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Abstract This paper investigates the orbit radial stabilization of a two-craft virtual Cou-
lomb structure about circular orbits and at Earth–Moon libration points. A generic Lyapunov
feedback controller is designed for asymptotically stabilizing an orbit radial configuration
about circular orbits and collinear libration points. The new feedback controller at the libra-
tion points is provided as a generic control law in which circular Earth orbit control form
a special case. This control law can withstand differential solar perturbation effects on the
two-craft formation. Electrostatic Coulomb forces acting in the longitudinal direction con-
trol the relative distance between the two satellites and inertial electric propulsion thrusting
acting in the transverse directions control the in-plane and out-of-plane attitude motions. The
electrostatic virtual tether between the two craft is capable of both tensile and compressive
forces. Using the Lyapunov’s second method the feedback control law guarantees closed loop
stability. Numerical simulations using the non-linear control law are presented for circular
orbits and at an Earth–Moon collinear libration point.

Keywords Coulomb structure · Circular orbits · Libration points ·
Earth-Moon libration points · Differential solar perturbation ·
Lyapunov feedback control · Differential SRP perturbation

1 Introduction

In the presence of differential solar radiation pressure effects, this paper investigates the
application of non-linear control techniques in stabilizing a two-craft formation virtually
connected by an electrostatic (Coulomb) force. The basic idea of Coulomb propulsion of
free-flying vehicles is to control the spacecraft formation shape and size using the inter-
spacecraft forces created by electrostatically charging the spacecraft to different potentials
(King et al. 2002, 2003). For tight formation control of spacecraft separation distances on the
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order of 100 m or less, this propellant-less thrusting is an attractive solution over conventional
electric propulsion or chemical thrusting which can cause thruster plume contamination of
the neighbouring spacecraft. Coulomb propulsion has several advantages: it is a highly effi-
cient system with a renewable energy source with Isp values ranging up to 1013 s, it requires
very little electrical power requirements (1 W or less), and it has a very high bandwidth for
relative motion control with charge transition times on the order of milli-seconds (King et al.
2002). These advantages enable high precision, close-proximity formation flying with sev-
eral potential applications in space technologies such as high accuracy wide-field-of-view
optical interferometry missions, spacecraft cluster control, as well as rendezvous and docking
maneuvers. Coulomb propulsion has its drawbacks. The formation dynamics are highly cou-
pled and non-linear and Coulomb formation flying concept is feasible in less dense plasma
environments at geostationery orbit (GEO) altitudes or higher. Moreover, as the electrostatic
forces are internal to the formation, Coulomb forces cannot be used to reorient a full forma-
tion to a new orientation and external forces such as thrusters or differential gravity gradient
torques must be used.

In 2002, Parker and King presented the Coulomb propulsion concept to control a cluster
of free-flying spacecraft in King et al. (2002) and King et al. (2003). They present analytic
solutions for Hill-frame invariant three and five-craft static Coulomb formations with sym-
metry assumptions. The pre-defined craft locations in the formation and constant charges
in the rotating Hill frame perfectly cancel all relative motion of the charged spacecraft.
Berryman and Schaub (2005, 2007), Vasavada and Schaub (2008) present more systematic
analytic solutions for two, three, and four-spacecraft formations and demonstrate numerically
possible formations with as many as nine craft in GEO orbits. The open-loop sta-
tic Coulomb formations are all numerically unstable. Schaub et al. (2006) formulates
necessary conditions to achieve such static Coulomb formations with constant charges.
Natarajan (2007) present closed-loop feedback stabilized virtual Coulomb structure solu-
tions for in-orbit two-craft configurations (radial, along-track and orbit normal). For
an orbit radial Coulomb tether configuration, a charge feedback law stabilize the rela-
tive distance between the satellites exploiting the differential gravitational attraction to
stabilize the in-plane attitude motion. Along the orbit-normal and the along-track direc-
tions, to asymptotically stabilize the satellite formation shape and attitude, the authors
present hybrid feedback control laws which combine conventional thrusters and Cou-
lomb forces. Furthermore, Natarajan (2007) investigates the linear dynamics and
stability analysis of expansion and contraction reconfiguration maneuvers for all three equi-
librium configurations using linearized time-varying dynamical models. In such reconfig-
uration maneuvers, stability regions limit the Coulomb tether expansion and contraction
rates.

Tether formations at the libration points are useful for remote sensing missions to
establish a long-baseline imaging capability or to ensure better stationkeeping configu-
rations. Misra et al. (2002) considers the equilibrium configurations of a rigid tethered
system near all five libration points and carries out the stability analysis when it is near
the translunar libration point. Also, King et al. (2002) analyzes the suitability of Cou-
lomb control for a static collinear five-vehicle formation at Earth–Sun Lagrange points
where the formation local dynamics ignore gravity. Furthermore, Pettazzi et al. (2006)
presents compatibility results of using Coulomb satellites with electric propulsion and
autonomous path planning techniques at the libration points for formation keeping and
reconfiguration of swarms of satellites. At GEO the Debye length varies between 80 and
1400 m, with a mean of about 180 m which constrains the maximum possible forma-
tion length (Romanelli et al. 2006). In the interplanetary space at Earth-moon libration
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points, the Debye length varies between 10 and 40 m (King et al. 2002; Hastings and
Garrett 2004). But despite the low value of the Debye length, multi-craft equilibrium for-
mations are reported to exist at the Earth–Sun L1 Lagrange point (Pettazzi et al. 2006).
Furthermore, as a consequence of discussions in Murdoch et al. (2008), the effective Debye
lengths in deep space still yield charged relative motion dynamics that are primarily influ-
enced through classical electrostatics. Inampudi and Schaub (2010a) shows that for a two
spacecraft Coulomb formation at the gravitational three-body libration points, three equilib-
rium configurations exist (radial, along-track and orbit normal). And Inampudi and Schaub
(2010b) present the linearized radial, along-track and orbit-normal dynamics and stability of
a two-craft Coulomb tether formation at Earth–Moon libration points. The assumption for
the linearized study is that the sunlit areas of the two-craft are equal such that the differential
solar radiation pressure on the formation is zero.

Differential solar drag is the largest disturbance acting on a tether formation at GEO and
at libration points (Sun–Earth or Earth–Moon) (Romanelli et al. 2006; Hastings and Garrett
2004). For example, on a typical micro-craft in Earth orbit the maximum solar torque mag-
nitude of about 10−5 Nm is essentially constant with orbit altitude (Lawrence and Whorton).
The gravity gradient torque is inversely proportional to the orbit radius cubed, but in low
orbits has a maximum magnitude on the order of solar torque, and above an altitude of
about 20,000 km it becomes relatively insignificant (less than 1%) (Lawrence and Whorton).
Therefore, at libration point distances, in the presence of a differential solar drag on the
formation, the gravity gradient torques may no longer be sufficient to stabilize the in-plane
motion of a two-craft virtual Coulomb structure in the radial equilibrium position. More-
over, in the presence of differential solar drag on a two-craft Coulomb formation in circular
orbits, Natarajan (2007) shows that the states are bounded with the charge feedback law.
These limitations motivate us to study the non-linear dynamics and stability analysis of an
orbit-radial two-craft Coulomb formation about circular orbits and at Earth–Moon libration
points.

Vadali and Kim (1991) and Fujii et al. (1991) use a Lyapunov approach for tether deploy-
ment and retrieval in circular orbits. In their study, tether mass and flexibility, solar radiation
pressure as well as aerodynamic effects are neglected. The Lyapunov feedback control method
use a Lyapunov function based on a first integral of motion of the dynamical system. The
control laws are simple and utilize tether tension control as well as out-of-plane thrusting.
In this paper, a similar approach is taken to stabilize the formation shape and size in circu-
lar orbits and at the libration points in the presence of differential solar radiation pressure
effects. The goal is to design a generic Lyapunov feedback controller that can withstand
differential solar perturbation effects and to asymptotically stabilize an orbit radial two-craft
Coulomb structure about circular orbits and collinear libration points. First the generic non-
linear equations of motion for a two spacecraft Coulomb formation at the libration points are
presented. This general framework for two-craft dynamics at the collinear libration points
present circular Earth orbit dynamics as a special case. Then the environmental torques due
to gravity gradient forces and solar radiation pressure effects at GEO and at Earth–Moon
libration points are discussed. Of interest is to study if the gravity gradient forces on a radial
equilibrium two-craft Coulomb tether formation are sufficient to withstand the differential
solar drag effects. Numerical results show the gravity gradient and differential solar drag
force magnitudes on the formation. Finally, a generic controller is designed that can with-
stand differential solar perturbation effects in orbit radial configuration about circular orbits
and at Earth–Moon collinear libration points. Numerical simulations validate the Lyapunov
controller performance.
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Fig. 1 Euler angles representing the attitude of Coulomb tether with respect to the orbit frame at L2

2 Equations of motion: circular orbits and collinear libration points

The equations of motion for a two spacecraft Coulomb formation at collinear Earth–Moon
libration points are derived in Inampudi and Schaub (2010b). They are presented here incor-
porating the differential solar radiation pressure perturbations. Also, the characteristics of
the frames involved and the notation used are summarized. In order to describe the relative
motion of the satellite with respect to the formation center of mass, a rotating Hill orbit frame
O : {

ôr , ôθ , ôh
}

whose origin coincides with L2 libration point is chosen as shown in Fig. 1.
The formation center of mass is assumed to be at the origin of this rotating Cartesian coordi-
nate system and the relative position vector of the i th satellite is defined as ρi = (xi , yi , zi )

T ;
where the xi component is in the ôr direction (orbit radial), the yi component is in the ôθ
direction of orbital velocity (along-track), and the component zi is in the ôh direction (orbit
normal).

If the two-craft formation is treated as a rigid body and aligned in the radial direction, then,
for this orbit nadir aligned formation, consider a body-fixed coordinate frame B : {b̂1, b̂2, b̂3}
where b̂1 is aligned with the relative position vector ρ1 of satellite mass m1. Therefore, in
this configuration, the O and B frame orientation vectors are exactly aligned. Let the 3-2-1
Euler angles (ψ, θ, φ) be the pitch, roll and yaw angles which represent the relative attitude
between the B and O frames. From the point-mass assumption of the two-craft, the yaw
rotation about b̂1 (angle φ) can be ignored. Defining L to be the distance between the two
satellites and L ref the reference separation distance, the nondimensional separation distance
variable l is set to L

Lref
. The nondimensional time variable is τ = �t where � is the con-

stant angular velocity of the Earth–Moon barycenter. Assuming fdθ , fdψ and fdl to be the
non-dimensional differential solar perturbations in body frame, and, using the Lagrangian
formulation, the non-linear equations deduced governing the roll angle θ out of the orbital
plane, the pitch angle ψ in the orbital plane, and the separation distance l are

θ
′′ + 2

l
′

l
θ

′ + cos θ sin θ((1 + ψ
′
)2 + 3σ cos2 ψ) = uθ

l
+ fdθ

l
(1a)

ψ
′′
cos2 θ − 2 cos θ(1 + ψ

′
)

(

θ
′
sin θ − l

′

l
cos θ

)

+ 3σcos2 θ sinψ cosψ = uψ
l

+ fdψ

l

(1b)

l
′′ − l(θ

′ 2 + (1 + ψ
′
)2 cos2 θ − σ(1 − 3 cos2 θ cos2 ψ)) = −ul − fdl (1c)

where the prime denotes the derivative with respect to non-dimensional time, and ul , uψ and
uθ are the non-dimensional body frame control variables. The control variable ul is associated
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with Coulomb propulsion, and uψ and uθ are related to electric propulsion. They are defined
as

ul = Fcf

m�2 L ref
, uψ = Fψ

m�2 L ref
, uθ = Fθ

m�2 L ref
(2)

where m = m1m2
m1+m2

. For a two spacecraft Coulomb formation, Fcf is the Coulomb force acting
between the two-craft, and is expressed as

Fcf = −kc
q1q2

L2 (3)

and Fψ and Fθ are the electric propulsion (EP) thrusting forces that introduce net formation
torques in the ψ and θ directions. Note that to avoid any potential plume exhaust impinge-
ment issues both the EP thruster forces are directed in orthogonal directions to the formation
line of sight vector.

The equations of motion in (1) are coupled non-linear ordinary differential equations that
define the motion of a two-craft Coulomb formation at any of the three collinear Lagrangian
points. The parameter σ is a positive constant that depends on the collinear Lagrangian point
(L1, L2, L3) under consideration. It is defined as

σ = 1 − ν

| rx0
d + ν|3 + ν

| rx0
d − 1 + ν|3 > 0 (4)

where ν = M2
M1+M2

and 1 − ν = M1
M1+M2

with M1 and M2 being the dominant masses of the
two gravitational primaries, Earth and Moon, and d is the distance between the two primaries
with rx0 being the x position of a collinear libration point with respect to the barycenter.

As should be expected, for “σ = 1”, the equations turn out to be the same equations that
were found in Natarajan (2007) for orbit radial two-craft formation at GEO. Thus, the non-
linear equations of motion about orbit radial equilibrium in Eq. (1) form a general framework
that covers both circular GEO and colinear libration point departure motion. By changing
the constant σ either motion is described.

If the two-craft formation is aligned in the radial direction, the formation remains statically
fixed relative to the rotating orbiting frame O provided the non-linear equations (1) satisfy
the following radial equilibrium conditions

θ = θ
′ = θ

′′ = ψ = ψ
′ = ψ

′′ = l
′ = l

′′ = 0 and l = 1 ⇒ L = L ref (5)

Assuming no differential solar radiation pressure perturbations on the craft and using
Eqs. (2) and (3), Eq. (1c) provides the nominal product of charges Qref = q1q2 needed
to achieve this static Coulomb formation as (Inampudi and Schaub 2010b)

Qref = − (2σ + 1)�2 L3

kc

m1m2

m1 + m2
(6)

Thus, the satellites appear frozen with respect to the rotating frame when the charge product
Qref satisfies Eq. (6). Since the charge product term is negative it implies that the spacecraft
charges will have opposite charge signs and also, an infinite number of charge pairs can
satisfy Qref = q1q2. Although unequal charges are possible between the two crafts, in this
study, the charge magnitudes are set equal.
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3 Environmental formation torques: GEO and libration points

This section discusses environmental torques due to gravity gradient and solar radiation
pressure effects on a two-craft formation. The gravity gradient torque expressions and solar
radiation pressure models at GEO and at Earth–Moon libration points are presented. To study
whether the gravity gradient forces on a radial equilibrium two-craft Coulomb tether forma-
tion are sufficient to withstand the solar drag effects, the magnitudes of gravity gradient forces
at GEO heights and libration point distances are compared against the differential solar drag
forces on the formation. Numerical results show the gravity gradient and differential solar
drag force magnitudes on the formation at GEO and at Earth–Moon libration points.

3.1 Gravity gradient torques

The gravity gradient torque expression at GEO is obtained from (Schaub and Junkins 2003)

BLG =
⎡

⎣
LG1

LG2

LG3

⎤

⎦ = 3G Me

r5
c

⎡

⎣
rc2rc3(I33 − I22)

rc1rc3(I11 − I33)

rc1rc2(I22 − I11)

⎤

⎦ (7)

where rc1, rc2 and rc3 are the B frame components of a two-craft formation center of mass
position vector rc in GEO. G is the gravity constant and Me is the mass of the planet Earth.
The body frame inertia matrix of a two-craft formation in radial equilibrium is (Natarajan
2007)

B[I ] =
⎡

⎣
0 0 0
0 I 0
0 0 I

⎤

⎦ (8)

where I = m1m2
m1+m2

L2 and m1,m2 are the masses of the two spacecraft.
Using Eq. (7), the gravity gradient torque of a radial equilibrium two-craft Coulomb tether

formation at GEO becomes

BLG = 3�2

⎡

⎣
0

−I cos θ sin θ cos2 ψ

−I cos θ cosψ sinψ

⎤

⎦ (9)

where �2 = μ

r3
c

with μ = G Me.

Similarly, the gravity gradient torque expression at libration points is

BLG =
⎡

⎣
LG1

LG2

LG3

⎤

⎦ = 3G M1

r5
c

⎡

⎣
rc2rc3(I33 − I22)

rc1rc3(I11 − I33)

rc1rc2(I22 − I11)

⎤

⎦ + 3G M2

r ′
c

5

⎡

⎣
r

′
c2r

′
c3(I33 − I22)

r
′
c1r

′
c3(I11 − I33)

r
′
c1r

′
c2(I22 − I11)

⎤

⎦ (10)

where rc1, rc2, rc3 and r
′
c1, r

′
c2 and r

′
c3 are the B frame components of a two-craft formation

center of mass position vectors rc and r
′
c at a collinear libration point from the two primaries

in the plane.
Using Eq. (10), the gravity gradient torque of a radial equilibrium two-craft Coulomb

tether formation at a collinear libration point becomes

BLG = 3(�2
1 +�2

2)

⎡

⎣
0

−I cos θ sin θ cos2 ψ

−I cos θ cosψ sinψ

⎤

⎦ (11)
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Fig. 2 Sun’s position and the
orientation of the cylindrical craft

Fig. 3 Solar radiation pressure
in the vicinity of L2

where �2
1 = μ1

r3
c

and �2
1 = μ2

r ′
c

3 with μ1 = G M1 and μ2 = G M2.

3.2 Solar radiation pressure (SRP)

At GEO, the inertial acceleration vector aSRP in m/s2 due to the effects of solar radiation
pressure (SRP) is given as (Natarajan 2007; McInnes 1999)

aSRP = −Cr AF

mc

r

‖r‖3 (12)

where r is the inertial position vector from the Sun to the orbiting planet in AU, m is the mass
of the spacecraft in kg, and A is the cross-sectional area of the spacecraft that is facing the Sun
in m2. The constant F = 1372.5398 W/m2 is the solar radiation flux, c = 299792458 m/s is
the speed of light, and Cr = 1.3 is the radiation pressure coefficient. To compare the results
at GEO from Natarajan (2007), as shown in Fig. 2, the craft are modeled as cylinders of
radius 0.5 m, height of 1 m and mass of 150 kg. For craft 1, the cylindrical surface with a
square cross-sectional area of 1 m2 is constantly facing the Sun, whereas for craft 2, it is the
top of the cylinder with circular cross-sectional of 0.25π m2 that is facing the Sun.

In the Earth–Moon system, the solar radiation pressure model is much different from that
of the GEO environment. In the vicinity of the collinear libration points, the Sun lines are
treated as parallel lines. In order to describe the relative motion of the satellite with respect to
the formation center of mass, a rotating Hill orbit frame O : {

ôr , ôθ , ôh
}

whose origin coin-
cides with the L2 libration point is chosen as shown in Fig. 3. This rotating coordinate system
orbits the Earth–Moon barycenter O with constant orbital angular velocity �. In addition,
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Fig. 4 Cone and clock angles of
the craft-normal relative to the
orbit frame

the Earth–Moon system orbits the Sun with an angular velocity of �B . Consequently, the
incident Sun line rotates in the orbit frame with a net angular velocity of ωs = � − �B . A
notable difference in the Earth–Moon system is that the direction of the incident Sun line s

will vary continuously with respect to the O frame as

s = [cos(ωs t),− sin(ωs t), 0] (13)

The solar torque on each craft depends on the orientation of the craft-normal relative to
the orbit frame. The orientation of each craft with respect to the orbit frame is defined in
terms of a cone angle δ and a clock angle γ , as shown in Fig. 4 (McInnes 1999; Li 2008).
For this study, the cone and clock angles (δ, γ ) for each craft are fixed.

Therefore, the components of aSRP for a craft in the Earth–Moon orbit frame are given by
(McInnes 1999; Li 2008)

aSRPre = aSRPmax cos2 γ cos(ωs t − γ ) (14a)

aSRPat = −aSRPmax cos2 γ sin(ωs t − γ ) sin δ (14b)

aSRPon = aSRPmax cos2 γ sin(ωs t − γ ) cos δ (14c)

where aSRPmax = |aSRP| , aSRPre is the component in orbit radial direction, aSRPat is in the
direction of orbital velocity (along-track), and the component aSRPon is in the orbit normal
direction. Equation (14) show that the SRP acceleration in the Earth–Moon system is periodic
and time varying.

3.3 Numerical simulation

The solar drag and gravity gradient force magnitudes for nominal conditions are illustrated
in the following numerical simulation. The simulation parameters and the values used are
listed in Table 1.

Figure 5a shows the time histories of gravity gradient forces and differential solar drag
on a two-craft formation in the GEO environment. For the nominal separation distance, the
gravity gradient force is computed from the torque expression in Eq. (7) and the differential
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Table 1 Input parameters used
in the simulation

Parameter Value Units

m1 150 kg

m2 150 kg

Lref 25 m

kc 8.99 × 109 Nm2

C2

σ (GEO) 1

σ (L2) 3.190432478

Qref (GEO) −2.079105 μC2

Qref (L2) −0.006816 μC2

� (GEO) 7.2915 × 10−5 rad/s

� (L2) 2.661699 × 10−6 rad/s

δL(0) 0.5 m

ψ(0) 0.1 rad

θ(0) 0.1 rad
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Gravity Gradient

Fig. 5 Radial equilibrium simulation results at GEO for nominal initial conditions. a Time histories of gravity
gradient and solar drag forces, b force magnitudes as a function of craft area ratio

solar drag force is computed using Eq. (12). For craft 1, a square cross-sectional area of 1 m2

is constantly facing the Sun, and, for craft 2, the circular cross-sectional of area of 0.25πm2

is facing the Sun. It clearly shows that the gravity gradient forces are sufficient to withstand
the solar drag in the GEO environment. The results in Fig. 5b are obtained by fixing the
craft 1 cross-sectional area and varying the craft 2 cross-sectional area from 1 to 2 m2. These
results indicate that even after increasing the solar drag, the combination of the maximum
gravity gradient force and the reference Coulomb force magnitude obtained from Eq. (6) are
sufficient to stabilize the formation.

Figure 6a shows the time histories of gravity gradient forces and differential solar drag
for a two-craft formation at the Earth–Moon L2 libration point environment. It clearly shows
that the gravity gradient forces are very weak, and thus cannot withstand the solar drag at
L2. The results in Fig. 6b also indicate that the maximum gravity gradient force magnitude
and the reference Coulomb force magnitude on each craft are not sufficient for stabilizing
the formation. Therefore, unless equal sunlit surface areas of the two-craft are assumed such
that the differential solar drag is zero, the charged feedback control law used in Inampudi and
Schaub (2010b) will not be able to stabilize the two-craft formation at the libration points.
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Fig. 6 Radial equilibrium simulation results at Earth–Moon L2 for nominal initial conditions. a Time histories
of gravity gradient and solar drag forces, b force magnitudes as a function of craft area ratio

Consequently, for unequal sunlit surface areas of the two-craft a full state feedback control is
required that uses larger Coulomb forces in the longitudinal direction and electric propulsion
thrusters for transverse control.

4 Lyapunov feedback control

A generic controller is designed in this section that can withstand differential solar perturba-
tion for orbit radial configuration about circular orbits and at Earth–Moon collinear libration
points. Numerical simulations are shown to validate the controller performance.

4.1 Feedback control development

Lyapunov’s second method is used to develop a feedback control law for stabilizing a radial
equilibrium two-craft Coulomb tether formation. The aim is to design a control law that
takes into consideration constant solar radiation pressure effects at GEO as well as time
varying solar radiation pressure disturbances at libration points. As presented in Inampudi
and Schaub (2010b), the kinetic energy for a two-craft Coulomb tether formation is not just a
quadratic function of the velocities. Using the analytical approach discussed for the restricted
three-body problem in Meirovitch (2003), the nondimensional Hamiltonian Ĥ for a two-craft
tether formation in body coordinates is obtained as

Ĥ = 1

2
(l

′ 2 + l2(ψ
′ 2

cos2 θ + 3σ cos2 θ sin2 ψ + θ
′ 2 + (1 + 3σ) sin2 θ − (1 + 2σ)) (15)

where σ is a positive constant that depends on the collinear Lagrangian point chosen. For
“σ = 1”, the equation turns out to be the same equation that was found in Vadali and Kim
(1991) for circular Earth orbits. Since the Lagrangian for a two-craft tether formation does
not contain time explicitly (Meirovitch 2003), it follows that the Hamiltonian is constant.
Therefore, the two-craft Coulomb tether formation possesses a Jacobi integral in place of
the energy integral as a constant of motion.

Vadali and Kim (1991) and Fujii et al. (1991) use the Hamiltonian as a Lyapunov function
for stability analysis. Before the Hamiltonian is used as a Lyapunov function at libration
points, its positive definiteness must be ascertained. Based on the constant of motion in
Eq. (15), a Lyapunov function Vlyp is defined as
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Vlyp = 1

2
(l

′ 2 + K̃1(l − l f )
2 + (K̃2 + l2)(ψ

′ 2
cos2 θ + 3σ cos2 θ sin2 ψ

+ θ
′ 2 + (1 + 3σ) sin2 θ))

(16)

where l f > 0 is the desired final value of l, K̃1 is a positive constant and K̃2 can either be
positive or zero. Vlyp is clearly positive definite, and Vlyp = 0 at the local radial equilibrium
conditions in Eq. (5). Assuming fdl , fdψ and fdθ to be the non-dimensional differential solar
perturbations in body frame, the time derivative of Vlyp with respect to τ is

V
′
lyp = l

′
((1 + 2σ)l − ul − fdl + K̃1(l − l f ))− 2

K̃2

l
(ψ

′
(1 + ψ

′
)cos2 θ + θ

′ 2
)

+ θ
′
(K̃2 + l2)

(
uθ
l

+ fdθ

l

)
+ ψ

′
(K̃2 + l2)

(
uψ
l

+ fdψ

l

) (17)

As mentioned before, the control variable ul is associated with Coulomb propulsion acting in
the longitudinal direction, and uψ and uθ utilize electric propulsion acting in the transverse
directions.

The following control laws for ul , uψ and uθ can be selected

ul = (1 + 2σ)l + K̃1(l − l f )− 2
K̃2

l
(ψ

′
(1 + ψ

′
)cos2 θ + θ

′ 2
)+ K̃3l

′ − fdl (18a)

uψ = −K̃5lψ
′ − fdψ (18b)

uθ = −K̃4lθ
′ − fdθ (18c)

where K̃3, K̃4 and K̃5 are positive constants.
Using these control laws, Eq. (17) leads to

V
′
lyp = −K̃3l

′ 2 − (K̃2 + l2)(K̃4θ
′ 2 + K̃5ψ

′ 2
) (19)

Proper choice of the gains guarantees the stability of the closed-loop system.
Substituting the control laws from Eq. (18) into the dynamics from Eq. (1), the closed-loop

system of equations thus obtained are

θ
′′ + 2

l
′

l
θ

′ + cos θ sin θ((1 + ψ
′
)2 + 3 σ cos2 ψ )+ K̃4θ

′ = 0 (20a)

ψ
′′
cos2 θ + 2 cos θ

(
l
′

l
cos θ − θ

′
sin θ

)

(1 + ψ
′
)+ 3σcos2 θ cosψ sinψ + K̃5 ψ

′ = 0

(20b)

l
′′ − l(θ

′ 2 + (1 + ψ
′
)2 cos2 θ − σ(1 − 3 cos2 θ cos2 ψ))+ (1 + 2σ)l + K̃1(l − l f )

− 2K̃2

l
(ψ

′
(1 + ψ

′
)cos2 θ + θ

′ 2
)+ K̃3l

′ = 0 (20c)
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Fig. 7 Radial equilibrium nonlinear control simulation results at GEO. a Time histories of length variations
δL , in-plane pitch angle ψ , and out-of-plane roll angle θ , b spacecraft charge time histories, c solar drag
perturbation time histories, d control time histories

These closed-loop system of equations can be used for three dimensional control of a two-
craft virtual Coulomb structure about circular orbits and at Earth–Moon libration points.
Furthermore, they can be used either for station-keeping or for two-craft expansion and
contraction reconfigurations.

4.2 Numerical simulation

With the Lyapunov feedback law in Eq. (18), Fig. 7 shows the simulation results in the GEO
environment and Fig. 8 shows the results at L2 libration point. The gain settings used for
both the environments are K̃1 = 2, K̃2 = 0, K̃3 = 4, K̃4 = 2 and K̃5 = 2. Figure 7a shows
the Coulomb tether motion at GEO. The in-plane pitch motionψ , out-of-plane motion θ , and
the separation distance deviation δL asymptotically converged to zero. The attitude motion
converged in less than 0.5 orbits, whereas, the separation distance converged in about 1.3
orbits. Similar results are observed at L2 in Fig. 8a.

Figures 7b and 8b illustrate the spacecraft control charge q1 usage for the non-linear
simulation. Because the solar drag perturbations on the two-craft formation exhibit cyclic
behaviour as shown in Fig. 7c, the charge results depicted in Fig. 7b also exhibit cyclic
nature and do not converge to the static equilibrium reference value q1r . The cyclic nature
is more predominant at L2 in Figs. 8b and 8c. Furthermore, the micro-Coulomb charge
requirements are easily realizable in practice. Figures 7d and 8d illustrate the Coulomb force
utilization for longitudinal control and inertial thrusters usage for in-plane and out-of-plane
control. Therefore, Coulomb control and transverse control (micro-thrusters) forces are on
the order of micro-Newtons. Transverse control can be implemented either using Colloid or
PPT micro-thrusters.
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Fig. 8 Radial equilibrium nonlinear control simulation results at L2. a Time histories of length variations
δL , in-plane pitch angle ψ , and out-of-plane roll angle θ , b spacecraft charge time histories, c solar drag
perturbation time histories, d control time histories

5 Conclusion

The stabilization of a two-craft Coulomb formation in the presence of differential solar drag
is studied for orbit-radial equilibrium about circular orbits and at libration points. Previous
research assumes that the two-craft areas exposed to sunlight are equal such that the differ-
ential solar radiation pressure is zero. This paper assumes that the differential solar drag on
the two-craft formation is not zero. And in the presence of SRP disturbances, a Lyapunov
feedback control method is presented for feedback stabilization of a radial equilibrium two-
craft Coulomb tether formation about circular orbits and at libration points. The method uses
a Lyapunov function based on a first integral of motion of the two-craft Coulomb forma-
tion. The controller designed using this method works very well and the control law utilizes
a three-dimensional control (separation distance, in-plane and out-of-plane motion). The
Lyapunov feedback control law obtained has a σ parameter which varies for each collinear
libration point. Furthermore, setting “σ = 1” yields a control law for orbit-radial equilibrium
in Earth circular orbits. Therefore, the Lyapunov control law at the libration points is pro-
vided as a generic control law in which circular Earth orbit control forms a special case. In
the numerical simulations, it is recommended that the control gains be chosen such that the
pitch and roll angles do not exceed 90◦. This will ensure that undesirable equilibrium points
are not reached. Depending on the desired final separation distance between the craft, the
gains for the Coulomb propulsion control law should be appropriately adjusted. Assuming
differential solar drag effects, numerical simulations are presented that illustrate the sta-
bilization of a two-craft Coulomb formation in the GEO environment and at L2 libration
point.
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