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Abstract
Electrostatic actuation is the process of charging two spacecraft and using the result-
ing Coulomb interaction to exert touchless forces and torques between the two
spacecraft. For all electrostatic actuation concepts, fast and accurate models for
the electrostatic force and torque are needed. The Volume Multi-Sphere Method
(VMSM) seeks the optimal placement and radii of a small number of equipotential
spheres to accurately model the electrostatic force and torque on a conducting space
object. Prior work optimized the VMSM models by varying the radii and position of
the model spheres to match the force and torque produced by a finite element truth
model. This process is challenging due to finite element model errors and smoothness
considerations, as well as because the force solutions are dependent on the particular
probe geometry chosen. This paper investigates fitting of VMSM models to Surface-
MSM (SMSM) generated electrical field data, removing modeling dependence on
probe geometry while significantly increasing performance and speed. A proposed
electric field matching cost function is compared to a force and torque cost function.
The inclusion of a self-capacitance constraint is explored and 4 degree-of-freedom
VMSM models generated using electric field matching are investigated. The result-
ing E-field based VMSM development framework is illustrated on a box-shaped hub
with a single solar panel. Despite the complex non-symmetric spacecraft geometry,
elegantly simple 2-sphere VMSM solutions provide force and torque fits within a
few percent.
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Introduction

Electrostatic modeling of spacecraft and space debris is currently an active area of
research with applications in Space Situational Awareness (SSA), [1, 2] Lorentz
Augmented Orbits (LAO) [3] and touchless interaction between spacecraft [4–6]. To
simulate any of these dynamical systems, a faster-than-realtime method of computing
the electrostatic forces and torques is required to perform any numerical performance
and stability analysis. Spacecraft and debris in both Low Earth Orbit (LEO) and
Geosynchronous Earth Orbit (GEO) can become charged by interactions with ambi-
ent plasma to such an extent that they are perturbed by Earth’s electric and magnetic
fields [7, 8]. Although accelerations caused directly by Lorentz forces are small in
both LEO and GEO, electromagnetic influence on attitude can cause variation in
more prominent attitude-dependent perturbations–such as solar radiation pressure–
that lead to significant changes in orbital parameters in a matter of hours [1, 8].
Objects that are particularly affected by this phenomenon are those with high area-
to-mass ratios, HAMR objects, which constitute part of the debris population [1, 2].
Improvements in satellite propagation and orbit determination of such debris objects
requires electrostatic modeling of some form. Computational efficiency is desirable
in both trajectory propagation, and orbit determination.

In addition to natural orbit evolutions, when spacecraft or debris charges are con-
trolled artificially using ion or electron beams, both Lorentz and Coulomb forces can
be harnessed for useful purposes, such as LAO, active debris removal and touchless
de-tumbling of spacecraft [3, 9, 10]. LAO applications are varied, and include drag
compensation in elliptical orbits, inclination control, and rendezvous [3]. Lorentz
forces can be used to augment formation flying reconfiguration control laws to reduce
thruster �V requirements, and for limited propellentless propulsion [11–13].

While LAO exploit the Lorentz force experienced by spacecraft moving quickly
through a magnetic field, Coulomb forces between spacecraft and debris can also be
utilized. Electrostatic tugging is proposed as a means of active debris removal and
for applications in formation flying [9, 14, 15]. The Geosynchronous Large Debris
Reorbiter (GLiDeR) is one active debris removal concept that harnesses these elec-
trostatic effects. The GLiDeR remotely charges a defunct satellite or piece of space
debris with an electron beam, allowing it to interact with the object for the pur-
poses of changing the object’s orbit. Orbit raising of 250 km can be accomplished
in a little over two months using Coulomb interaction between GLiDeR and a tar-
get [6]. Electrostatic de-tumbling of space objects is currently being researched, and
shows promise as a method for reducing debris tumbling rates to within an acceptable
magnitude for grappling in servicing missions [10, 16–18].

Many of these applications motivate and require faster-than-realtime methods of
electrostatic force and torque modeling. Although finite element method (FEM) soft-
ware, such as ANSYS Maxwell 3D©, provides accurate results, calculations of the
force and torque between a target and command spacecraft at one relative position
and orientation requires time on the order of minutes. To simulate charged attitude
motion in a Geosynchronous orbit with even a coarse one second time step requires a
long numerical simulation time approaching a year. The duration of this calculation
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is unacceptable for control analysis purposes. The Multi-Sphere Method (MSM) is a
lower-fidelity electrostatic modeling technique that can be evaluated quickly enough
for faster-than-realtime applications [19, 20].

MSM is an elastance-based method for predicting the force and torque on conduc-
tors [21]. It is similar to the method of moments in its linear form, but differs in that
the size and location of the nodes are hand-tuned rather than derived from first prin-
ciples [22]. This tuning is done by an optimizer to match forces and torques which
are computed using a high-fidelity FEM software. Because of this, MSM can predict
Coulomb forces and torques very quickly at accuracies of 1-2% or better depend-
ing on the separation distance of the charged objects. Recent work largely automates
the process of generating MSM models using local optimizers; however, challenges
to current MSM model generation methodologies remain [7]. In particular, current
automation of Volume-MSM (VMSM) modeling is accomplished by fitting to FEM
generated force and torque data. Not only is the process of generating FEM data time
consuming, but it is prone to producing noisy force and torque data if the objects are
far apart. The effect of noisy data is mitigated by fitting to near-field data and impos-
ing a self-capacitance constraint upon the optimization process. The self-capacitance
constraint ensures that the total charge on an isolated MSM model with a prescribed
voltage is the same as predicted by FEM, and exploits the simplified field behavior
of the problem at large radial distances where even complex geometry can be accu-
rately approximated as a point charge. In addition, fitting to force and torque data ties
the resulting VMSM model to a specific probe geometry, which lacks generality.

This paper develops a novel automated method of generating VMSM models by
matching the electric field in the vicinity of the target rather than Coulomb forces
and torques. This has two benefits: 1) The E field data is computed with Surface
MSM (SMSM), which is much smoother than FEA data and makes optimization eas-
ier, and 2) The E field can be computed without another body (unlike the force and
torque), which adds generality. The E-field fitting greatly reduces the time required
to generate a VMSM model while maintaining the model accuracy associated with
current modeling techniques. Of interest is how well this E-field fitting technique
functions on complex shapes that are not simple spheres or cylinders as in the earlier
VMSM and SMSM work. As discussed in Reference [7], imposing the spacecraft’s
self-capacitance constraint can improve the MSM fit quality for large separation dis-
tances. This paper explores how imposing the self-capacitance constraint impacts the
MSM setup performance.

The paper is structured as follows. A brief review of the Multi-Sphere method
is presented. The optimizer cost functions for current VMSM and E-field match-
ing model generation methodologies are compared near a solution. Force and torque
model accuracies when the E-field matching method is applied to a complex asym-
metric box-and-panel geometry, with and without a self-capacitance constraint,
are investigated. The computational effort of producing one, two and three-sphere
VMSM models of the box-and-panel geometry is detailed. The effect of data reduc-
tion on model accuracy when a self-capacitance constraint is imposed is shown, and
a comparison between the accuracies of reduced-coordinate and 4 degree-of-freedom
models is made.
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Multi-Sphere Method Background

MSM provides a computationally fast approximate model of a spacecraft’s elec-
trostatic properties for applications that require faster-than-realtime results. MSM
solves for the force and torque on a conductor by first finding the charge on a num-
ber of virtual spheres placed within the body. The charge on the spheres is found
by assuming all spheres are equipotential across a single space object and solving a
linear system of equations. The equipotential voltage of the spacecraft is found with
current-balance methods [23] and is assumed to be known perfectly in this analy-
sis. MSM divides into VMSM, which uses a small number of spheres placed within
the volume of the conductor, and SMSM, which places a large number of spheres on
the surface of the conductor. It is more difficult to generate VMSM models because
the size and location of the spheres must be found using an optimizer; however,
VMSM models are much faster to run once completed due to the much smaller num-
ber of spheres employed. In contrast, SMSM models are easier to set up because
the spheres are placed uniformly on the spacecraft. For rectangular spacecraft this
is done using a grid, and for cylindrical and spherical shapes this is done using a
golden spiral [24]. Once the positions are found, the sphere size can be found by
matching self-capacitance, which is computed from commercial FEM software. Gen-
erally, SMSM models show higher accuracy than VMSM models when compared to
FEM-generated force and torque data [2]. Although SMSM greatly reduces the effort
required to create a MSM model for a given spacecraft geometry and increases the
accuracy of the model, it comes at increased computational cost at runtime due to the
larger number of spheres.

Both the Volume Multi-Sphere Method and Surface Multi-Sphere Method repre-
sent a conducting object as N spheres, as shown in Fig. 1. These methods only differ
in the number, size and placement of the spheres used to represent the conductor. The
MSM formulation currently assumes that the surface of the target craft or debris is
perfectly conducting, which implies that all MSM spheres that constitute a model are
equipotential.

As shown in Fig. 1, MSM approximates a spacecraft as a collection of spheres
with variable positions and radii. The voltage on any sphere is a function of both its

Fig. 1 Illustration of the MSM concept showing how two conducting space objects are decomposed into
a series of body-fixed sphere with the same potential [20]
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own charge and the charge of all nearby spheres. If these spheres are far enough away
to be approximated as point charges, the voltage is given by: [19]

Vi = 1

4πε0

qi

Ri

+
n∑

j=1, j �=i

1

4πε0

qj

ri,j
(1)

where qi and Ri are the charge and radius of the ith sphere, respectively, ρi, j is the
center-to-center distance between spheres i and j , and ε0 is the permittivity of free
space constant. If the voltages of each sphere are given by V = [V1, V2, ...Vn]T and
the charges are given by q = [q1, q2, ...qn]T, the relationship between the two is

V = [S]q (2)

where [S] is the elastance matrix defined below:
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If the voltage is known, the linear system can be solved for the charges q. For some
simple systems, the charges can be found numerically [7], but for general models the
charge is found numerically. Combining the charges with the locations of the spheres
allows the force and torque to be computed.

The charge set q is calculated using Eq. 2. The charges, qi , are used to calculate
the electric field produced by the model, and forces and torques that an object model
experiences subject to one or more external point charges. Denoting the position
vector of an external point charge as rk and the relative position vector of each MSM
model sphere with respect to its center of mass as ri , the force, F, and torque, TO,
applied to the target model about its center of mass (O) by all external spheres with
charges qk are given in Eqs. 4 and 5 [20]

F = −kc
∑M

k=1 qk

∑N
i=1

qi

||ri,k ||3 ri,k (4)

TO = −kc
∑M

k=1 qk

∑N
i=1

qi

||ri,k ||3 ri × ri,k (5)

where ri,k is the relative position of the kth external sphere with respect to the ith

internal MSM sphere as shown in Fig. 1. Let N be the total number of spheres in
the target model, while M is the total number of spheres external to the target such
that NT = N + M . Adding arbitrary numbers of external spheres does not add to
the complexity of MSM modeling because they can be appended to the charge and
elastance matrices; however, doing so will increase computational burden–primarily
due growing size of the elastance matrix, which always needs to be inverted. Whole
MSMmodels can be appended when the calculation of force and torque between two
complex geometries is desired. The electric field at any point exterior to the spheres
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of a MSM model is given by the superposition of the electric fields of each sphere,
as shown in

E = kc

NT∑

i=1

qi

||ri,l ||3 ri,l (6)

where l is a point of interest in the space outside of the MSM model spheres, and ri,l

is the relative position between the i-th MSM model sphere and l.
Prior VMSM model fitting methods minimize a cost function based upon the dif-

ference between the force and torque vectors predicted by a VMSM model and the
force and torque vectors generated by commercial FEM software. One such cost
function is given in Reference [7] by

J = 100

2L

(
L∑

l=1

||FVMSM,l − FFEM,l ||
||FFEM,l || + ||TVMSM,l − TFEM,l ||

||TFEM,l ||

)
(7)

where l has the same meaning as in Eq. 6 and L represents the total number of force
and torque sample points. To alleviate far-field data noise effects in the optimization
process, current methods utilize a self-capacitance constraint is proposed in Refer-
ence [7]. Enforcing the VMSM model match the self-capacitance of the target object
ensures that the forces will match as the two objects get very far from each other. The
self-capacitance C of a MSM model is given by [7]

C = Q
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where V is the scalar voltage of the conductor. To enforce a self-capacitance con-
straint, the self-capacitance of the target geometry is calculated using FEM and the
MSM model self-capacitance is matched to the FEM result– reducing the optimizer
search space by one dimension. The capacitance matching can be accomplished
analytically for simple models, or numerically for large models. Matlab’s fmincon
optimizer allows the self-capacitance constraint to be defined in a constraint function
and enforced numerically.

Electric Field VMSMModel Fitting

SMSM E-field Data Generation

Using the current VMSM methodology, the sphere positions and radii are varied by
an optimizer to best match force and torque data produced by a commercial FEM
program [7, 19, 20]. This methodology requires significant hand-tuning of model
parameters for a model that fits force and torque data accurately due to noisy FEM
data in the far field, dependance on probe size, and convergence properties of the
force and torque cost function. Recent work largely streamlines the process of gen-
erating VMSM models using ANSYS Maxwell 3D to generate numerical data [7].
The workflow for current VMSM model fitting starts with generating solid models
for a target and probe geometry in FEM software and calculating accurate force and
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torque values between them at many relative positions. Self-capacitance of the target
spacecraft is also calculated.

Generating the FEM truth data is by far the most time-consuming step. A complete
sweep of locations for force and torque matching and validation may take hours and
variations in accuracy depend heavily upon how many data points are used. In addi-
tion, complicated workarounds that automatically change probe radius are required to
get accurate results when the object/probe separation distance is large. Current tech-
niques use a spherical probe which has a radius that is a function of its distance from a
target. The dependence on external probe geometry for force and torque calculations
is clear in the above force and torque equations. This dependence is included into
VMSM model generation when a cost function based on force and torque is used.

The workflow proposed in this paper seeks to address both of these issues. The
initial step in modeling is the same — a single solid model of the target spacecraft is
created. However, a solid model of external probe geometry is optional, and only used
to gather limited force and torque data for verification of a model. A target voltage is
prescribed and FEM software is used to calculate the self-capacitance of the target.

A SMSM model of the target geometry is then generated using any appropri-
ate method. Note that the VMSM setup process in this paper is not tied to using
SMSM in this step, but other fast methods such as a boundary element method or
the method of moments could be used as well. All these solutions provide fast and
accurate E-field predictions about a general shape. The SMSM method is used here
because it provides a very smooth E-field prediction and it’s simplicity to setup.
One SMSM development method, appropriate for spherical and cylindrical geome-
tries, is to use a golden spiral algorithm to distribute SMSM spheres on the surface
of the geometry [20]. A method appropriate for flat geometries is to use a function
like MATLAB’s meshgrid to generate a distribution of sphere positions on the sur-
face of a plane. This distribution can then be translated, rotated and combined with
other planar distributions of spheres to form complex SMSM geometries [25]. When
combining distributions, care should be taken to eliminate redundant spheres so that
none overlap. Root finders like Matlab’s fsolve can then be used with Eq. 8 to deter-
mine appropriate sphere radii to match the SMSM model self-capacitance to the
self-capacitance of the solid model. Using the prescribed target voltage and Eq. 2,
the charge on each SMSM sphere is calculated. Using the same equation applied
to an N-sphere VMSM model optimization problem, an optimizer is used to select
the optimal positions and radii of the model spheres to minimize the following cost
function at sample points l

J (R1, R2, . . . , RN, r1, r2, . . . , rN) =
L∑

l=1

||EV MSM,l − ESMSM,l ||
||ESMSM,l || (9)

where L is the total number of electric field sample points.
Using this cost function results in several major improvements to the prior method-

ology. The first improvement is the separation of VMSMmodel generations from any
external probe geometry. Next, while the torques go to zero about particular symme-
try axes, causing issues computing the relative MSM fit error, the E-field is always
non-zero at any location relative to a charged spacecraft outside the convex hull
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formed by its conducting surface. The final improvement is in the time required to
complete all the steps in generating a VMSM model. Although the proposed E-field
fitting methodology adds the step of creating a SMSMmodel for a given target geom-
etry and voltage, this process requires significantly less computational effort than
computing force at many relative positions with FEM. While the FEM takes a few
minutes to compute the force and torque at each position, a SMSM model with a few
hundred spheres will compute the electric field at a few tens or hundreds of positions
in a less than a minute. Reference [7] discusses fitting to much smaller numbers of
force and torque data points; however, using the proposed method, hundreds of data
points are calculated rapidly and used to create a VMSMmodel in much less than the
time it requires to calculate one force and torque calculation using commercial FEM
software. A flowchart comparing the previous force and torque optimization proce-
dure and the proposed E-field matching method is included in Fig. 2. The fitting
speed are compared in detail in the following numerical simulation sections.

SMSM Validation

Before optimizing on a cost function built from a SMSM model, it is prudent to
compare the accuracy of SMSM to other methods. The Method Of Images (MOI)
provides an analytic infinite series solution to the problem of predicting the force
between two spherical conductors [26, 27]. The method consists of placing smaller
and smaller image charges within the body of each sphere to balance out the potential
on the surfaces. As the number of image charges increases, the solution converges.

SMSM models of spheres are made with a variable number of spheres, and the
force between the two bodies is compared to that predicted by MOI. For this case,
two spheres with 1 meter radius are separated by 5 meters, and charged to ±10 kV.
The SMSM model is shown in Fig. 3a, an illustration for MOI showing the iterative
charges is shown in Fig. 3b, and the results are plotted in Fig. 3c.

The x-axis indicates either the number of images charges used in each sphere
for the MOI, or the number of individual spheres in each SMSM sphere. The MOI
converges with 40 image charges, and SMSM converges with around 100 spheres.
Since both methods converge to the same value, SMSM is validated as a method for
predicting forces and torques on a sphere.

Now consider a more complex shape for which there is no analytical answer to
compare to. In this case SMSM must be compared to an FEM program. Force and
torque accuracy of a box-and-panel SMSM model with respect to FEM analysis is
shown in Fig. 4. Average force and torque errors of the SMSM model are within a
few percent of FEM-computed forces and torques.

The errors are shown via color in Fig. 4a and b and the shell-averaged error is
shown in Fig. 4c. The color plots show that the error is concentrated across certain
directions. For instance, the torque errors are greatest along the negative z axis. This
is because the actual torque is very near zero along that direction and thus it is very
susceptible to FEM grid noise. The shell-averaged errors also show some interesting
structure - the errors initially drop from around 5% down to around 2.5% at near 10
meter separations, and then climb up to around 4% at 15 meters. This may be due to
two opposite trends that become more or less dominant with distance. At very close
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Fig. 2 Proposed workflow comparison with previous force and torque methods

distances (∼ 5 meters), FEM performs very well and grid resolution is not a problem,
but the relatively coarse nature of SMSM gives large errors. At medium distances
(∼10 meters) FEM is still performing well, but the increased distance causes grid
resolution problems which increase FEM grid noise and decrease the accuracy of the
FEM solution, however, SMSM increases in accuracy due to the increased separation
distance. At far separations (∼15 meters), the grid noise is very large which causes
increased differences from the truth, even though SMSM is performing very well at
this distance. It is thought that the middle region near 10 meters is where the increase
in SMSM accuracy from being far apart best balance out the errors in FEM accuracy
from grid noise.

Target Geometry, Data Generation and OptimizationMethods

Two target geometries are used to compare the proposed E-field matching method to
the previous force and torque method and to establish the accuracy of models gen-
erated using E-field matching. A two-sphere VMSM model is created for a charged
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Fig. 3 Comparison of MOI and SMSM for predicting force on two spheres

cylinder, with a radius of 0.5 m and a height of 3 m, centered at the origin and ori-
ented along the y-axis using the E-field matching method. This geometry is selected
for easy comparison to previous work using force and torque matching [7, 19, 20].

Data for the study involving the cylinder geometry are generated at evenly spaced
intervals on 90 degree arcs centered at the origin, lying in the x-y plane and in the
fourth quadrant. The symmetry of the cylinder model requires data in only one quad-
rant for the optimization process. Force and torque data is generated using Maxwell
3D at the selected sample points. A SMSM model of the cylinder, shown in Fig. 5, is
created to generate E-field data at the same sample points. Only sample points lying
on the arc of a 5 m radius circle are used for optimization, as shown in Fig. 6a.

Two optimization methods are used to generate cylinder VMSM models: a global
optimization method using Mathematica’s Differential Evolution algorithm is used to
optimize the force and torque cost function of Eq. 7, and MATLAB’s fmincon local
optimizer is used to minimize the E-field cost function of Eq. 9. Self-capacitance for
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Fig. 4 SMSM force and torque errors

the cylinder is calculated using Maxwell 3D. Both optimizers arrive at very nearly
the same optimum despite them being global vs. local. This supports the idea that a
local optimizer can find the global optimum with intuitive initial conditions.

Since a two-sphere VMSMmodel is used to represent the cylinder and the cylinder
has symmetry about the x-axis, the VMSMmodel can be parameterized by one radius
value r , which is shared by both spheres, and the separation distance, ρ, between the
two spheres. This model is shown in Fig. 6b.
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Using this model, an exact formula for the VMSM model self-capacitance can be
derived [7]

C = 1

kc

2rρ

r + ρ
(10)

where r and ρ are the radius and separation of the spheres as shown in Fig. 6b.
VMSM models that have the correct self-capacitance will correctly predict the total
charge on the craft. In situations where the spacecraft can be modeled well as a point
charge, such as debris towing in the far field, the force will also be correct. To match
torques in the far field, the total charge and center of charge must be correct. In almost
all cases, VMSM models that match self capacitance perform better than those that
do not.

In addition, it reduces the optimization problem to one dimension, because for
any r value there is only one corresponding ρ value for which the constraint is met.
Solving (10) for ρ yields [7]

ρ = rCmod

2r − Cmod
(11)

where

Cmod = kcC (12)

Since Cmod is a scaling of the self-capacitance, it is used to impose the self-
capacitance constraint in the following studies because its value is on the order of
model parameters. Both the optimal r and ρ values are solved for using fmincon and
the self-capacitance constraint is imposed numerically.

The second target spacecraft geometry that is selected for this study is a box-and-
panel satellite modeled as a cube shaped bus with a long, slender panel attached. The
bus width, height and depth are 3 m. The panel width is 3 m, depth is 0.2 m and height
is 8.5 m. The panel is located on the top of the bus extending in the z-axis direction
with one of its large faces coplanar with the positive y face of the bus. This model

Fig. 6 Cylinder data distribution and VMSM model parameters
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geometry is shown in Fig. 7. This geometry is selected because it has significant
variation from simple geometric shapes like cylinders and represents a more realistic
target spacecraft. It also shows symmetry that can be used to impose additional con-
straints on the positions of the VMSMmodel spheres, and this symmetry is exploited
to reduce the amount of data that is required for the optimization procedure.

A SMSM model of the box-and-panel is generated using MATLAB’s meshgrid
feature to create many rectangles which are translated and rotated to make the full
spacecraft, and electric field data is generated using Eq. 6, at positions spread radially
about the SMSM model. Sample points are generated using the golden spiral algo-
rithm, which places equally spaced points on the surface of a sphere [24]. This radial
spread of electric field data produces distributions of shells of data, which are easily
selected or neglected, or reduced to hemispheres or octants for fitting, such as the one
shown in Fig. 7. Whole spherical shells of data are produced for the box-and-panel
geometry; however, due to the symmetry of the model, the complete behavior of the
electric field produced by the SMSM model can be captured in one hemisphere of
data.

Fig. 7 Box-and-Panel Geometry with Data Point Distribution
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One, two and three-sphere VMSM reduced-coordinate models are created with
this data using E-field matching and MATLAB’s fmincon optimization algorithm.
Various sets of data, including whole spheres, hemispheres and multiple shell sets, are
used in the optimization processes. In addition, a three-sphere 4 degree-of-freedom
VMSM model is generated using E-field matching and fmincon. Only shells with
radii larger than 12 m are used for optimization to avoid overlap between sample
points and SMSM spheres, which would invalidate Eq. 6. Like the cylinder model
optimization process, the box-and-panel self-capacitance is calculated usingMaxwell
3D and the self-capacitance constraints on the optimization processes are imposed
numerically. Additional inequality constraints are imposed for the two and three-
sphere VMSM models to ensure aesthetically pleasing models in which spheres do
not overlap.

Cost Function Comparison

The cost function of Eq. 7 is compared with the proposed electric field cost function
of Eq. 9 to compare their characteristics. Both cost functions are used to generate
two-sphere VMSM models for a perfectly conducting cylinder charged to 30 kV.
Maxwell 3D is used to determine a cylinder self-capacitance value of 106.8345 pF.
Noting a potential singularity in Eq. 11 when r is one half Cmod, the cost function
values, shown in Fig. 8a and b, along the intersection with the self-capacitance con-
straint surface are plotted against r for which ρ is positive. The force and torque
cost function is evaluated across one quadrant and shell of FEM-generated force and
torque predictions. The E-field cost function is evaluated across the same quadrant
and shell, but using SMSM-generated E-field predictions.

The r values minimizing both cost functions are nearly identical, differing by only
0.2%. Investigating the cost function sensitivities near both minima suggests that
force and torque errors are more sensitive to model parameters than E-field errors
are. The proposed E-field cost function shows desirable characteristics, particularly
for a local optimization algorithm like fmincon. It is generally smooth when com-
pared with the force and torque cost function, and apart from a small region near the
singularity in ρ, approaches its minimum unimpeded.
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Fig. 8 Force and torque and E-field cost functions for cylinder model
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Constrained and Unconstrained Box-and-Panel VMSMModels

One, two and three-sphere box-and-panel VMSM models are generated with and
without a self-capacitance constraint in order to determine the usefulness of the con-
straint when applied to an optimization problem without far-field data noise. Models
are fit to data in three whole spherical shells with radii of 15, 20 and 25 m. Symmetry
of the box-and-panel geometry about the y−z plane is used to reduce the 4N degree-
of-freedom optimization problem to a 3N degree-of-freedom problem. Imposing a
self-capacitance constraint reduces the degrees-of-freedom to 3N − 1. The model is
charged to 30 kV. Maxwell 3D is once again used to calculate self-capacitance, and
returns a value of 336.14 pF. Optimizer initial conditions are chosen loosely based on
the box-and-panel geometry. A visualization the VMSMmodels of the box-and-panel
geometry is included in Fig. 9.

Tables 1, 2, and 3 show the initial and final conditions for the one, two, and three-
sphere box-and-panel models, with and without the self-capacitance constraint.

Shell-averaged force and torque errors of the six VMSM models with respect to
the SMSM generated data are shown in Fig. 10a and b, respectively. As can be seen,
the self-capacitance constraint has utility even when far-field noise is not a concern.
In particular, when generating a one-sphere model the self-capacitance constraint
ensures that force errors far from the target geometry continue to decay as sample
point radius is increased. The effect of the self-capacitance constraint is also dra-
matic for the two-sphere model. The force errors of the two and three-sphere models
are nearly identical at 30 m from the target geometry when the constraint is imposed,
whereas without it the two-sphere model model force errors remain significantly
larger than the three-sphere model’s. It is interesting to note that, as more spheres are
added to the VMSM model, self-capacitance is matched automatically as displayed
by the three-sphere force and torque errors. Both the constrained and non-constrained
model errors overlap, and the optimal model parameters of each are nearly identical.

Another benefit of imposing the self-capacitance constraint is that it can signifi-
cantly reduce computational effort. The number of function calls required to generate
each of the six models is recorded. The results are shown in Fig. 11. The results show
that imposing the self-capacitance constraint consistently results in increased perfor-
mance regardless of how many spheres are used to create the VMSM model. This
performance increase is due to the reduced dimension of the search space when a
self-capacitance constraint is enforced. Given the increased force and torque accuracy
and decreased computation effort, the self-capacitance constraint should be enforced
even when far-field noise is not a concern.

Reduced-Shell Data Sets with Self-Capacitance Constraint

Since imposing a self-capacitance constraint forces force vectors in the far-field to
automatically match, it is desired to investigate whether or not fewer numbers of
shells with smaller radii can be used to effectively generate VMSM models. This
question is interesting for two reasons: smaller data sets will reduce the amount of
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Fig. 9 Visualizations of VMSM box-and-panel geometry models generated using the E-field fitting
method
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Table 1 Initial and final states
for one-sphere VMSM model
optimization, C- Constrained,
NC- Non-Constrained

R1 [m] y1 [m] z1 [m]

Initial 1.000 0.000 0.000

Final C 3.021 0.626 2.914

Final NC 2.951 0.608 2.785

time required for optimization, and fitting to data closer to the target might increase
near-field accuracy without significantly affecting accuracy at larger distances.

A three-sphere VMSM model is used to model the box-and-panel geometry. The
VMSM model is fit to single shells at radii of 12, 14 and 15 m. The model voltage is
set to 30 kV, and a self-capacitance constraint of 336.14 pF is imposed. The accuracy
of these models are compared with each other and to the three-sphere constrained
model generated using three whole shells. The resulting shell-averaged force, torque,
and average error plots when compared with the SMSMmodel are shown in Fig. 12a,
b, and c.

These results show negligible differences in force and torque accuracy near the
target, while the model fitted to the 12 m radius shell shows degraded accuracy far
from the target. Accuracies of models fit to three whole shells and to 14 m and 15
m shell radii are nearly identical. The practical impact of the degraded accuracy for
the model fitted to the 12 m shell is very small; however, for high accuracy at large
distances from a target, a model should be fitted to at least one shell with a larger
radius.

The performance impact of reducing the number of shells is analyzed by record-
ing the number of fmincon iterations and total time required to generate each model.
The results are shown in Fig. 13a and b. These results show that there is not neces-
sarily a positive correlation between decreased numbers of data points and increased
performance. Fitting to data points very close to the target geometry increases the
number of iterations required to generate a model. In addition, the time required to
generate a model is not solely dependent upon the number of data points. While it
takes more time to generate a model using three whole shells of data when compared
to one whole shell at a radius of 15 m, it takes approximately the same amount of
time to generate a model using one whole shell with a radius of 12 m even though the
number of fmincon iterations is 12% less. The competing interests of maintaining a
self-capacitance constraint while fitting to electric field data near the target – which

Table 2 Initial and final states for two-sphere VMSM model optimization, C- Constrained, NC- Non-
Constrained

R1 [m] R2 [m] y1 [m] z1 [m] y2 [m] z2 [m]

Initial 1.000 1.000 0.000 0.000 1.400 6.000

Final C 2.202 1.458 0.135 0.210 1.596 8.183

Final NC 2.201 1.471 0.134 0.207 1.600 8.177
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Table 3 Initial and Final States for Three-Sphere VMSMModel Optimization, C- Constrained, NC- Non-
Constrained

R1 [m] R2 [m] R3 [m] y1 [m] z1 [m] y2 [m] z2 [m] y3 [m] z3 [m]

Initial 1.000 1.000 1.000 0.000 0.000 1.400 6.000 1.400 9.000

Final C 2.039 1.323 1.120 − 0.008 − 0.166 1.319 4.584 1.555 8.972

Final NC 2.041 1.322 1.119 − 0.007 − 0.163 1.321 4.612 1.556 8.974

is far more variable than the same data at larger radii – is likely the reason for this
phenomenon. Due to the increased error and decreased performance associated with
fitting to shells very close to the target, it is recommended to fit models using shells
at intermediate ranges. Doing so aids convergence of the optimizer, and the total time
required to generate a model is decreased either because the number of iterations to
convergence is decreased or because the total time required for one iteration of the
optimizer is decreased, or both.

Modeling using General 4 Degree-of-FreedomMSM Spheres

Previous work focuses on simple geometries that have high levels of symmetry, like
the cylinder model. For geometries like these, the number of MSM optimization
parameters can be reduced significantly by specifying, for example, that the cylinder
MSM spheres must lie on the symmetry axis. As geometric complexity increases, so
does the effort required to find symmetries to exploit and analytically parameterize
them. Using general MSM 4 degree-of-freedom (4DOF) modeling allows each MSM
sphere to have 3 location and one radius degree of freedom. This avoids the need to
find symmetry and allows for optimization in a 4N dimension search space. Each
parameter associated with a VMSMmodel sphere is found through optimization, and
the up-front human-involvement cost of generating a model is reduced.

A three-sphere VMSM model of the box-and-panel geometry is generated using
data in three whole shells with radii of 15, 20 and 25 m. A self-capacitance constraint

Fig. 10 One, two and three sphere VMSMmodel force and torque errors with respect to SMSM force and
torque predictions, (—) constrained, (- -) non-constrained
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Fig. 11 Total matlab function calls required to generate one, two and three-sphere box-and-panel VMSM
models using E-field fitting

is enforced using a value of 336.14 pF. The model voltage is set to 30 kV. The initial
and final conditions for the 4DOF fitting problem are shown in Table 4.

The force and torque accuracy of the 4DOF model with respect to the box-and-
panel SMSM model is compared to three-sphere 3DOF models using three whole
shells and one half shell at 15 m in Fig. 14a and b.

The model with the least accuracy is the 3DOF model fitted to one half shell of
data. The 4DOF model’s accuracy resembles the 3DOF model fitted to three whole
shells. Since the optimizer knows nothing about the symmetry of the box-and-panel

20 30 40 50 60
Shell Radius [m]0.02

0.05

0.10

0.20

0.50

Mean Fit [%]

20 30 40 50 60
Shell Radius [m]

0.5

1.0

1.5

2.0

Mean Fit [%]

20 30 40 50 60
Shell Radius [m]

0.2

0.5

1

Mean Fit [%]

Fig. 12 Model force, torque and average (force and torque) errors of three-sphere box-and-panel VMSM
models generated using: 3 Whole Shells, 15 m Shell, 14 m Shell, 12 m Shell
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Fig. 13 fmincon iterations and total model generation times required to generate three sphere VMSM
models using E-field fitting and shell reduction for various SMSM-generated E-field data sets

model, a whole shell of data must be used to generate an accurate model when 4DOF
is used. Total fmincon iterations for each of the models shown in Fig. 14 are shown
in Table 5.

Surprisingly, the 4DOF modeling method yields a converged result using only
58% of the iterations required for a 3DOF model using a half shell of data with the
same radius. These results reiterate that the number of iterations required for conver-
gence upon a useful model is far more dependent on using data at intermediate radii
than on the number of data points used. However, when considering time required to
generate a model, the 3DOF 1 half shell model is by far the most efficient to generate,
requiring only about a third as much time as the three whole shell models. An inter-
esting result is that the 4DOF model is generated in approximately the same amount
of time as the 3DOF 3 whole shell model. These results show that 4DOF modeling
using E-field fitting is promising from both an accuracy and performance perspec-
tive, and a 4DOF can be generated in approximately the same amount of time as a
3DOF model using the same number of data points at the same shell radii.

Table 4 Initial and Final States
for Three-Sphere 4DOF VMSM
Model Optimization

Initial Final

R1 [m] 1.000 2.051

R2 [m] 1.000 1.299

R3 [m] 1.000 1.106

x1 [m] 0.000 − 0.004

y1 [m] 0.000 − 0.004

z1 [m] 0.000 − 0.136

x2 [m] 0.000 0.038

y2 [m] 1.400 1.385

z2 [m] 6.000 4.788

x3 [m] 0.000 − 0.028

y3 [m] 1.400 1.534

z3 [m] 9.000 8.993
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Fig. 14 4DOF force and torque percent relative error comparison to SMSM force and torque predictions
for: three-sphere model three whole shells, three-sphere model one half shell, three-sphere
model one whole shell (4DOF)

FutureWork

The performance of the E-field matching method suggests that the results of the cost
function analysis can be extrapolated to higher dimension search spaces; however,
more research into the convergence properties of the E-field fitting technique should
be carried out. Although a self-capacitance constraint is imposed in this work, other
appropriate constraints might be found to further reduce the dimension of the search
space and aid performance. Research into the convergence properties of the E-field
matching method might lead the way to fully autonomous model generation using
4DOF VMSM models.

Moreover, in this paper local optimization algorithms are used extensively with
no guarantee that the resulting VMSM models are globally optimal in any sense.
The results show that, in many cases, practical accuracy requirements can be met in
a very short time using local optimization algorithms. Experience shows that local
optimization using intuitive initial conditions and reasonable bounds on the search
space lead to practically identical sphere radii and placement as global optimization;
however, the new E-field cost function is similarly disadvantaged as previous force
and torque cost functions in that it is not convex. Given time reductions in generat-
ing models when using local optimization are profound in their own right, research
in optimality guarantees using this method can be very valuable. Although it is not
expected that other cost functions used in the literature to-date or different optimiza-
tion algorithms applied to the same geometry will yield significantly different results
from the ones shown in this paper, closer investigation into the impact of different
cost functions and optimization algorithms might yield interesting results.

Table 5 Total function calls for
4DOF model comparison Model Total fmincon Iterations

4DOF 3 Whole Shells 77

3DOF 3 Whole Shells 83

3DOF 1 Half Shell 132

3DOF 1 Whole Shell 68
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The selected target geometry represents a particular target of interest that might
be found at GEO. The box-and-panel target geometry is not representative of all
objects of interest, and VMSM modeling of more complicated geometries should be
investigated. These geometries should be selected to represent a healthy cross section
of potential targets at GEO. An assumption is made in this work that the target is a
perfect conductor, but many objects of interest have dielectric properties. Extension
of this work to model dielectrics is a worthwhile pursuit.

Conclusion

This paper introduces a new way to create a VMSMmodel using electric field match-
ing rather than force and torque matching. This new method has four main benefits:
first, finite element grid noise is no longer an issue in the far field; second, probe
geometry is no longer tied to the solution; third, the solution is much faster to pro-
duce; and lastly the cost function is much smoother and easier to optimize. Using
E-field matching and VMSM sphere populations provides highly accurate fits with
respect to SMSM models with lower computational burden than previously explored
methods. The presented E-field matching fits to smooth, analytically generated data,
does not rely on probe geometry and has a simpler cost function that easily lever-
ages self-capacitance constraints to increase computational efficiency, improve force
and torque fits far from a target and reduce the amount of data required for opti-
mization. The improvements with E-field matching over previously studied methods
is apparent in the more rapid convergence of two and three-sphere VMSM models
of a box-and-panel spacecraft. The proposed E-field matching method provides a
more suitable approach for complicated spacecraft geometries and higher degree-of-
freedom optimizations due to reduced computational time and improved fit accuracy.
E-field matching provides a fast and simple means of generating VMSM models for
electrostatic modeling of fully conducting space objects.
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