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A description of an attitude control system for a three-axis stabilized spacecraft is presented. A globally stabilizing

nonlinear feedback control law is derived that enables tracking of an arbitrary time-varying reference attitude. This

new control incorporates integral feedback while avoiding any quadratic rate feedback components. A redundant

cluster of four or more reaction wheels is used to control the spacecraft attitude, and three magnetic torque rods are

used for purposes of continuous autonomous momentum dumping. The momentum dumping strategy can employ

general torque rod orientations, and it is developed to take advantage of a redundant set of reaction wheels.

Nomenclature

B = Earth magnetic field vector
ê = principal rotation vector
�Gs� = matrix of reaction wheel spin axes
�Gt� = matrix of torque bar alignment vectors
ĝsi = spin axis of ith reaction wheel
ĝti = alignment axis of ith torque bar
hi = momentum of reaction wheel about spin axis
�I� = spacecraft inertia tensor
Jsi = inertia of ith reaction wheel about spin axis
K, �KI �, �P� = feedback gains
L = external torques acting on the spacecraft
usi = motor torque of ith reaction wheel
μi = dipole magnitude of ith torque bar
σ = modified Rodrigues parameter set
τTB = torque on spacecraft resulting from magnetic

torque bars
Φ = principal rotation angle
Ωi = rotational velocity of reaction wheel about spin

axis relative to spacecraft
ω = spacecraft angular velocity
ωr = reference angular velocity

I. Introduction

T HE use of momentum exchange devices, such as reaction
wheels, is a commonmethod of spacecraft attitude control. Such

devices work through momentum transfer between the spacecraft
body and one or more spinning wheels. To detumble a spacecraft,
wheel speeds are modified in such a way as to effectively absorb the
spacecraft momentum. The same principle may be used by a cluster
of reaction wheels for arbitrary three-axis spacecraft pointing. Here,
motor torques drivewheel accelerations; thesemotor torques, in turn,
act equally and opposite on the spacecraft frame. By carefully con-
trolling the wheel accelerations, torque is created, which allows for
general attitude corrections [1–4]. Due to the interface between the
reaction wheel assemblies and the spacecraft, the total momentum of
the system is constant. The limitation of reaction wheel actuation is
the speed to which a flywheel can be accelerated before reaching the
physical wheel speed limit. This saturation can lead to stability or
performance concerns. Thus, it is of interest to consider reaction

wheel control strategies that seek to reduce necessary control efforts
in order to lessen the likelihood of reaching saturation. In prior work,
attitude control strategies were developed that were quadratic in
terms of angular velocity [3]. If the spacecraft angular velocities were
large, this quadratic term required significant control effort, as it was
proportional to the angular velocity squared.
A practical consideration with the use of reaction wheels is the

need formomentumdumping [5,6]. Because the systemof spacecraft
and reaction wheels conserves momentum, as the spacecraft loses
momentum, the wheel speeds must increase. Additionally, any per-
turbing torques acting on the spacecraft must be absorbed by the
wheels if precise pointing is to bemaintained. Due to the inherent size
and speed limitations of physical systems, wheel speedsmay become
saturated after a period of time, preventing further attitude control of
the spacecraft. If the momentum storage capacity of the reaction
wheel cluster is not large enough to absorb all of the spacecraft mo-
mentum, the wheel speeds reach their maximum values and further
wheel acceleration is not possible. As a method of torquing, the
spacecraft besides the reactionwheels is needed in order to despin the
wheels while still meeting the attitude control requirements. One
method for accomplishing this task is the use of thrusters [7]. By
angling the thrusters offcenter from the spacecraft center of mass,
torques are created that can be used to lower wheel speeds.
Another option for momentum dumping is the use of magnetic

torque rods [5,8,9]. Here, coils of wire are wrapped around a ferrous
core, such as iron. Applying a current to thewire produces amagnetic
dipole that, in turn, interacts with the Earth’s magnetic field to
produce a torque on the spacecraft. This torque is then used to despin
the wheels. A challenge with using magnetic torque rods lies in their
inability to produce an arbitrary three-dimensional torque. In fact, a
torque can only be produced perpendicular to the Earth’s magnetic
field, providing only two degrees of freedom available for dumping
the wheel momentum [10,11].
Reference [12] considers attitude control with a redundant cluster

of four reaction wheels. An attitude control solution that minimizes
the norm of the reaction wheel motor torques is provided using Euler
angles, the direction cosine matrix, the Euler axis of rotation, and
quaternions. To handle momentum buildup in the wheels, the com-
mandedmotor torques are augmented to drive the total momentum of
all wheels to zero.However,with redundantwheels, the totalmomen-
tumof thewheel cluster can be zero, even for very largewheel speeds,
due to the four degrees of freedom spanning three-dimensional space.
Thus, there does not appear to be a guarantee that wheel speeds will
actually return to zero due to momentum dumping. This method also
does not provide a means to bias thewheels to nonzerowheel speeds,
though this has been considered in other work [5].
In this paper, an autonomous control is presented for a three-axis

stabilized spacecraft. This pointing control is achieved using a redun-
dant combination of four reaction wheels for attitude control and
three magnetic torque rods for momentum dumping. However, the
methodology developed is general enough to be applicable for an
arbitrary number of redundant reaction wheels and magnetic torque
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bars. The control algorithm is parameterized using modified Rodri-
gues parameters (MRPs) as the attitude description [13–16], and a
nonlinear feedback control law capable of tracking a time-varying
arbitrary attitude is developed. Although MRPs are chosen as the
attitudemeasure, the developments are easilymodified to incorporate
alternative attitude descriptions such as Euler angles and quaternions.
A new feedback control is developed for a spacecraft with a redun-
dant set of reaction wheels that still guarantees global asymptotic
stability but includes an integral error measure while avoiding qua-
dratic rate feedback terms. The integral feedback provides robustness
to unmodeled disturbance torques. This combination of integral
feedback while avoiding quadratic angular velocity feedback com-
ponents is a new development that helps avoid control saturation
issues when handling initial detumbling after being released from the
launch vehicle.
The redundancy of having four reaction wheels presents a chal-

lenge for momentum dumping. For any desired torque, there are an
infinite number of wheel accelerations that may be used to achieve it.
If a magnetic torque is created for momentum dumping purposes, a
solution for themotor torquesmust be chosen to offset it such that the
wheels actually spin down. There is no guarantee that any arbitrary
solution will not further increase wheel speeds, leading to wheel
saturation. To that end, amomentumdumping strategy is investigated
for the case of a redundant reactionwheel cluster. The solution should
be very general, in that the reaction wheels and torque rod actuation
axes can have general body-fixed orientations. This more general
solution should provide effective autonomous momentum dumping
and integrate well with the attitude control law. If the reaction wheel
cluster is redundant, the momentum dumping strategy is desired to
exploit the reaction wheel null space. The end result should be a
single strategy for general configurations.

II. Background

In this paper, a rigid-body spacecraft outfitted with a redundant
set of reaction wheels (n > 3) and a set of magnetic torque bars is
considered. The developments in this paper are formulated in a
general way that can account for different numbers of these actuation
devices. The primary function of the reaction wheels is to provide
three-axis pointing. Due to the process of momentum exchange be-
tween thewheels and spacecraft, amethod for dumpingmomentum is
needed [5]. To that end, a set of magnetic torque bars is used for the
purpose ofmomentum dumping. For a single torque bar, the resulting
torque is [17]

τTBi � μiĝti ×B

where μi is the strength of the magnetic dipole of the torque bar, ĝti is
the alignment axis of the torque bar, and B is the Earth’s magnetic
field. It is important to note that a magnetic torque bar is only capable
of producing torque in the plane perpendicular to the magnetic field.
For the full set ofN torque bars, the resulting torque on the spacecraft
is expressed as

τTB � −� ~B��Gt�μ (1)

where � ~B� denotes the skew-symmetric matrix, �Gt� �
� ĝt1 ĝt2 : : : ĝtN �, and μ � � μ1 μ2 : : : μN �T .
The spin axis of each reaction wheel is denoted as ĝsi. The

momentum exchange between the spacecraft and wheels is accom-
plished through careful application of motor torques usi. These
torques, in turn, act to change the wheel speeds, which are defined
relative to the spacecraft and referred to as Ωi. Thus, the momentum
of a single wheel about its spin axis is

hi � Jsi�Ωi � ĝTsiω� (2)

where Jsi is the inertia of the wheel about its spin axis, and ω is the
spacecraft angular velocity. In accordance with Euler’s equation, the
wheel speeds evolve as a result of applied motor torques according to

usi � Jsi� _Ω� ĝTsi _ω� (3)

In the current study, the modified Rodrigues parameter set is used
as the attitude measure [18–20]. Although MRPs are chosen for the
analysis in this paper, the control developments could also be
similarly derived using other attitude parameters, such as Euler
angles or quaternions. The kinematic differential equation for the
MRP set is [14]

_σ � 1

4
��1 − σTσ�I� 2� ~σ� � 2σσT �δω (4)

where I is the 3 × 3 identity matrix, and δω � ω − ωr is the angular
velocity of the spacecraft body frame relative to a reference frame.
The spacecraft angular velocity is denoted as ω, and the reference
frame angular velocity is denoted as ωr. Being a minimal parameter
set for attitude description, modified Rodrigues parameters do have
singularities. However, the nonuniqueness of the MRP set allows for
avoidance of the singularities by switching back and forth between
the original and shadow sets [3].
The rotational motion of a spacecraft equipped with n reaction

wheels and N magnetic torque bars is described by [3]

�I� _ω � −ω × ��I�ω� �Gs�hs� − �Gs�us − � ~B��Gt�μ�L (5)

where �I� is the inertia tensor of the spacecraft, and

�Gs� � � ĝs1 ĝs2 : : : ĝsn � (6a)

hs � �h1 h2 : : : hn �T (6b)

us � �us1 us2 : : : usn �T (6c)

whereas L is the external torque acting on the spacecraft. Note that
the term �I�ω� �Gs�hs is the total angular momentum of the space-
craft and reaction wheels.

III. Attitude Control

The tracking problem of an arbitrary, possibly time-varying
reference attitude is considered. Of interest is developing a nonlinear
three-axis attitude control with a redundant set of reaction wheels.
The control should avoid quadratic rate feedback terms to avoid
saturation during a detumbling maneuver while providing a robust
solution to small unmodeled torques. This baseline control will then
be enhanced in the following section by superimposing a continuous
momentum management system.
Let the reference frame be denoted as R. The goal of the attitude

tracking control law is to reorient the spacecraft body frame B such
that it matches R. The attitude error between B and R is described
using the MRP description σ. It then follows that, by driving σ → 0,
attitude tracking is achieved. Furthermore, if the reference attitude is
time varying, then the spacecraft angular velocityωmust track that of
the reference frame ωr.
Consider the candidate Lyapunov function

V�σ; δω; z� � 1

2
δωT �I�δω� 2K ln�1� σTσ� � 1

2
zT �KI �z (7)

where δω � ω − ωr,K is a scalar gain, �KI � is a gain matrix, and z is
the integral term [3,21]:

z �
Z
t

0

�Kσ � �I�δ _ω� dt (8)

This integral term is added to provide robustness in the presence
of unmodeled external torques. The Lyapunov function is positive
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definite about σ � 0, ω � ωr, z � 0. Here, the attitude error is
formulated in terms of MRPs, but alternate attitude parameter sets
could be similarly used. Lyapunov error functions incorporating
other attitude parameter sets may be found in [3]. Computing the
derivative of the Lyapunov function yields

_V�σ; δω; z� � �δω� �KI �z�T��I� _ω − �I�� _ωr − ω × ωr� � Kσ�
(9)

Note that, to arrive at this result, the derivative of the right-hand
side of Eq. (7) is taken with respect to the spacecraft body frame.
Evaluating the body-frame derivative of δω results in the introduction
of theω × ωr term. Formore detail on this development, the reader is
referred to [3]. Plugging in Eq. (5), the Lyapunov rate becomes

_V�σ; δω; z� � �δω� �KI �z�T�−ω ×
�
�I�ω� �Gs�hs

�
− �Gs�us

�L − �I�� _ωr − ω × ωr� � Kσ� (10)

Note that the magnetic torque has been omitted in this devel-
opment. It is considered in the following section regarding momen-
tum dumping. Its omission does not impact the stability guarantees
derived here. As discussed later on, the added magnetic torques are
compensated exactly by the reaction wheels, and the net effect on the
spacecraft dynamics is zero. Thus, themagnetic torques affect neither
the Lyapunov function nor the Lyapunov rate, and the stability
guarantees remain valid.
To ensure Lyapunov stability, themotor torquesus are employed to

cause the Lyapunov rate to take the negative semidefinite form

_V�σ; δω; z� � −�δω� �KI �z�T �P��δω� �KI �z� (11)

where �P� is a positive definite gain matrix. In prior work [3], this is
accomplished by directly compensating the natural dynamics present
in Eq. (10). Such an approach yields a control law of

�Gs�us � −�I�� _ωr − ω ×ωr� � Kσ � �P�δω� �P��KI �z − ω

× ��I�ω� �Gs�hs� �L (12)

Although this solution achieves the desired negative semidefinite
form and can be shown to be asymptotically stabilizing, it suffers
from the presence of the quadratic angular velocity term−ω × �I�ω. If
the angular velocity is high, this quadratic term can become large
enough to lead to control saturation, invalidating the analytic stability
guarantees. Note that this issue is most likely to occur following
kickoff from the launch vehicle, with spacecraft tumble rates of a few
degrees per second.
In the current paper, we present a novel control formulation that

eliminates the need for this quadratic term while still providing
asymptotic stability. Consider the control law

�Gs�us � −�I�� _ωr − ω × ωr� � Kσ � �P�δω� �P��KI �z

− ��fωr� − g�KI �z���I�ω� �Gs�hs� �L (13)

where the overtilde is used to denote the skew-symmetric matrix.
Substituting this into Eq. (10) yields

_V�σ; δω; z� � �δω� �KI �z�T ��−�fδω� − g�KI �z���I�ω� �Gs�hs�
− �P�δω − �P��KI �z� (14)

Noting the identity

�δω� �KI �z�T�−�fδω� − g�KI �z���I�ω� �Gs�hs� � 0

the Lyapunov rate reduces to the negative semidefinite form in
Eq. (11). Thus, the system will converge to the set δω� �KI �z � 0.

To determine asymptotic stability, higher-order derivatives of the
Lyapunov function are evaluated on the set δω� �KI �z � 0 [22].
The second derivative is identically zero ( �V � 0), and the third
derivative reduces to

V
⃛

�σ; δω; z� � −2K2σT �I�−1�P��I�−1σ (15)

which is negative definite. Thus, the control law is asymptotically
stabilizing, i.e., σ → 0. Furthermore, the kinematic coupling between
the MRP set and the angular velocity guarantees that, if σ converges
to 0, then δω must also converge to zero. Lastly, the integral term z
must converge to 0 to satisfy δω� �KI �z � 0.
The new control law in Eq. (13) does not contain a quadratic

function of ω. It does, however, contain a term proportional to
ω ×ωr. This is unavoidable if time-varying reference tracking is
desired. The absence of the quadratic term is most beneficial for
initial detumbling maneuvers following release of the spacecraft,
where tumbling rates may be high enough to cause control saturation
if the quadratic term is included. To compute the necessary motor
torques, the �Gs�matrix must be inverted. In a redundant system, this
matrix will be of dimension 3 × n and a minimum norm inverse may
be used.
The integral term z is included to provide robustness in the

presence of unmodeled torques. A torque that is not accounted for
will cause the Lyapunov rate to lose its negative semidefiniteness.
Instead, the Lyapunov rate will be

_V�σ; δω; z� � −�δω� �KI �z�T��P��δω� �KI �z� − ΔL� (16)

where ΔL is the unmodeled torque. Though the stability guarantees
no longer hold, δω and z cannot grow unbounded because the qua-
dratic �δω� �KI �z�T �P��δω� �KI �z� termwill eventually dominate,
making _V negative. If σ did not converge to 0, then the integral term z
would grow unbounded. Therefore, σ must converge to 0, along with
δω. So, asymptotic stability still holds for the attitude, but the integral
term will no longer converge to 0. For further discussion on this
matter, the reader is referred to [3].

IV. MomentumManagement with Redundant Reaction
Wheels

As the wheels are spun up to provide attitude control, they will
eventually reach their saturation limit with regard to wheel speeds if
left unchecked. To eliminatemomentum from the spacecraft/reaction
wheel system, an external means of torquing is required. The mag-
netic torque bars are used for this purpose. By creating a magnetic
torque on the spacecraft in a controlledmanner and compensating for
it with the reaction wheels, the wheels can be despun while simulta-
neously achieving attitude control. In practice, reaction wheels are
often biased toward nonzero wheel speeds. These nonzero wheels
speeds result in a desired bias angular momentum hB.
In prior work [5,8,9], a cross-product desaturation control lawwas

used. The magnetic dipole produced by the torque bars was
proportional to

μ ∼ Δh × B (17)

where Δh � hW − hB. At any given time, the angular momentum
vector of the reaction wheels hW was given by

hW � �Gs�hs

In the case of three reaction wheels, this strategy is sufficient, as a
nonzero Δh vector implies the wheel speeds are not biased properly.
In a redundant system, however, such a formulation can be

problematic. This is due to the fact that the set of four ormore reaction
wheels span a three-dimensional space in a manner that allows for
nonunique control solutions. For example, for a necessary torque,
there are an infinite number of motor torques that may be used to
achieve it. Similarly, there are an infinite number of wheel speeds that

HOGAN AND SCHAUB 1867

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
N

ov
em

be
r 

14
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

08
12

 



may result in a given hW . Thus,Δhmay be 0, or very small, even for
large wheel speeds. In such a scenario, the resulting desaturation
magnetic torque would be virtually nonexistent, in spite of the fact
that the wheels were nowhere near the desired bias.
To prevent these issues, a method for handling desaturation in a

redundant system is developed. First, note that the motor torque
equation may be approximated by

us � �Js� _Ω (18)

where �Js��diag��Js1 Js2 ::: Jsn �� and _Ω�� _Ω1
_Ω2 ::: _Ωn �T .

In general, _ωwill be small and not significantly impact the evolution
of the wheel speeds. To impose a despin torque on each wheel, a
feedback on wheel speeds is used:

u�s � −c�Js��Ω −Ωr� (19)

where c is a gain, andΩr are the wheel speed biases. Superimposing
these desaturation torques on top of the control solution in Eq. (13)
results in a net torque on the spacecraft of

τRW � −�Gs�u�s (20)

To counteract this, themagnetic torque bars are used. An attempt is
made to perfectly offset the despin torque by controlling the dipoles
of the individual magnetic torque bars using

−� ~B��Gt�μ � �Gs�u�s (21)

The torque bars are limited, however due to the fact that they can
only generate torque perpendicular to the magnetic field vector.
Generally, the product � ~B��Gt� is not full rank, and a direct inverse is
not possible. Instead, a singular value decomposition pseudoinverse
is performed [23]. The resulting solution for the dipoles is given by

μ� � −�� ~B��Gt��†�Gs�u�s (22)

where the superscript † is used to represent the pseudoinverse. This
least-squares-like inverse yields dipoles for which the total magnetic
torque approximates the desired momentum dumping torque us the
closest.
The resulting magnetic dipoles interact with the Earth’s magnetic

field to produce a torque on the spacecraft equivalent to

τMTB � −� ~B��Gt�μ� (23)

Ideally, τRW � τMTB � 0. However, this will rarely, if ever, be the
case due to the inability of the torque bars to generate torque in the
direction of the magnetic field. If left unchecked, the resulting
imbalance between the desaturation torque τRW and the torque bar
compensation torque τMTBwill result in a nonzero perturbation on the
spacecraft that will drive it away from the desired attitude. A final
addition is made to the motor torques to account for this difference,
and it is computed as

Δu � �Gs���τMTB − �Gs�u�s � (24)

The superscript� is used to denote aminimumnorm inverse.With
this correction, the resulting torque acting on the spacecraft due to the
desaturation process is zero, i.e.,

−�Gs��u�s � Δu� − � ~B��Gt�μ� � 0 (25)

The wheel desaturation algorithm is superimposed upon the
attitude control solution and does not impact the stability guarantees
derived in the previous section due to the net-zero torque it produces.
Assuming the control law in Eq. (13) results in a motor torque
solution of ur, the commanded motor torques at any particular time
are given by

us � ur � u�s � Δu (26)

with the necessary dipoles computed in Eq. (22). This desaturation
strategy may be applied continuously. Furthermore, in the case of
hW � hB, even with large wheel speeds, the desaturation strategy
will act to bring the wheels to the desired biases.

V. Numerical Simulation

To demonstrate functionality of the control law and momentum
dumping strategy, numerical simulation is used. A scenario is
considered where the spacecraft is to track the rotating Hill frame
[3,24]. Let the instantaneous orbital position of the spacecraft be
denoted as r and its velocity by v. The Hill frame is then defined by
the unit vectors

ôr �
r

jrj ; ôθ � ôh × ôr; ôh �
r × v
jr × vj (27)

In this scenario, the goal is to reorient the spacecraft such that
b̂1 → ôθ, b̂2 → ôh, and b̂3 → ôr. The orbital elements used to
simulate the orbital motion are given in Table 1. Here, a circular orbit
is used, which corresponds to reference angular velocity of

ωr � nôh (28)

where n is the orbital mean motion. The Hill frame rotates about the
ôh axis at a rate equal ton. To propagate the orbit, two-body dynamics
are used.
To simulate magnetic torque bar behavior, a magnetic field model

is needed. For this study, the tilted-centered dipole magnetic field
model is used, with magnetic field components defined by [17]

2
64
BNorth

BEast

BDown

3
75�−

�
6378 km

r

�
3

×

2
64

−cos ϕ sin ϕ cos λ sin ϕ sin λ

0 sin λ −cos λ

−2 sin ϕ −2 cos ϕ cos λ −2 cos ϕ sin λ

3
75
2
64
29;900

1900

−5530

3
75nT (29)

where λ is the spacecraft latitude, and ϕ is the longitude. Note that, in
the Earth-centered/Earth fixed (ECEF) frame, the magnetic field is
constant. In the Earth-centered inertial (ECI) frame, the magnetic
field rotates along with the Earth. The spacecraft orbit is propagated
in the ECI frame, and the rotation of the Earth must be modeled. For
the simulation, the ECEF and ECI frames are assumed to be aligned
initially, and the Earth rotates about the z axis at a rate of
7.292 × 10−5 rad∕s.
The spacecraft is assumed to have three magnetic torque bars and

four reaction wheels. In the spacecraft body frame, the alignment
axes for these devices are

Table 1 Orbital parameters
used in numerical simulation

Parameter Value

a 6778.14 km
e 0 deg
i 45 deg
Ω 60 deg
ω 0 deg
ν0 (true anomaly) 0 deg
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�Gt��

2
64
1 0 0

0 1 0

0 0 1

3
75;

�Gs��

2
64

0 0 cos�45 deg� −cos�45 deg�
cos�45 deg� sin�45 deg� −sin�45 deg� −sin�45 deg�
sin�45 deg� −cos�45 deg� 0 0

3
75

Each reaction wheel is assumed to have the same spin-axis inertia
value of Jsi � 0.002 kg · m2. The torque bars are limited to a maxi-
mum dipole of 20 A · m2. A diagonal inertia tensor is assumed with
the values

�I� �

2
4 10.5 0 0

0 8 0

0 0 6.75

3
5 kg · m2

Lastly, the control gains implemented for the numerical simulation
are summarized in Table 2.
The initial conditions used for the simulation are ω0 �
� 6.0 6.0 6.0 �T deg ∕s, Ωi � 1000 revolutions per minute, and
σ0 � � 0.5 −0.5 0.7 �T . Here, σ0 represents the initial attitude of
the spacecraft relative to the ECI frame. For the attitude error, σBR is
used, which represents the rotation between the reference Hill frame
and the spacecraft body frame. To simulate unmodeled torques on the
spacecraft, a residual dipole of 1 A · m2 is applied to all three body
axes of the spacecraft.
For the purposes of comparison, two simulations are performed.

One is run with the cross-product momentum dumping strategy
presented in [5], and the second is run with the momentum dumping
strategy developed in this paper. For all three cases, the control law in
Eq. (13) is used and the closed-loop dynamics of the system are the
same. The resulting attitude and angular velocity errors are shown in
Fig. 1. Though the momentum dumping is handled differently for
each of the simulations, there is no net effect on the spacecraft attitude
errors. Thus, the attitude tracking history in Fig. 1 applies to both
cases. Roughly 25–30 min are required for convergence onto the
desired attitude.
The momentum dumping strategy in [5] is implemented as

follows. Here, a total dipole of

M � −
kM
B2
HD × B (30)

is applied to the spacecraft using the torque bars. Note that kM is a
feedback gain and

HD � �Gs�hs � �I�ω −HB (31)

whereHB is the desired bias momentum of the system. In the current
study, a value of kM � 0.003 l∕s is used. Effectively, HD is a
measure of the difference between the actual system momentum and
the desired bias momentum. To compensate the application ofM, a
correction to reaction wheel motor torques is performed to offset the
resultingM ×B torque on the spacecraft. Ideally, this correction will
drive the wheel speeds toward their desired values. For the case of
four reaction wheels, however, there are an infinite number of wheel
speeds that will yield a desiredHB. Thus, there is no guarantee that
the wheel speeds will converge to the desired values.
To illustrate the differences between the momentum dumping

algorithms, thewheel speeds for bothmethods are shown in Fig. 2 for
a duration of 125 min. All four reaction wheels are commanded to a
desired bias ofΩr � 250 rpm. The differences between the methods
are evident. The novel formulation shows all wheel speeds ap-
proaching the desired biases. The small oscillations are due to the
compensation of the unmodeled torques acting on the spacecraft. The
behavior is not the same, however, for the case of the cross-product
formulation. In this case, thewheel speeds oscillate about 0 rpm. This
is not a failure of the momentum dumping strategy; indeed, the sys-
temmomentum is converging to the desired bias. Rather, it is a failure
in the ability of this formulation to handle the case of redundant
reaction wheels. There is no guarantee the wheel speeds will ap-
proach their desired values. Although final wheel speeds of 0 rpm
may be completely acceptable, this result is dependent on the initial
conditions and the desired attitude history. With different initial
conditions, or a different reference attitude, the wheel speeds could
converge to different final values closer to the saturation limit,
limiting future attitude maneuvers. This result shows that the newly
developed momentum dumping strategy is an improvement over
prior work for the case of redundant reaction wheels.
To illustrate the effect of the new control law on control require-

ments, a simulation using the old quadratic controller in Eq. (12) is
run. All simulation parameters are maintained as previously stated,
and the novel momentum dumping strategy is used. The resulting
attitude error is shown in Fig. 3. The magnitude of the commanded
wheel motor torques is also shown, and it is compared with themotor
torque commands from the simulation using the novel control law. A
few conclusions can be drawn.Using the quadratic control law results
in a faster settling time. This faster settling time comes at the cost of
higher peak motor torques. Including the gyroscopic−ω × �I�ω term
in the controller helps to damp out the angular velocity faster, but it
results in larger peak motor torques due to the large angular velocity
of the spacecraft. This illustrates that, if motor torque saturation is a
concern due to the need to damp out high angular velocities, the novel
control law presented here can help reduce the required motor

Table 2 Control gains
used for numerical simulation

Parameter Value

�K� 0.037�I3×3� N · m
�P� 0.45�I3×3� N · m
�KI � 0.001�I3×3� N−1 s−2

c 0.005 s−1

a) Attitude error b) Angular velocity error
Fig. 1 Representations of a) relative attitude and b) angular velocity of body frame relative to Hill frame during first 40 min of pointing maneuver.
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torques.However, this does result in somewhat reduced performance,
as it takes longer to achieve convergence onto the desired attitude.
The differences in the necessary motor torques only increase as the
initial spacecraft angular velocity increases.

VI. Conclusions

In this paper, a spacecraft attitude control law is developed for a
redundant cluster of reactionwheels. The control law,which includes
integral feedback to account for unmodeled torques, is an improve-
ment over similar control strategies previously developed, in that it
does not contain a term that is quadratic in angular velocity. The issue
of momentum dumping is also addressed in the current study.
Prior work implements momentum management strategies for
nonredundant reaction wheel clusters that have limitations in their
application to a spacecraft equipped with four or more reaction
wheels. A new method of momentum dumping is developed, which
does not experience the shortcomings inherent in prior work.
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