that there are no general algebraic solutions to
polynomials of degree five and higher [23,24]. This means
that it is not likely that the full set of eigenvalues for tether
discretizations beyond three or four nodes is analytically
achievable. However, this is not a major concern because
the majority of the energy and dynamics of the system
come from the first few modes, or eigenvalues. Therefore,
the primary modes of interest can be analytically com-
puted for any system. Further, these modes will be the
same, independent of the number of discretized nodes
placed on the tether.

As an example, the eigen values of two rigid bodies
connected by a massless tether are:

ωn ¼
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The eigen-frequencies ωn of a three body (single tether
mass) system are
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Note that this analytic solution to the eigen frequencies
can be used to approximate the first modes of the massive
tether independent of the number of discretized masses
actually used. Therefore, the first mode of the system with
only one tether node is the same as the system with many
tether nodes, assuming the masses are unchanged.

The repeated 0 roots relate to the DC offset present in
the formulation of Eq. (1). Because Eq. (1) is formulated
from the positions of the bodies, the equations naturally
assume that zero tether force corresponds to separation
distances between the masses that add up to the full tether
length (i.e. L0). Therefore the bodies have a constant, DC
offset in their positions. The complex pair(s) in Eq. (7)
represent the purely oscillatory motion, as expected from a
spring–mass system. Eq. (7) has two sets of complex pairs
due to the fact that a three body (single tether node)
system has two modes: one from the full tether length and
one from the addition of the tether mass.

Again, it is interesting to note that the fundamental
frequency is the same between the two-body, three-body,
and four-body cases. This turns out to be (for two bodies:
m1 ¼ 2500 kg, m2 ¼ 1500 kg; for three bodies: m1 ¼
2500 kg, m2 ¼ 11:82 kg, and m3 ¼ 1500 kg, for four bodies:
m1 ¼ 2500 kg,m2aþm2b ¼ 5:91þ5:91¼ 11:82 kg, andm3 ¼
1500 kg) ωn1 ¼ 0:19 Hz. The three node case also has its
second mode at ωn2 ¼ 3:43 Hz. Therefore, these can become
the notched frequencies used in the input-shaping approach.

4. Deep space numerical results

4.1. Towing in Deep Space

To demonstrate why input shaping (notching) is
required, consider Fig. 3 where no shaping method is used
during thrusting. Here the thruster cuts off at Δv¼
100 m=s while there still is tension in the tether. The
restoring spring force in the tether will pull all masses
together and eventually cause a collision, as seen beyond
1000 s in Fig. 3. It therefore becomes imperative to reduce
the remaining tether tension to stop post-thrust relative
motion between the masses. Jasper et al. [11] demonstrate
that the thrust magnitude could (based upon the tether
properties and rigid body end masses) be set to achieve
the desired Δv without leaving the tether in tension. This
method requires well known system properties and the
ability to very specifically set the thrust value.

As an alternate control method, the thrust profile could
include filtering so that the fundamental frequencies
of the tethered system are removed. Using a notch filter
(Eq. (4)), the first fundamental mode, shown in Fig. 4(a) at
ωn ¼ 0:19 Hz, is removed and the behavior becomes much
more desirable. Figs. 5 and 4(b) show the improvement in
the post-thrust dynamics. The relative motion between
the tug and the first discrete tether mass is significantly



Fig. 4. Tug vehicle frequency response to 2009 N thrust, with two discrete tether masses. Deep space. (a) Step-input thrust profile. (b) Notch at
ωc ¼ 0:19 Hz.
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Fig. 5. Relative motion and tether tension response between tug and
debris for a single notch with the cut off frequency at the first mode.
2009 N thrust, with two discrete tether masses. Deep space.
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reduced, shown in Fig. 5 and there is less than a meter of
relative drift between the two. This result is very similar
for the relative motion between the other tether masses
and the debris. Fig. 4(b) demonstrates the dramatic differ-
ence in the response profile. The fundamental mode,
seen as the first peak in Fig. 4(a), is heavily attenuated in
Fig. 4(b).

Fig. 6 compares the tether mass frequency responses.
Note that this response is very similar between both tether
masses modeled, therefore only one set of plots is shown.
The tether masses are shown here to generally move and
oscillate at higher frequencies than the larger rigid bodies.
The notching has less of an effect on their behavior
however there are subtle reductions in the profile below
1 Hz in Fig. 6(b). Fig. 7 compares the debris behavior
between bang-bang and notched thrust profiles. In Fig. 7
(b) it is also obvious that the first mode at 0.19 Hz has been
significantly attenuated, as desired.

4.2. Eigen-frequency sensitivity

The notching shown in Fig. 4(b) presents an ideal case
where all system parameters are well known. However, if
the eigenvalues in Eq. (7) are not well known, the natural
frequencies can change from what is expected, lowering
the effectiveness of the notch filter. The debris mass (m3 in
Eq. (7)) will be the least well known value in the computa-
tions. The linear sensitivity of the natural frequency in
Eq. (7) can be found by taking the partial derivative of the
natural frequency with respect to m3 and evaluating at the
expected values (given in Table 1, where the expected
debris mass m3e ¼ 1500 kg). Eq. (8) shows the linear
change in the natural frequency given the true debris
mass, m3t.

Δωn m3tð Þ ¼ ∂ωn

∂m3

����
KS ;m1 ;m2 ;m3e

m3t�m3eð Þ ð8Þ

Evaluating Eq. (8) from m3t ¼ 600–2400 kg, Fig. 8 shows
that the mass of the debris can vary by 900 kg (60%) and it
will only change the first mode by 0.03 Hz. Because the
first mode contains the most energy for the system this
mode will be focused on. Given the tether properties,
masses of the tug and debris, the first mode should occur
near 0.19 Hz. It turns out that a variance of 0.03 Hz in the
first mode is enough to cause the notch filter to have
significant, but relatively small, performance problems.
One robust method to avoid sensitivity issues is to add a
second notch in the region of the first mode.

To design a double notch around the first mode, Fig. 8 is
used to determine the potential range over which the first
mode can vary. When two notches are placed near each
other, they effectively attenuate a range of frequencies.
This behavior can be seen in Fig. 9 where frequencies
0.14–0.22 Hz are very heavily notched. While there is
reduced attenuation between these two frequencies it is
still very large, peaking near �58 dB (half way between
the notched range, at 0.18 Hz). This is sufficient to reduce
the first mode's energy.

Using this type of double notch while including errors
in debris mass knowledge, significant reductions in rela-
tive motion are still produced (Fig. 10). Fig. 10(a) shows
that the single notch placed at the expected, but incorrect,
natural frequency experiences small but noticeable col-
lapse of the system. Conversely, Fig. 10(b) shows that the
double notch effectively reduces the motion between the
masses, even though the exact natural frequency is not
well known. It turns out that the relative motion of the
masses is reduced nearly as well as the perfect single
notch of Fig. 5. The performance difference between the
single notch and the double notch spanning a wide range
of frequencies can be seen in Fig. 11. The double notch
experiences more attenuation of the first mode, compared
to the improperly placed single notch. The double notch
frequency response does see less attenuation near 0.2 Hz,



Fig. 6. Tether mass frequency response to 2009 N thrust, with two discrete tether masses. Deep space. (a) Step-input thrust profile. (b) Notch at
ωc ¼ 0:19 Hz.

Fig. 7. Debris object frequency response to 2009 N thrust, with two discrete tether masses. Deep space. (a) Step-input thrust profile. (b) Notch at
ωc ¼ 0:19 Hz.

Fig. 8. Sensitivity of the tether-mass system's first fundamental mode
(ωn ¼ 0:19 Hz) to imperfect debris mass knowledge.
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in the same location as the ‘hump’ in Fig. 9, which is
expected.

While the debris mass will be the least well known, the
tether spring constant may have variability as well.
Because the natural frequencies are very dependent upon
this parameter, it is important to consider. Using a similar
linear sensitivity analysis to in Eq. (8), the system's natural
frequency response to variable material properties is

Δωn KStð Þ ¼ ∂ωn

∂KS

����
KSe ;m1 ;m2 ;m3

KSt�KSeð Þ ð9Þ

Evaluating Eq. (9) across a 20% change from the expected
spring constant (KSe � 4100 N=m, between each node),
Fig. 12 is obtained. Note that a 20% change in spring
constant is approximately equal to a Young's modulus
change of 34 GPa or a 0.7 mm change in the radius of
the tether, both fairly large numbers. However, these can
be considered worst case and they achieve similar varia-
bility in the natural frequency to a 500 kg change in debris
mass. When the input shaping capabilities are compared
between the single and double notch for spring constant
variability (Fig. 13), it can again be seen that the double
notch successfully reduces the relative motion between
the two end bodies (Fig. 13(b)) when compared to the
single notch (Fig. 13(a)).

Notching does cause phase lag in the thrust profiles and
the system responses. Therefore the thrust period of a step
input is shorter than a single or double notch. This
behavior is shown in Fig. 14. It takes the step input (no
shaping) about 201 s to achieve a Δv¼ 100 m=s while the
single notch takes 238 s and the double notch 283 s to
reach within about 1% of a 0 N thrust. This means that it
takes less than 5 min for any of these methods to perform
their burn, a time duration which is very short when
considering an orbital period of around 90 min in LEO.

This demonstrates that the double notch spanning the
possible range of the first mode can effectively reduce
collision potential between the masses with large uncer-
tainties in the debris mass and tether material properties.
This also demonstrates that the first mode is the most
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Fig. 11. Tug vehicle frequency response with two discrete tether masses. Expected ωn ¼ 0:17 Hz, actual ωn ¼ 0:19 Hz. (a) Single notch, ωc ¼ 0:17 Hz.
(b) Double notch spanning 0:14rωcr0:22 Hz.

Fig. 12. Sensitivity of the tether-mass system's first fundamental mode
(ωn ¼ 0:21 Hz) to variable spring constant.
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important because nearly all relative motion is stopped by
notching only the first mode, while leaving the other
modes unshaped. Tether models can become very complex
(using partial differential equations and finite element
solvers). It is significant to determine that the first mode
is the only mode that needs to be notched because it is the
most simple mode to model and analyze. This may help to
drastically reduce the analysis required for a tether–tug
system.

5. Effects of a slack tether in deep space

Having a slack tether can drastically change perfor-
mance of the system. All previous simulations presented in
this paper have assumed that both objects are initially
separated by the tether length of 1000 m. That is, the
tether is virtually taut when the thrust starts. Conversely,
Fig. 15 shows how a slack tether amplifies the dynamic
response of the system while removing all effects of input
shaping. A collision occurs near 400 s and the tether force
jumps to near 27,000 N, not 800 N seen in Fig. 10(b).

This is caused by the fact that the majority of the input
shaped thrust profile occurs during the time it takes to
remove the slack in the tether and pull it taut. The tether
does not see a gradual increase in force but a large step
increase all while the tug is increasing in velocity. This
causes the large ‘whipping’ effect seen in Fig. 15.

It is important to reduce the slack length in the tether.
Ways to counter this effect are left for future work but
several methods could be employed. One method would
be to allow the two end bodies to drift apart in orbit. Once
a small tension force in the tether started to build the
thruster could be activated. The overall effectiveness of any
tether tightening method needs to be analyzed for it
ability to avoid high tether stress and collisions.

The following section, concerning input shaping on-
orbit, assumes that the tether starts taut.

6. On-orbit numerical results

6.1. Thrust input shaping on-orbit

To show the effectiveness of this method when on-
orbit, a four mass (two tether mass) system is used with a
double notch spanning across the first mode as shown in
Fig. 9. While the system's actual natural frequency is
0.19 Hz, the double notch allows for uncertainties in debris
mass knowledge. The debris and tug craft are started in
an 800 km circular orbit and a burn is produced in the
anti-velocity direction to lower both object's orbits.
A Δv¼ 100 m=s lowers the periapsis to about 425 km.
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The double notch in Fig. 16(b) experiences separation
distances that are just as small as the step-input thrust of
Fig. 16(a) which is unexpected from the deep space
simulations. However, there are several new advantages
to input shaping that are not apparent in the deep space
simulations. The step input system tumbles but the
notched system quickly settles into a gravity gradient type
configuration where the masses have aligned along the
radial vector, and after one orbit, remain about the full
tether length apart from each other. The notched system's
oscillation about the radial vector (a nadir alignment) is
shown in Fig. 17 where the notched motion oscillates
about 901 from the in-track direction. Conversely, the step
input only experiences tumbling with a large range of
separation distances between the bodies. The fact that the
notched system achieves a gravity gradient orientation is
very encouraging and would help to keep these masses
separated for their orbital lifetime. It is also encouraging to
note that the tether tension forces are noticeably reduced
in Fig. 16(b) placing less stress on the entire system.

6.2. Orbital decay rates

The effectiveness of lowering the system's perigee is
shown in Table 3. On-orbit lifetime is modeled using drag
coefficients for cylinders [25] that range between 2.4 and
2.9 assuming the long axis of the cylinders is directly
into the ram-vector. The atmospheric temperatures are
assumed not to vary significantly. The computation of drag
coefficients of general shapes is complex and is still an
active area of research. For the purpose of this study,
simplified drag coefficients suffice as only approximate
decay lifetimes are being determined. The tug and debris
are assumed to be cylindrical bodies and the drag force is
computed for each object and then summed about the
center of mass. The tether is not included in this analysis
due to the difficulty of determining the drag coefficient of
such a large and thin structure. This means that the
lifetimes obtained should actually be less than those given
in Table 3. The ballistic coefficients under consideration
fall between 0.0459 and 0.0555.

If no ADR or mitigation system is used, a circular orbit
of about 700 km takes two to three decades to deorbit, a
800 km takes 50–70 years to deorbit while a 1000 km
orbit takes more than a century [1]. By reducing the
periapses to the 300–400 km range, the tethered-tug
system significantly reduces these time scales to less than
5 years, a major improvement. The elliptical 800 km by
425 km post-burn orbit used in this paper (Table 3, in
bold) deorbits in about 3–5 years, much shorter than the
natural decay rate or the 25 year requirement. If more
residual fuel is present, a direct reentry maneuver is also
feasible. However, as this table illustrates, using the small
Δv to lower the periapsis of the tethered system has a
significant impact on the debris' decay time.

7. Conclusions

A second stage rocket body with fuel reserves could be
used as an ADR system. With a tether as an energy transfer
mechanism and a thrust applied by the rocket, the
periapses of both objects can be significantly lowered.
This allows for drag to affect their orbits more, reducing
lifetimes. Step input (impulsive) thrust profiles were
shown to be challenging for a tethered ADR system due
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Table 3
Lifetime of tethered-tug system using Jacchia 1977 atmosphere model
[26].

Perigee Apogee Drag
coefficient

Circ. orbit at
apogee (years)

Post-maneuver
(years)

350 700 2.4 27.72 0.74
2.9 25.22 0.57

425 700 2.4 27.72 1.93
2.9 25.22 1.56

350 800 2.4 73.39 0.99
2.9 53.84 0.82

425 800 2.4 73.39 2.71
2.9 53.84 2.22

350 1000 2.4 4100 1.48
2.9 4100 1.19

425 1000 2.4 4100 4.39
2.9 4100 3.66
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to the chaotic motion, collision potential, and high tether
tensions induced. It was shown that the majority of the
relative motion that occurred between both craft is due to
the tether's first fundamental mode. Reducing energy
input into the system at this frequency, through thrust
input shaping, effectively reduced these problems. It was
also shown that the first mode of the tethered system is
the most important to reduce frequency input. This is very
encouraging because this mode is only affected by the
tether material properties and length, not the number of
discretized masses or any other variable property. This
means that the tether motion can be effectively modeled
and studied without incredibly high-fidelity tools.
Input shaping while on-orbit results in the masses
achieving a gravity gradient-like formation which will
allow for separation distances to be maintained between
bodies. This is very encouraging and future work may
consider a tether with damping and longer lengths of
tether to achieve more stable gravity gradient orientations.
It is therefore likely that this type of ADR system would be
practical to design and implement on-orbit.
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