
Generation of Spacecraft Operations Procedures Using Deep
Reinforcement Learning

Andrew Harris,∗ Trace Valade,† Thibaud Teil,∗ and Hanspeter Schaub‡

University of Colorado Boulder, Boulder, Colorado 80309

https://doi.org/10.2514/1.A35169

The high cost of space mission operations has motivated several space agencies to prioritize the development of

autonomous spacecraft command and control technologies. Deep reinforcement learning (DRL) techniques

present one promising domain for the creation of autonomous agents for complex, multifaceted operations

problems. This work examines the feasibility of adapting DRL-driven policy generation algorithms to problems

in spacecraft decision-making, including strategies for framing spacecraft decision-making problems such as

Markov decision processes, avenues for dimensionality reduction, and simplification using expert domain

knowledge, sensitivity to hyperparameters, and robustness in the face of mismodeled environmental dynamics.

In addition, consideration is given to ensuring the safety of these approaches by hybridizing them with correct-by-

construction control techniques in a novel adaptation of shielded deep reinforcement learning. These strategies are

demonstrated against a prototypical low-fidelity stationkeeping scenario and a high-fidelity attitude mode

management scenario involving flight heritage attitude control and momentum management algorithms. DRL

techniques are found to compare favorably to other black-box optimization tools or heuristic solutions for these

problems and to require similar network sizes and training durations as widely used testing datasets in the deep

learning community.

I. Introduction

T ECHNOLOGICAL trends including miniaturization and the
consistent decline of launch costs have dramatically reshaped

the space landscape by enabling space missions that involve greater
levels of operational complexity than previously feasible. New mis-
sion architectures that rely on coordination between multiple space-
craft have been proposed for domains ranging from communications
to heliophysics [1]. At the same time, there is growing interest in the
application of artificial intelligence and machine learning techniques
to the space domain by both government [2,3] and commercial actors.
Thiswork proposes the use of deep reinforcement learning (DRL) for
the generation of operations procedures for space missions of arbi-
trary complexity.
This work considers spacecraft operations consisting of the imple-

mentation of a mission design through the command and control of a
spacecraft. As a core component of the space mission life cycle, a
variety of techniques has been used to generate and implement opera-
tional plans and concepts of operations for space missions. Several
early spacecraft, including Explorer 1, performed their missions with
virtually no ground input after launch as a form of extremely minimal
autonomy. For relatively simple demonstration missions (such as in
Ref. [4]) or those that need to conduct precise maneuvers under the
presenceof light-speeddelay (suchas inRef. [5]), a commonworkflow
involves the generation of detailed operational plans or schedules on
the ground using human experts while relying on autonomous closed-
loop execution on board. Owing to the complexity of the operations
planning problem, a variety of tools have been developed or discussed
to aid this process. The Jet Propulsion Laboratory’sAutomated Sched-

uling and Planning ENvironment (ASPEN) tool and its related devel-
opments [6–8] use a constraint-driven job-shop scheduling approach
that is amicable to onboard use, and it has been demonstrated in flight
for science observation tasking on board the EarthObserving-1 (EO-1)
mission. A variety of constraint-driven optimization approaches has
been applied to various subproblems in the spacecraft operations
domain; for example, a variety of works deal with the scheduling of
image collection events [9], communication links [10], or combina-
tions of the two. Although these approaches often produce acceptable
results for small numbers of tasks or spacecraft, many have difficulties
scaling as either the number of possible events, states, or spacecraft
increases: especially those that rely on discrete representations of
spacecraft states.
For spacecraft that are expected to conduct repetitive behavior,

such as the nadir-staring CubeSats of the Planet Labs constellation
[11], state-driven operations procedures can be generated that con-
ceptualize the spacecraft as a hybrid system transitioning between
discrete dynamical or operational conditions rather than a set of
discrete tasks to be scheduled. These approaches are attractive from
an implementation perspective because they require relatively little
computational power to execute on board and can be rigorously
verified and validated on the ground. However, developing state-
driven rulesets that adequately meet mission criteria presents a major
engineering challenge, especially when realistic models of spacecraft
hardware and software behavior are considered. These challenges are
amplified by changes to hardware and mission parameters that occur
over a mission’s lifespan, which can force the re-design of hard-
coded procedures.
At the same time, deep reinforcement learning approaches have been

broadly studied in the context of autonomous decision making and
planning for large-scale domains, especially those that incorporate com-
plex dynamics with few analytical models. Unlike other techniques that
aim to solve Markov decision processes (MDPs), DRL techniques do
not require explicit models of the environments that they are intended to
solve and can instead learn frompreexisting numerical simulators alone;
in addition, their usage of deep neural networks for value and policy
representation allows them to generalize from discrete- to real-valued
representations of state, greatly enhancing their usability and avoiding
one aspect of the “curse of dimensionality.” This flexibility has enabled
DRL-based techniques to demonstrate human or superhuman per-
formance in tasks ranging from real-time strategy games [12–14], to
the command and control of autonomous vehicles [15,16], to data-
center power management [17]. Notably, DRL solutions to these

Presented as Paper 2020-0386 at the AIAA Scitech 2020 Forum, Orlando,
FL, January 6–10, 2020; received 20 May 2021; revision received 20 August
2021; accepted for publication 22 August 2021; published online 13 Decem-
ber 2021. Copyright © 2021 by the authors. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission. All requests
for copying and permission to reprint should be submitted to CCC at www.
copyright.com; employ the eISSN1533-6794 to initiate your request. See also
AIAA Rights and Permissions www.aiaa.org/randp.

*Research Assistant, Ann and H. J. Smead Department of Aerospace
Engineering Sciences.

†Discovery Learning Assistant, Ann and H. J. Smead Department of Aero-
space Engineering Sciences.

‡Glenn L.Murphy Chair of Engineering, Ann and H. J. SmeadDepartment
of Aerospace Engineering Sciences, 431 UCB, Colorado Center for Astrody-
namics Research.

611

JOURNAL OF SPACECRAFT AND ROCKETS

Vol. 59, No. 2, March–April 2022

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 

https://orcid.org/0000-0003-0002-6035
https://doi.org/10.2514/1.A35169
www.copyright.com
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.A35169&domain=pdf&date_stamp=2021-12-13


challenges not only learn to reproduce behaviors that arise from
human planners but also identify novel behaviors with greater perfor-
mance than human-designed approaches. These merits prompt the
investigation in DRL algorithms for addressing spacecraft mission
planning tasks.
Space missions present several additional challenges as compared

to Earth-based applications of DRL. The existing reinforcement
learning literature is primarily concerned with sample efficiency,
which drives computational costs, and therefore implementation
difficulty; these constraints are doubly present for space missions,
which face constraints on telemetry bandwidth andmay operate only
a single spacecraft of a given configuration, greatly limiting the
amount of data or training time available. Multisatellite missions
may partially but not completely alleviate these concerns, especially
if said missions consist of identically constructed spacecraft in
similar orbits, and can therefore share training data; however, data
used for agent training must still be traded data used for the primary
mission. The safety and robustness of these machine learning (ML)-
driven systems represents an additional constraint. Although many
real systems share common constraints on the learning process [18],
unique features of the space mission life cycle create additional
factors and constraints that motivate this work. Unlike many other
reinforcement learning domains, fairly accurate a priori models of
system behavior arewell known for space systems [19], or are at least
bounded by mission requirements. At the same time, statuses that
would cause amission to fail, such as a low-power condition, must be
avoided at all costs during agent execution and are desirable to avoid
in training for similar reasons. As a result, safety for space mission
operations must be treated and enforced as a constraint for DRL-
driven operations problems.
A small collection of other works in the application of machine

learning techniques to spacecraft problems exists in the recent liter-
ature, mostly focusing on the application of learning approaches to
control problems in uncertain environments. Several works such as
Refs. [20,21] consider reinforcement learning in the context of autono-
mous aerobraking planners, demonstrating the benefits of deep neural
network architectures versus conventional tabular reinforcement learn-
ing for astrodynamics problems. Others explore machine learning
techniques for asteroid proximity operations [22] or autonomous lunar
landing [23]. Additional recent works have investigated the utility of
DRL techniques for providing inputs to traditional control techniques
in difficult problem domains, such as proximity operations [24].
Importantly, these approaches have focused on low-level control with
reinforcement learning: an area that has been traditionally addressed by
conventional estimation and control techniques with great success. In
contrast, this work explicitly examines applications of reinforcement
learning to high-level spacecraft planning and decision-making prob-
lems that have traditionally been the domain of rigid expert-defined
policies or optimization-focused strategies.
This work is organized as follows. First, a description of a general

high-level spacecraft mission operations problem is presented and
contextualized in the language of partially observable Markov
decision processes (POMDPs), considering specific common
attributes of these problems that can be exploited to improve the
efficiency of learning techniques. Next, a brief description of deep
reinforcement learning algorithms such as proximal policy optimi-
zation (PPO) and its potential use in designing operations proce-
dures is described. Specific attention is paid toward identifying
techniques in the literature for ensuring the satisfaction of safety
properties using both reward-engineering and formal methods.
Finally, the recommendations of this work are put into practice
for two representative operational challenges, outlining the tech-
nique’s adaptability and merits in comparison to heuristic or time-
line-driven approaches.

II. Challenges in Spacecraft Operations Procedure
Design

Traditional spacecraft operations planning and execution are com-
plex, multistep processes withmany stakeholders that rely heavily on
expert knowledge. For reference, a generic version of this paradigm is

presented here. First, mission stakeholders specify mission objec-
tives and a referencemission trajectory. Given this trajectory and a set
of desired tasks, a set of activities is defined and scheduled as
spacecraft resources (power, fuel, compute time) and mission resour-
ces (observation/maneuver/communication windows) permit.
Finally, these activities are converted into an action sequence,
uplinked to a spacecraft, and executed by onboard software. In
parallel to these planning activities, teams of human operators typi-
cally monitor mission execution and spacecraft health parameters,
and they intervene when parameters fall outside of a defined speci-
fication: either directly by changing the current action sequence or
indirectly by initiating a replanning sequence. Uhlig et al. [25]
identified several key aspects of the mission operations life cycle:
1) The first key aspect is downlink/uplink scheduling. Communi-

cating results and telemetry is almost always a critical aspect of space
mission operations. Many operational design processes emphasize
the design and management of communication opportunities.
2) The second key aspect is orbit and attitude maneuver design.

Most missions will require regular attitude slews or stationkeeping
maneuvers throughout their lifetime; the design of these maneuvers
and the conditions that trigger them are core components of space-
craft operations.
3) The third key aspect is operations mode design. Owing to

fundamental physical or electronic constraints, it is almost always
necessary to specify multiple operating states for the spacecraft’s
hardware and software that can satisfy both mission goals and said
constraints.
4) The fourth key aspect ismission-driven tasking. Somemissions,

such as those focused on surveillance or targeted ground observation,
involve the active assignment of spacecraft tasks to mission-relevant
domains.
5) The fifth key aspect is operational plan development and

execution. The preceding actions must be combined at a high level
to meet a diverse set of mission goals while satisfying hardware and
software constraints.
The first three components are typically shared between missions,

and as a result can leverage a large body of work describing ground
access prediction, orbit determination and maneuvering, and attitude
control. However, no comparable body of standardized, generalized
approaches exists for the development of operational plans across a
variety of mission types. Although important subproblems have been
automated or assisted using various techniques, other important
aspects of the spacecraft operations life cycle (such as spacecraft
health management) are not typically considered or would render
such techniques computationally infeasible.

A. Deep Reinforcement Learning

Deep reinforcement learning algorithms seek to optimize the
behavior of decision-making agents as they interact with environ-
ments that are represented as Markov decision processes. MDPs are
formally defined as tuples of states S, actions A, observations O,
rewards R, and functions that map between states [s 0 � T�s; a�];
they may also include mappings between states and observations
[o � H�s�]. As their name implies, MDPs are Markovian such that
system trajectories can be predicted or inferred given the system state
at a single time; however, partially observable MDPs can break the
Markov property through partial observability, necessitating the use
of belief or memory functions to infer the status of unobserved states.
In general, this work focuses on the formulation and solution of time-
sequential POMDPs, as shown in Fig. 1.
These behaviors are represented by policies π that map from states or

state observations to actions or action probabilities. As a differentiator
from classical reinforcement learning, these policies are parameterized
by the weights and biases of one or more deep neural networks.
Following with the description of Markov decision processes, the
objective of virtually all DRL approaches is to maximize the expected
discounted reward obtained by an agent interacting with an MDP:

Vπ�s� � E

�Xk�∞

k�0

γkrtjst � s; π�θ�
�

(1)

612 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



where Vπ�s� represents the value of state s under policy π, γ
represents the reward discounting factor (chosen to be between zero

and one), rt is the reward value at step t, st is the state at step t, and
π�θ� is a policy parameterized by a vector of parameters θ. Awide

variety of DRL techniques has been developed, ranging from

straightforward extensions of reinforcement learning approaches

using neural networks to modern model-free policy gradient meth-

ods. To meet the aim of having a broadly applicable approach with

few limitations on the structure of the action or observation space,

proximal policy optimization [26] (a recently developedmodel-free

policy gradient algorithm) is used as a benchmark algorithm for the

purposes of this work. Empirical results have shown that PPO

provides a robust mix of performance, relative insensitivity to

hyperparameter selection, and applicability to a variety of problems

owing to its use of a probabilistic policy. At the same time, because

the resulting policy is not deterministic but instead a conditional

probability distribution over actions given an observation, the

behavior of PPO-derived agents is nondeterministic, which has

important implications for safety and verification. For the reader’s

convenience, a brief review of policy gradient methods and PPO

specifically is provided.
PPO is a simplified version of trust-region policy optimization

(TRPO) that obtains robustness by restricting the size of policy

updates via a clipped surrogate reward function. First, the ratio of

the new and old policies is taken:

r�θ� � πθ�ajs�
πθold�ajs�

(2)

PPO enforces a step-size constraint on the size of gradient updates by

clipping θ updates to remainwithin 1� ϵ of the previous policy. PPO
therefore adjusts the TRPO objective function to include clipping to

constrain the size of a given update:

JCLIP�θ� � E�min�rt�θ�Ât; clip�rt�θ�; 1 − ϵ; 1� ϵ�Ât�� (3)

where Ât is an estimate of the advantage function Aπ � Qπ�s; a� −
V�s� at time t, and ε is a tunable hyperparameter described as the

clipping fraction. When implementing PPO with a single neural

network for both the policy and value functions, the full objective

function is typically augmented to include both a value target and

entropy term:

JFull�θ� � E�JCLIP�θ� − c1�Vθ�s� − V target�2 � c2H�πθ�s��� (4)

whereH�πθ�s�� represents the entropy of the probabilistic policy π in
the state s,Vθ�s� represents the current value prediction in the current
state, and V target represents the value target at the current state.

A representative implementation of PPO is described in

Algorithm 1. First, a set of partial trajectories is sampled from the

environment using the current policy. Next, advantage estimates Âπk

are calculated from those samples using an advantage estimation

algorithm such as the generalized advantage estimation method

presented in Ref. [27]. Finally, minibatch stochastic gradient descent

is used with the loss function described in Eq. (4) to compute the

policy improvement.

B. Safety Guarantees

Safety in the face of uncertain spacecraft performance, environ-
mental parameters, and operating sequences is a critical requirement
for future spacecraft autonomy architectures. Although some
reinforcement learning techniques can bound their performance with
respect to a reward function within an MDP, these weak guarantees
often do not generalize, especially whenmoving from simulated data
to real-world application. In practice, this is dealt with through
reward engineering; unsafe action or state combinations are given
large costs or reward penalties. This approach has several key dis-
advantages: many problems for which reinforcement learning is well
suited have complex environment/reward interactions, which make
manual reward engineering difficult. When reward engineering is
feasible, it does not prevent the agent from taking unsafe actions in
conditions outside the training set presented by its environment,
especially when considering agents that use stochastic policies such
as PPO. Finally, there is no quantifiable boundary or degree of safety
provided through reward engineering. These shortcomings have
motivated the search for alternative approaches to safety that can
be combined with common DRL approaches.
Reactive synthesis is one category of techniques that can provide

performance bounds and guarantees for controllers on specified
systems. In general, reactive synthesis algorithms operate on discrete,
known, finite systems and attempt to produce behavior on such
systems that satisfies a specification written in a temporal logic
language, such as linear temporal logic (LTL). Also described as
“correct-by-construction” approaches, reactive synthesis algorithms
only produce control policies that meet a given specification; if the
specification cannot be met on the current system, no policy will be
produced, allowing for designers to check feasibility before imple-
mentation. Although powerful for addressing systems with discrete,
finite, known dynamics, reactive synthesis approaches scale poorly
with system and specification complexity. These characteristics limit
their applicability in solving general spacecraft planning problems,
which are difficult to discretize to sufficient fidelity [20].
Shielded learning techniques [28] combine common DRL

approaches with reactive synthesis-based shields to combine the
power of black-box optimization with formal guarantees of safety.
Shielded deep reinforcement learning (S-DRL) depends on the con-
struction of a coarse finite-state safety MDP from the original MDP
that the learning agent is intended to solve,which is conservativewith
respect to the original environment’s dynamics and the safety speci-
fication yet limited enough that reactive synthesis can be applied to it.
Next, a safety specification is created using linear temporal logic that
encapsulates all desired safety conditions and is provided as an input
to a reactive synthesis algorithm, such as a two-player game, which
produces a discrete state-dependent strategy. Finally, this strategy is
implemented alongside the learning agent as shown in Fig. 2; in this
implementation, the shield accepts observations of the current system
state and the action attempted by the learning agent, and it permits the
action only if it aligns with the shield’s strategy. This implementation
architecture is applicable to both training and online use of the
sequential decision agent, allowing it to provide safety boundaries
during mission execution.

Algorithm 1: Proximal policy optimization algorithm [26]

1: Result: π�θ�
2: for k < kmax do

3: Collect sampled transitions Dπ
k using current policy πk

4: Compute advantage estimate Âπ
k for each sampled transition

5: Compute new policy parameters using minibatch SGD with Eq. (4)
6: end
7: a � SampleDistribution(π�o�) return a

SGD = Stochastic Gradient Descent.

Fig. 1 Sequential partially observable Markov decision process frame-
work for representing decision problems.

HARRIS ETAL. 613

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.A35169&iName=master.img-000.jpg&w=232&h=128


Anexample of this transformation in practice is shown for a system

with two safety-critical dimensions in Fig. 3. Mission designers first

identify state combinations that represent mission failure, such as

depleting the spacecraft’s battery or allowing reaction wheels to spin

up beyond manufacturer’s specifications. In addition to the hard

safety constraints, operators and mission planners typically incorpo-

rate additional boundaries to act as margins of safety against actual

failure; these are represented by the dashed lines labeled “operational

boundary,” which are used to define “warning states.” While in this

boundary, operators typically take immediate action to return the

system to safe, nominal operating conditions. In this view, the

system’s behavior can be plotted on a phase plot, where individual

samples of the system’s true trajectory are represented as curves in the

observation variable space. The continuous but bounded system

creates a natural framework for the construction of a safety MDP,

wherein each warning state becomes a discrete state, including

products of warning states. It is important that the safety MDP

contains all information necessary for the system to operate safely,

which may require the inclusion of states that are not themselves

safety risks but which affect the performance of actions necessary for

the safety of the system. This process results in a discrete “safety”

MDP that exists in parallel with the continuous POMDP.

C. Dimensionality of Objective Landscapes

Reference [29] identifies a random subspace growth methodology

for identifying the intrinsic dimension of arbitrary machine learning

objective problems, providing a scalar figure of merit to compare the

difficulty of learning in different classification and reinforcement

learning problems. This work is briefly summarized in the context of

policy-based learning agents for the reader’s convenience.
Given a learning agent parameterized by a set of parameters

θD ∈ RD, the intrinsic dimensionality dint of a given problem is

defined as the codimension of the solution set inside of RD:

D � dint � s (5)

In general, the dimensionality of this space is nontrivial to determine

analytically. To determine these dimensions empirically, an iterative

process wherein the learning agent is trained with successively larger
random subspaces drawn from the overall policy space is used by

defining θD as

θD � θD0 � Pθd (6)

where P is a randomly generated, orthonormalizedD × d projection

matrix; θd is a parameter vector in a subspace of D such that d ≤ D;

and θD0 is an initial vector suited to the problem at hand. Gradients are

taken with respect to θd; the training process is repeated for a
specified number of iterations or samples and, at some point, d is
incremented; when d < dint, it is by definition not possible for the

learning agent to adequately solve the problem at hand. As a result,
sweeping across a range of values for d and identifying the value at
which solutions appear provide an estimate for the real value of dint.
Due to the numerical challenge of obtaining “100%” solutions, the
intrinsic dimension of an agent with 90% of the baseline solution
dint90 is used as the figure of comparison for problems.
This technique is particularly attractive because it allows direct

comparisons between the number of parameters required for a given
neural network to sufficiently address a given problem; moreover,
this technique allows for comparisons of difficulty across different

problems and problem types in terms of network requirements. Given
the explosion of Deep Neural Network (DNN)-driven techniques in
other fields, it is desirable to understand exactly how problems in
spacecraft tasking and planning relate in terms of difficulty and
learnability.

III. Autonomous Tasking of Spacecraft Flight Modes

A. Spacecraft Operations as Control

This work is primarily concerned with mission operations that
abstract collections of relevant low-level behaviors and states into
operational modes that can be readily composed by operators as part
of a general trend toward the formalization of such design practices.
Mode-based operations planning is common in the small satellite
domain for both Earth-oriented and deep-space missions; for exam-
ple, dialects of the Colorado system test and operations language

used for commanding spacecraft systems make use of mode speci-
fications when sending spacecraft commands [30]. The use of opera-
tional modes as the basic primitives for mission planning greatly
simplifies the overall learning problem and allows the use of existing
tools and processes to address low-level problems, such as attitude
determination and control. Aswith all abstractions, the application of
operational modes also hides true subsystem behaviors that can

impact missions on a high level. Specifically, this work conceptu-
alizes spacecraft operations as a hybrid system consisting of discrete
operational modesqi ∈ Q that affect the evolution of a constant set of
continuous states x ∈ X. The aim of the tasking process is to select
discrete modes to maximize performance with respect to a mission

Environment Agent

Shield

Reward

Action

Safe Action

Observation

Fig. 2 Post-posed shielded reinforcement learning framework.

Fig. 3 Conversion from continuous states to a discrete safety MDP.

614 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



objective function R � R�qi; x� while satisfying a set of constraints
corresponding to system hardware and software limitations.
A key benefit of this approach is the natural manner in which it can

be translated into a partially observable Markov decision process,
allowing the use of contemporary solution algorithms. For a space-
craft, the general high-level autonomy POMDP can be stated as
follows. Given the constraints of orbital dynamics, onboard hard-
ware, and predefined software behaviors, select the sequence of
behaviors that best satisfies mission objectives. This framework
situates the operational procedure as an “agent” that reacts to given
circumstances in the state space using a set of predefined actions.
Under this definition, there are multiple issues in translating from the
real-world problems of spacecraft operations to the Markov frame-
work that are common to other real-world examples [18]. In seeking
an MDP formulation for spacecraft decision making, three major
questions must be addressed:
1) How is time represented?
2) Which states/actions should we select? Should we consider

discrete or continuous spaces?
3) How do we define reward functions, and therefore agent

objectives?
Although the POMDP framework places no restrictions on the

nature of any of the transition functions or states, the consideration of
infinite-dimensional, continuous state, and action spaces can be
extremely computationally intensive. Given the limited computa-
tional resources of both research and development efforts in aero-
space, it is desirable to identify strategies for reducing the
dimensionality of the state and action environment without losing
representative information about the problem. Additionally, it is
noted that POMDPs attempt to describe holistic system-level prob-
lems within a unified framework that is theoretically related to but
practically divorced from traditional estimation and control
approaches. For these reasons, POMDP-based approaches to
autonomy are most frequently studied in cases where traditional
estimation and controls approaches are not readily tractable, includ-
ing human-assisted machine decision-making [31] or multivehicle
coordination problems [32].

1. State–Action Models

State, action, and transition-spacemodeling is a critical method for
encoding known information into the decision space for a learning
agent. At present, it is common in the reinforcement learning space to
include a wide variety of “raw” information from a system as the
input to an agent (AtariNet, for example, attempts to map directly
from pixels on a screen to button inputs). Shortcomings in this
approach have spurned further research in the domain of world
modeling and intermediate representation learning, wherein an agent
learns a model of the world and intermediate representations of
actions or observations in addition to policy-defining behaviors.
Given the range of prior work in spacecraft state estimation and
control, it is desirable instead to leverage existing state and action
representations, such as the hybrid systems representation of space-
craft operations suggested in Sec. III.A, which provides a straightfor-
ward way to reduce the space of actions to a finite set of discrete
operationalmodes and the observations to a subset of continuously or
discrete-valued system states.
To further simplify the observation model, assumptions can be

applied based on prior knowledge of other control strategies for
hybrid systems. One well-known result to demonstrate stability of
switching strategies for hybrid systems is the theory of multiple
Lyapunov functions (MLFs) [33]. MLF theory demonstrates that,
for a switched hybrid system, the stability of switching sequences on
said system can be shown by constructing candidate Lyapunov

functions for each subsystem Vi and demonstrating that said func-
tions remain Lyapunov-like for each switching time:

Vi � sTi Pisi for si ∈ s�k�; _Vi < 0 if a�k� � ai (7)

where Pi is a positive-definite matrix associated with subsystem i.
Inspired by this approach, this work proposes “Lyapunov dimen-

sionality reduction” (LDR) to simplify MDP construction for
switched hybrid systems. Rather than reporting the entire system
state to the agent, LDR proposes that it is sufficient to learn switching
sequences by observing the value of candidate Lyapunov functions
for subsets of the system state that are stabilized by each operational
mode, alongside other information necessary to ensure proper sub-
system functionality, whichwould otherwise break the hybrid system
abstraction. LDR is specifically useful in reducing the dimensionality
of planning operations that involve the management of continuous
vector-valued states, such as representations of attitude state or
orbital position errors, which are capable of being handled at a
low-level by preexisting control techniques.

2. Reward Functions

A major issue in the application of MDP solution methods is the
difficulty of specifying agent reward functions. In the space domain,
several considerations are present. At a minimum, reward functions
must be specified such that desirable results produce large rewards (or
result in small penalties).When possible, it is desirable for rewards to
be shaped such that agents can determine more- and less-desirable
behaviors. For deep learning agents specifically, there is considerable
debate surrounding the use of “reward engineering” to encourage
exploration of alternate strategies by assigning smaller rewards to
intermediate actions. Due to the complex relationship between prob-
lem dynamics, state representation, and reward functions, it can be
challenging to design complex-shaped rewards that produce desired
behavior. In complex environments with complex reward functions,
it is common for agents to successfully optimize against a reward
function that imperfectly represents the actual agent objective: a
failure mode known as reward hacking.
1) Discrete events are a common mission archetype studied

broadly in the literature that involve obtaining access to specific
points on a planet under specific constraints (time, local solar time,
etc.). Agents receive a reward for accomplishing specific mission
events under the provided constraints.
2) Abstracted events, as referenced in Ref. [6], aremission-specific

heuristic algorithms for scheduling science events that may already
exist; in this case, these behaviors may be abstracted to a “mission
mode” that provides the agent a reward for entering thatmode (i.e., the
learning objective is to maximize time available for mission oper-
ations).
For space missions, reward functions can be readily specified

given mission-level success criteria to the degree that such criteria
are known. For example, an Earth-observation mission might search
for plans thatmaximize the amount of data downlinked to the ground,
with no specifications for intermediate behavior.

B. Agent Implementation Frameworks

A major assumption in our formulation of the spacecraft control
problem as a (PO)MDP shown in Eq. (16) is the discretization of time
that, when combined with the mechanics of learning as described in
Sec. II.A, results in decision-making agents that can only react to
current observations, as shown in Fig. 4. Rather than using a specific
plan or strategy, all relevant planning and strategy information is
encoded in the deep network used by the agent. In practice, evaluating
neural networks is nearly constant time and can be readily hardware

Physical
Environment

Trained
Learning

Agent
Action 1Sensors

Current
Observation

Fig. 4 Sequential decision-making agent architecture.

HARRIS ETAL. 615

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



accelerated,making this implementation attractive for future onboard

use where system information is readily available and humans are

already out of the loop.
At the same time, many existing systems assume that discrete sets

of actions will be periodically uplinked from the ground and lack the

onboard processing power to evaluate a neural network. For these

systems, an architecture that uses a ground-side simulator to propa-

gate forward existing observations and actions is proposed as shown

in Fig. 5. The incorporation of a simulator allows for the agent to

make “future” decisions based on current knowledge and plan ahead.

This architecture is also attractive for near-term implementation

because it allows human operators to verify and validate action

sequences in advance of execution.
Examination of the properties and benefits of planning versus

reactive agents is left outside the scope of this work, which focuses

on establishing training and safety properties for DRL-based sequen-

tial decision-making agents for spacecraft command and control.

C. Safety Guarantees

To apply the shielded learning technique to space mission oper-

ations, a simplified version of themissionPOMDP is first constructed

using a priori knowledge. Here, alert states are defined using the

operational limits found in Table 1. These limits are applied to

transform the continuous-time continuous-state system described

by Eq. (16) into a simplified, discreteMDP in the observed variables,

represented graphically in Fig. 6. This MDP is stated as Pdisc:

P�

8>>>>>>>>>>><
>>>>>>>>>>>:

s�fωBN∈fnominal;highg;jωRW j∈fnominal;alert;failureg;
J∈fnominal;low;failureg
o�fq∈fq0;q1;:::q7;q8g
a�fMission;SunPointing;Desaturationg
T�ffMission;fSunPointing;fDesaturationg
R�f∅g

(8)

Although substantially smaller than the continuous-state POMDP,

the safety MDP encodes important information; for example, desa-

turation events are only feasible when the spacecraft is not in a

tumbling state, and tumbling states themselves do not lead to failure

unless the battery charge or wheel speed are already near the failure

criteria. In addition, the various state combinations that lead to failure

are lumped into q8 for brevity; this permits the use of the simple LTL

specification

φ � G�“fail”� (9)

which can be understood in English as “globally never allow the state

to reach the failure state.”

D. Safety Game Solutions

To solve this safety game, the game itself is implemented as a two-
player stochastic Markov game within the PRISM-games solver. In
this case, PRISM-games solves the safety game using value iteration
[34]. PRISM-games then saves the shield strategy as a table which
maps from shield states to safety-maximizing actions. For this work,
the resulting strategy is memoryless and state based, making it
especially amicable to online implementation.

IV. Reference Problems

To demonstrate how the formulation and guidelines presented
earlier in this paper could be applied to practical missions, two
baseline mission operations problems have been identified and
implemented. These problems are briefly summarized here.
1) The first problem is theMars science operations. This is a hybrid

systems regulation problem in which the learning agent must choose
between conducting orbit determination, maneuvering based on their
orbit knowledge to a target orbit, or collecting science data while in
the target orbit. These operational modes are implemented as a set of
linear dynamical modes; the agent is rewarded based on their prox-
imity to the target orbit while collecting science data.
2) The second problem is low-Earth-orbit (LEO) Earth observa-

tion. This scenario considers a spacecraft operating in LEO that

Physical
Environment

Trained Learning
Agent

Simulator

Action 2
Action k

Decision
Stack

Sensors

Current
Observation

Fig. 5 Planning architecture using a sequential decision-making agent.

Fig. 6 Safety MDP constructed for LEO attitude mode planning simu-
lator.Ddischarge represents depth of discharge (i.e., 1 − J).Modes relating
to “tumble” states with large body rates are omitted for clarity.

Table 1 Safety MDP labeling parametersa

Observed variable Operational limit Safety limit

jωBN j 0.05 rad/s N/A

jωRW j, rpm 1000 1500

Jstored, W ⋅ h 5 0

aN/A denotes “not applicable.”

616 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



must maintain its health status (battery charge, wheel speed) while
maximizing its time spent observing the Earth. This scenario incor-
porates safety constraints.

A. Mars Stationkeeping Task

1. Problem Description

Spacecraft conducting science operations typically need to main-

tain specific orbital parameters to achieve location-specific mission

objectives. Although trajectory designers seek to minimize the

impact of perturbations on such trajectories, mismodeling of these

perturbations is inevitable and spacecraft typically conduct station-

keeping burns at regular intervals. Because stationkeeping perfor-

mance is coupled to the spacecraft’s navigation accuracy and

navigation processes are not run or updated constantly, orbit deter-

mination activitiesmust be consideredwhen sequencing stationkeep-

ing burns. This scenario simulates the high-level tradeoffs between

estimation, stationkeeping burns, and science operations for a space-

craft that can only accomplish one mode at a time.
Due to hardware constraints, the spacecraft is capable of entering

either estimation mode or control mode but not both at the same time;

as a result, the spacecraft operations challenge is centered around

managing the (unknown) true state error while maximizing observa-

tion time. Tomatch the hybrid system assumption for dimensionality

reduction described in Sec. III.A.1, the estimation and control modes

are implemented using piecewise-Hurwitz matrices that are stable in

their respective states (i.e., estimation error decays exponentially in

the estimation mode and control error decays exponentially in the

control mode). To represent safety constraints, these modes fail to

operate if the respective error state falls outside of a specified bound;

this is representative of challenges presented by linear or linearized

estimation and control approaches, which face challenges when

operating outside of their linear regime.
The “true” nonlinear dynamics of a spacecraft with an inertial

position vector r resulting from gravity interactions are taken to

follow the two-body equations of motion in the presence of per-

turbing accelerations:

�r � −μ
r3

r� ap (10)

At the same time, a predefined reference trajectory obeying two-body

dynamics without perturbing accelerations is used to define the

desired mission:

�r	 � f	�r	� � −μ
r	3

r	 (11)

The erroneous propagator in Eq. (11) is also used to propagate

forward the spacecraft’s current orbital state estimate, x̂. The result-
ing state, estimate, and control errors are defined as

es � x − x	; eest � x − x̂; ec � x̂ − x	 (12)

The asymptotically stabilizing Cartesian continuous feedback con-

trol law for orbits defined in Ref. [35] is used in the control mode to

define control accelerations that will lead back to the reference

trajectory:

u � −�f	�x̂� − f	�x	�� − �K1��ec� − �K2�� _ec� (13)

where u is the control acceleration in the planet-centered inertial

frame, f	 is the two-body equations of motion, and �K1�; �K2� are
positive definite 3 × 3matrices. This control law is chosen due to its

amicable convergence properties, which allow x̂ to converge to x	
from arbitrary orbits (albeit at the cost of excessive fuel usage, which

is not considered in this environment). The estimation process is

modeled by approximating the dynamics of a well-tuned and robust

Kalman filter by stable and unstable estimate error vector and covari-

ance matrix dynamics. When not in the estimation mode, the esti-

mated state r̂ and covariance matrix �P� are propagated by

�̂r � f	�r̂�; �P� � �P� � �Q� (14)

which reflects the drift of the mean estimate due to mismodeled
dynamics and the steady growth of the covariance matrix due to
process noise. In the estimation mode, the error vector explicitly
computed and propagated separately with exponentially decaying
dynamics across all states, with some noise added to the estimate to
represent additional sensor noise:

eest � x − x̂; _eest � �Aest�eest � q; x̂ � x� eest (15)

where �Aest� is a diagonal Hurwitz matrix, and q is a normally
distributed random vector. The full MDP statement for this problem
is therefore

P �

8>>>>>>>><
>>>>>>>>:

s � fr ∈ R3; _r ∈ R3; r	 ∈ R3; _r	 ∈ R3g
o � fes ∈ R6; ec ∈ R6; σ ∈ R6g
a � fMission;Orbit Determination;Orbit Controlg
T � ffMission; fOrbit Determination; fOrbit Controlg
R � fRs;−1if es > es;critjec > ec;critg

(16)

Although simple in its dynamics and implementation of spacecraft
estimation and control constraints, this problem reflects real-world
challenges in managing couplings between state estimation and
control for real spacecraft. Because the spacecraft can only control
with respect to its current state estimate, failing to reduce its estima-
tion error can cause divergence in the true state error as the spacecraft
computes burns that inaccurately reflect the current state error. As a
result, this problem tasks an agent with managing both mismodeled
dynamics, coupling of estimation and control processes, and opti-
mization of total mission science time given an orbit accuracy con-
straint while remaining computationally quick to execute.

2. Shield Construction

The primary challenge for safety properties in this environment is
ensuring that the agent has enough knowledge of its true state
(obtained by entering the estimation mode) to correctly understand
which state it should enter. The discretized system used to represent
the safety game is shown in Fig. 7, with the variables qi representing
enumerated discrete safety conditions and with “ctrl” and “est”
representing the dominant transitions between those discrete states.
If the agent’s estimator covariance is low and its state error is close to
the linearity constraint, the shield will force the agent to conduct a
stationkeeping burn; if both errors are high, the graph is constructed
to bias the agent toward conducting estimation modes to ensure that
the estimated errors are actually as large as they believe.

B. LEO Attitude and Health Management Task

1. Problem Description

To represent the feasibility of applying DRL techniques to space-
craft health keeping as well as stationkeeping, a scenario reflect-

Fig. 7 Safety MDP constructed for the stationkeeping task.

HARRIS ETAL. 617

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



ing the challenges of day-to-day operations in low Earth orbit is
presented. A spacecraft on a predetermined trajectory around the
Earth is tasked with maximizing its time spent conducting an Earth
observation task (represented by a nadir pointing attitude) while
maintaining onboard power and dumping excess reaction wheel
momentum. This scenario is implemented in the Basilisk software
framework, and it uses existing flight heritage control laws and
hardware models. A representative block diagram of the simulation
components is shown in Fig. 8; further documentation on these

components and their functionality can be found in the Basilisk

documentation.§ As a result, this environment represents a more

realistic challenge for prospective planning and scheduling

approaches because agents interact directly with a simulation stack

intended for Attitude Determination and Control System (ADCS)

Science
Mode

attTrackingError

hillPoint

mrpFeedback

rwMotorTorque

sunPoint
thrMomentum
Management

Charge
Mode

Desaturation
Mode

R
W

 A
tti

tu
de

C
on

tr
ol

 S
ta

ck

SPICE

simpleNav

spacecraft

exponential
Atmosphere

rwStateEffector thrStateEffector
facetDrag

DynamicEffector

eclipse

simpleBattery

simple
PowerSink

simple
SolarPanel

extForceTorque

A
ge

nt
O

bs
er

va
tio

n

scNavStates

scNavStates

A
tm

oP
ro

ps
M

sg

sc
S

ta
te

M
sg

sc
S

ta
te

M
sg scStateMsg

scStateMsg

po
w

er
S

to
ra

ge
S

ta
tu

s

eclipseMsg

navAttMsg,
navTransMsg

th
rC

om
m

an
dM

sg

rw
C

om
m

an
dM

sg

rwStateMsg

EnvTask

Update Rate: 120 s

attRefMsg

navTransMsg

navAttMsg

DynamicsTask

Update Rate: 0.1 s

Purpose: S/C Hardware,
environment dynamics

FSW Tasks

Update Rate: 1.0 s

Purpose: Flight modes; low-level
attitude control

T
hr

us
te

r 
C

on
tr

ol
S

ta
ck

thrMomentum
Dumping

thrForceMapping

Legend
DynEngine
Connection

Messaging
Connection

Env Model

Dynamics Model

Health Model

Sensor Model

FSW Model

 Interface

planetEphems

Fig. 8 Simulation block diagram for the LEO attitude and health management task (FSW = Flight Software; S/C = Spacecraft; SPICE = the JPL

Spacecraft, Planet, Instrument, Orientation, and Events system).

§http://hanspeterschaub.info/basilisk/index.html [retrieved 16 November
2021].

618 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 

http://hanspeterschaub.info/basilisk/index.html
http://hanspeterschaub.info/basilisk/index.html
http://hanspeterschaub.info/basilisk/index.html


design and verification rather than an approximation of those systems
made more amicable to planning approaches.
Stated formally, the full-system POMDP under the assumption of

full observation of system states on board is provided by Eq. (17):

P�

8>>>>>>>><
>>>>>>>>:

s�fr∈R3; _r∈R3;σBN∈O3;ωBN∈R3;ωRW∈R3;J∈R1g
o�fσBN∈O3;ωBN∈R3;ωRW∈R3;J∈R1g
a�fScience;ChargeMode;DesaturationModeg
T�ffNadirPointing;fSunPointing;fDesaturationg
R�frs;−1 if J�0or jωRWj>250rad∕sg

(17)

In this case, it is assumed that an operations agent would observe all
relevant onboard dynamic information as it is observed or estimated.
The reward function is engineered to provide the agentwith a positive
reward that is inversely proportional to the attitude error σBR when in
the science mode:

rs �
1

σTBRσBR � 1
(18)

In general, attitude transients may not settle out within one time
step, evenwith proper time-step size selection. In addition, there is a
tradeoff between maintaining the Markov property and the granu-
larity of decision-making intervals that can be challenging to
resolve; longer time steps are more likely to resolve transient
behavior but result in fewer planning intervals over a set period of
time, and therefore less flexibility for agent responses in other
nonattitude system domains. By rewarding agents for entering
science mode with small attitude errors, this reward function
ensures that agents that must take multiple steps in the science
mode to settle out transient behavior are properly rewarded.
Rewards are scaled such that the maximum achievable reward over
one environment run is one; this simplifies reward engineering for
failure states, which are defined as providing a reward of -1 and
ending the scenario, ensuring that the maximum reward for a failed
run is zero. This strategy has several appealing properties: it sim-
plifies analysis of agent performance because best- and worst-case
scores are knowable; it clarifies cases wherein agents fail; it is unit
norm, and therefore unlikely to cause numerical issues; and rewards
are continuously shaped and convex around a desired objective but
also simple to implement.
In addition to this structured reward, feature engineering inspired

by the LDR approach described in Sec. III.A.1 is also applied to the
base POMDP described by Eq. (17). Rather than observing the
current attitude and reference states separately, the agent is instead
providedwith themagnitude of the errorModified Rodriguez Param-
eter (MRP) state, which compactly represents the overall attitude
error. Similarly, the overall body to inertial angular velocity is
reduced to the norm angular velocity, as is the reaction wheel speed
vector. These modifications reflect the intended behavior of each
mode and summaries relevant to the reward function. In this problem,
applying LDR reduces the system dimensionality from 13 individual
elements to five elements:

P�

8>>>>>>>><
>>>>>>>>:

s�fr∈R3; _r∈R3;σBN∈O3;ωBN∈R3;ωRW∈R3;J∈R1g
o�fjσBN j∈R1;jωBN j∈R1;jωRW j∈R1;J∈R1g
a�fScience;ChargeMode;DesaturationModeg
T�ffNadirPointing;fSunPointing;fDesaturationg
R�frs;−1 if J�0or jωRWj>250rad∕sg

(19)

2. Shield Design

Owing to its higher complexity, the shield design problem for the
LEO attitude mode selection problem is substantially more complex.
In this case, the system is again discretized in accordancewith safety-
relevant states along expert-defined the operational thresholds listed

in Table 1, resulting in the safetyMDP shown in Fig. 6. However, the
reactionwheel desaturation controller computes themomentum to be
removed by thruster impulses under the assumption that the space-
craft is near stationary; as a result, triggering this mode (action 2 in
Fig. 6) will destabilize the spacecraft, potentially increasing the
momentum in the reaction wheels and triggering a failure state. To
prevent this, additional states representing a combination of one or
more of the safety conditions and tumbling above the body rate
specified in Table 1 are added to the safety MDP; it is assumed that
these states can be transitioned from by using the sun-pointing mode,
which shares a reference attitude with the desaturation mode for
simplicity.

V. Feasibility Analysis

This section aims to demonstrate the merits of DRL-based
approaches for addressing spacecraft tasking and planning chal-
lenges using the representative environments described in Sec. IV.
DRL-based approaches are evaluated against four key questions:
1) The first question relates to hyperparameter sensitivity. How

sensitive is the performance of DRL agents to the selection of
appropriate hyperparameters?
2) The second question relates to absolute performance. How does

the performance of DRL agents compare against other approaches?
3) The third question relates to the sensitivity to environmental

parameters. How robust is DRL performance to small changes in the
environment?
4) The fourth question relates to network size.What network size is

required to reach benchmark performance?
These questions aim to justify exploring the usage of DRL in the

face of common criticisms of these approaches in the field, such as
described by Refs. [18,36].
To provide points of comparison for absolute performance, both a

heuristic method based on the shields constructed for the S-DRL
techniques (described in Algorithm 2) and a timeline-optimizing
genetic algorithm (GA) are evaluated on identical versions of the
environments used to train and test the DRL-based optimizers.
The heuristic method described inAlgorithm 2 is a straightforward

extension of the shield approach described in Sec. III.C. Rather than
releasing control to the DRL agent outside of warning states, the
heuristic agent simply chooses an operational mode that maximizes a
one-step reward returnwhen the shield is not active. This algorithm is
intended to represent the performance of a rule-based approach to
autonomy designed with safety in mind; however, because it uses an
identical shield to the S-DRL approaches, it also provides a reference
for the additional benefit of implementingDRL behind the protection
of a shield algorithm.
On the other end of the autonomy spectrum is timeline optimiza-

tion, wherein a set of spacecraft activities IS sequenced over a time
horizonwhile respecting resource constraints andmission objectives.
To represent these approaches, a GA-based approach is used as a
point of comparison. Rather than optimizing a policy, this algorithm
uses a GA to optimize a timeline of modes with the same mode
interval and total number of modes used to train and evaluate the
DRL-based approaches. A vector of integers is used to represent the
sequence of modes, using a discrete minimum planning interval to
allow for mode switching. Parameters describing the timeline-opti-
mization genetic algorithm are given in Table 2; Fig. 9 shows the

Algorithm 2: Heuristic greedy-safe
action selection

1: Result: a

2: qk � ShieldDiscretizer(ok);

3: if qk ∈ Qnominal, then

4: a � RewardMode;

5: else
6: a � ShieldPolicy(qk)

7: end
8: return a

HARRIS ETAL. 619

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



relative convergence of this approach on both environments using a

log–log scale.

A. Hyperparameter Sensitivity

Most deep learning approaches are dependent on proper selection
of hyperparameters such as learning rate, network size, or reward
discount factors for good performance; indeed, onmany classic DRL
tasks, the selection of correct hyperparameters can be the distinction
between successful agents and policies that areworse than random. It
is expected that through the correct construction of spacecraft oper-
ations policy problems, this extreme sensitivity to hyperparameter
selection can be avoided. To examine this sensitivity, DRL agents
were trained over multiple random seeds at a grid set of hyper-
parameters listed in Table 3 in both the simple-science and LEO
attitude management environments; after training, simple linear fits

were performed on both sets of data to establish the sensitivity of
agent returns to these hyperparameters.
The results of this survey are shown in Figs. 10 and 11. In general,

we find weak correlations between both overall agent performance
and specific hyperparameters, with the exception of the discount
factor γ and batch size.
Both environments are specified as finite duration, and therefore

do not require the use of discount factors for overall episode return
convergence. High discount factors reflect long periods of viability
for rewards in a specific environment, meaning that rewards (and
penalties) should propagate backward farther during training. This
result suggests that the LEO operations problem has a complex and
long-lived dynamics, which must be accounted for in the planning
process, whereas the stationkeeping environment performs best with

a slightly smaller discount factor.
Batch size is regarded as an important factor for policy gradient

methods; large batches may inadvertently average out desirable
behaviors, whereas small ones may result in erroneous gradient
updates if poor actions are over-represented in the batch. The batch
sizes listed in Figs. 10a–11a represent the nsteps parameter in the
stable baselines implementation of PPO for parallel task execution

(referred to interchangeably as both PPO and PPO2); the true batch
size used in gradient updates is defined by nsteps × ncpus, where ncpus

represents the number of CPU cores used during training and is set

to 24 for all presented results. Both environments display good

performance across a range of values but begin to suffer at extremely

large or small values of the batch size parameter.

B. Performance Comparison

This analysis aims to compare the performance of DRL-derived

agents against other solution methods, which are represented by the

greedy-shield agent described in Algorithm 2 (representing safety-

aware rule-driven autonomous tasking approaches) and the timeline-

optimizing genetic algorithm described. To mitigate performance

losses associatedwith brittleness, a “nominal” set of initial conditions

was selected for both environments that is intended to represent

realistic, feasible operational constraints a tasking agentmay be faced

with in flight; as a result, the GA-optimized timeline for that opera-

tional condition is treated as an upper bound on the optimal reward

achievable in that environment.

Given the high-level nature of the designed reference environ-

ments, a genetic-algorithm-based scheduler was implemented to

ground the results of the DRL-driven responsive tasking approach.

The genetic algorithm, built using the Distributed Evolutionary

Algorithms in Python (DEAP) evolutionary computing toolbox,

encodes an action sequence for a given agent as a list of integers

reflecting operational modes with a length corresponding to the

maximum number of steps available in a given environment, which

is identical to the maximum number of steps allowed during DRL

training. The parameters and selection mechanism for this GA are

listed in Table 2. A comparison of the final evaluated reward between

the heuristic agent, the GA-based scheduler, and the DRL-based

agents is shown in Table 4. Although the GA-driven approaches

generally perform 3–5% better on the reward metrics in the nominal

environment, they struggle to find operational timelines that are well

suited to a variety of initial conditions. On the other hand, the

heuristic agents using the shield policy find better-than-random

performance but generally do not match the performance of either

the DRL or S-DRL agents. This result suggests that the addition of

DRL to the mode optimization problem provides benefits to mission

performance beyond heuristic policies alone.

Table 2 Timeline-optimization genetic-algorithm
parameters

Parameter Value

Selection criteria Tournament
Tournament Size 3
Crossover mechanism None
Mutation mechanism Uniform with probability of 0.01
Mutation probability 0.75
Generation size 24

a) Stationkeep environment b) LEO attitude environment

Fig. 9 Comparison of training curves versus environment interaction count for both PPO and a timeline-driven GA.

Table 3 Parameters and parameter
ranges used in hyperparameter search

Parameter Baseline value Range

Discount factor γ 0.99 (0.9, 1)

Batch size nsteps 64 (32, 240)

Clip range ϵ 0.3 (0.1, 0.3)

Entropy coefficient 0.1 (0, 0.3)
Network shape (64, 64) N/A

620 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



a) Batch size b) Clip range

c) Entropy coefficient d) Discount rate

Fig. 11 DRL performance on LEO health management task across selected hyperparameters.

a) Batch size b) Clip range

c) Entropy coefficient d) Discount rate

Fig. 10 DRL performance on station keeping task across selected hyperparameters. Dots represent mean performance, shaded regions indicate 1-σ
covariance bounds, and lines represent linear fits to show overall trends.

Table 4 Summary of performance for PPO, shielded, timeline, and heuristic agents

Stationkeep LEO attitude

Algorithm Demonstration Random Demonstration Random

Heuristic 0.0001779� 4.524 × 10−7 0.002402� 2.5299 × 10−7 0.8500� 0.000 0.7372� 0.09812

GA 0.1513� 0.0001408 0.1445� 0.000557 0.8700� 0.00 −0.5576� 0.03426

PPO 0.2983� 7.4785 × 10−5 0.3001� 0.000152 0.8024� 1.381 × 10−4 0.7624� 0.05000

Shielded PPO 0.2955� 9.489 × 10−5 0.2919� 0.01 0.8406� 5.4521 × 10−5 0.8038� 0.0001516

HARRIS ETAL. 621

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



One notable area of difference between both approaches is the
computational complexity induced by the timeline-driven approach.
In this case, evaluating one gene requires a full run through the
simulation environment; given that large populations are typically
required for good convergence properties, this approach requires the
dedication of substantial computational resources to simulating these
action trajectories. Although DRL is frequently described as data
intensive, Fig. 9 shows that the DRL agent approaches similar mean
episodic rewards to themaximum produced by the genetic-algorithm
approach while requiring 10–100 times fewer environment evalua-
tions. This can be attributed to the fact that the GA-driven optimizer
does not use information about the environment dynamics outside of
the reward associated with a specific action sequence, whereas the
DRL approaches by definition operate on and learn the relationships
between observed states, actions, and rewards.
To demonstrate the relative merits of DRL-based policies for

general operations, the genetic-algorithm scheduler, heuristic policy
agent, and best-performing PPO and S-PPO approaches were evalu-
ated on 100 initializations of both the demonstration and training
environments for both scenarios; the resulting mean reward and 1-σ
bounds are listed in Table 4. On the demonstration environment used
to construct the point solution produced by the GA, DRL-based
approaches produce comparable mean rewards, falling 2–5% short
on the LEO attitude management environment and actually exceed-
ing the performance of the GA on the stationkeeping environment.
When considering environments with randomly sampled initial con-
ditions, the DRL approaches outperform the point solution produced
by the GA in all circumstances. Importantly, both the default PPO
implementation and the S-PPO extension outperform the greedy
heuristic agent on both tasks, demonstrating both the increased
performance possible with the adaptation of DRL versus hand-tuned
policies and the benefit of combining correct-by-construction
approaches with DRL techniques via shielding.

C. Sensitivity to Environment Parameters

The viability of this work hinges on the ability to train data-
intensive DRL agents in simulation before applying them on board.
A natural shortcoming of this approach is the fact that simulations
may not reflect the exact environment in which an agent might be
deployed, resulting in degraded behavior; this phenomenon is de-
scribed as the “simulation gap” in deep learning literature. Modeling
errors are classified as either parametric errors (wherein dynamics
are modeled correctly but constants that govern those dynamics are
mismatched) or systemic errors (wherein additional dynamics are
not included in the training model). During nominal operations,
mission analysts are typically able to account for systemic errors to
an extremely high degree of precision. Prior work in astrodynamics
problems has shown that perturbation methods, which assume small
variations from a prescribed dominant dynamical regime, work
very well for spacecraft trajectory design and navigation prob-
lems. For these reasons, it is desirable to evaluate the robustness
of each agent architecture to parametric uncertainties, such as
mismodeled spacecraft inertias or environmental perturbation
strengths.
To demonstrate the empirical robustness of trained DRL algo-

rithms in the reference scenarios described in Sec. IV, agents were
evaluated against environments with parametric differences in their
dynamics from the training environments; varied parameters and
their ranges are listed in Table 5. Once again, the best-performing
agents analyzed in Sec. V.B are used as benchmark agents for each
approach. Each agent is run in the demonstration initial condition for
each environment while taking three samples at each parameter
combination; to evaluate mean performance, a Gaussian process
regressor was fit to these samples to predict themean episodic reward
of each algorithm, on each environment, at each set of varied
parameters.
The resulting reward contours are shown in Figs. 12 and 13. The

LEO attitude management task shows a wide domain near the train-
ing condition in which the DRL-derived policies provide good
performance, with degrading performance as power consumption

increases and marginal differences in performance as the spacecraft
mass, and therefore inertia is varied. On the other hand, the GA-
optimized timeline provides decent performance at the specific
combination of mass and power consumption in the optimization
environment but degrades rapidly as either parameter is varied away
from the reference condition. In the stationkeeping task, the perfor-
mance of the DRL-based agent tends to improve as both the J2
parameter and magnitude of optimization noise are shrunk, whereas
the shielded PPO implementation shows broader areas of high per-
formance and a higher overall floor on performance with parametric
variation. In a reflection of the partially observable nature of this
environment, the GA-optimized timeline does substantially well
across a range of observation noise variables (because the GA opti-
mizer does not take into account observations when identifying
action sequences).
In addition, these plots can also be considered as a reflection of the

challenges presented by each environment; for example, small
increases in power consumption in the LEO attitude management
problem rapidly cause agents to fail. This is ultimately a result of
the balanced power generation and consumption models used in the
environment; the agent can generate, at most, 20 W of power in the
sun-pointing mode. If an eclipse lasts 30% of an orbit (a common
figure for the LEO environment during unfavorable beta angles), the
agent can rapidly burn through its power reserve evenbefore account-
ing for increases in power consumption; on the other hand, changes
in mass, and therefore inertia (and therefore the settling time and
accuracy of pointing modes), have a more modest effect on overall
system performance.

D. Intrinsic Dimension Survey

Finally, it is desirable to understand where the spacecraft oper-
ations procedure problem is situated with other common deep
learning problems, such as image classification or game playing.
The intrinsic dimension approach described in Sec. II.C was
applied to both the trained stationkeeping agent and the trained
attitudemanager to evaluate the intrinsic dimension of this solution
approach. In addition, the stationkeep environment was evaluated
with multiple observation models, ranging from full observations
of the agent’s estimated and reference state, to observations of the
estimated error vector and covariance, to simply the norm of the
error vector and covariance (referred to as “full,” “error vector,”
and “LDR” observation models, respectively), reflecting increas-
ing application of the LDF hypothesis described in Sec. III.A.1.
The resulting plots of reward vs network dimensionality are shown
in Fig. 14, with shaded regions around each evaluated reward line
representing �1σ bounds for each approach over three random
seeds and 100 evaluations per seed. Table 6 presents the intrinsic
dimension of several common reference problems and datasets in
the broader machine learning community alongside these bench-
mark values.
These results demonstrate several notable findings. First, it is

apparent that the reference problems presented herein are compa-
rable in complexity to other classic deep learning and deep
reinforcement learning benchmarks, falling between the image
classification task CIFAR-10 and the deep reinforcement learning
task Atari Pong in terms of intrinsic dimension. Second, these
results suggest that acceptable performance can be obtained with
substantially smaller neural networks than was originally used for
training: a feature that is extremely important in the context of

Table 5 Parameters varied in stationkeeping and attitude
management problems

Stationkeeping
parameter Range

Attitude
management
parameter Range

J2 0.1 × J2 − 100 × J2 m 200–400

�Q� 0.1 × �Q� − 100 × �Q� Pout 3–7 W

622 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



a) PPO mean performance b) Shielded PPO mean performance

c) GA-Optimized timeline mean performance

Fig. 12 Comparison of GA, PPO, and Shielded PPO approaches versus parametric variation on the LEO management task.

a) PPO mean performance b) S-PPO mean performance

c) GA-Optimized timeline mean performance

Fig. 13 Comparison of GA-optimized timeline and PPO in stationkeep environment with demonstration initial conditions showing performance
variation with J2 and estimation noise changes in environment.

HARRIS ETAL. 623

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



compute-constrained onboard decision making. Finally, Fig. 14a
demonstrates the relative advantage of the LDF hypothesis in terms
of training complexity for systems that resemble switched hybrid
systems in practice, demonstrating that solutions to the “simplified”
stationkeep environment can be obtained with smaller parameter
sets than larger ones with no loss in performance. Despite the
substantially increased problem complexity in terms of simulated
hardware and software dynamics, the LEO attitude health manage-
ment task requires similarly sized networks to the simpler Mars
stationkeeping task, suggesting that substantial increases in dy-
namical complexity may not increase the complexity of a mode-
switching task. Taken together, these results suggest that the
spacecraft operations problem can be solved with reasonably sized
neural networks that fall well within the current state of the art for

a) PPO mean performance b) S-PPO mean performance

c) GA-Optimized timeline mean performance

Fig. 15 Comparison of GA-optimized timeline and PPO in stationkeep environment with demonstration initial conditions showing performance
variation with J2 and estimation noise changes in environment.

a) Stationkeep b) LEO attitude guidance

Fig. 14 Evaluated performance vs intrinsic dimension for PPO on LEO attitude guidance environment. Green dashed lines represent benchmark

performance, and yellow dashed lines represent 90% of benchmark performance.

Table 6 Intrinsic dimension of PPO and S-PPO
solutions for stationkeep and LEO attitude mode

versus other problems in machine learning

Problem dint90
Stationkeep: simple obs 2,000
Stationkeep: semi-obs >10;000

Stationkeep: full obs ≫10;000

LEO attitude management ≈1;000–3;500
CIFAR-10 2,900–9,000
Humanoid 700
Atari Pong 6,000

obs = observations.

624 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 



the field of deep learning, especially when prior knowledge is
leveraged in problem construction.

VI. Conclusions

This work has established the viability of deep reinforcement
learning for generating operations procedures for next-generation
space mission autonomy. Mode-based operations design, wherein
specific software and hardware status combinations are represented
by higher-level modes, provides both a common entry point for
modeling day-to-day spacecraft operations problems as a mode
selection task that can be readily transformed into Markov decision
processes. In addition, challenges inherent to the use of reinforce-
ment learning for operations policy creation, such as safety and the
use of existing information, have been addressed through the appli-
cation of shielded reinforcement learning. In comparison with both
heuristic and timeline-optimization approaches, DRL-driven proce-
dures provide comparable or improved performance with respect to
mission objective satisfaction while generalizing to a wider range of
initial conditions and parametric uncertainties, providing additional
robustness.

Acknowledgments

This work was funded in part by the National Defense Science and
Engineering Graduate Fellowship. The authors would also like to
thank Morteza Lahijanian of the University of Colorado Boulder for
his contributions and insight in reactive synthesis.

References

[1] Alibay, F., Lazio, J. W., Kasper, J. C., and Neilsen, T., “Sun Radio
Interferometer Space Experiment (SunRISE) Proposal: Status Update,”
31st Annual AIAA/USU Conference on Small Satellites, Utah State
Univ. Digital Commons, Paper # SSC17-IX-04, 2017, https://
digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www
.google.com/&httpsredir=1&article=3662&context=smallsat
[accessed 17 Nov. 2021].

[2] “NASATechnology Taxonomy 2020,” NASATR, July 2015, 2020.
[3] “DARPA 2019 Strategic Framework,” Defense Advanced Research

Project Agency TR, Aug. 2019, https://www.darpa.mil/about-us/
about-darpa [accessed 17 Nov. 2021].

[4] Rumford, T. E., “Demonstration of Autonomous Rendezvous Technol-
ogy (DART) Project Summary,” Space Systems Technology and Oper-
ations, Vol. 5088, edited by P. T. Shoemaker, Jr., International Soc. for
Optics and Photonics, Bellingham, WA, 2003, pp. 10–19.
https://doi.org/10.1117/12.498811

[5] Kubitschek, D. G., “Impactor Spacecraft Encounter Sequence Design
for the Deep Impact Mission,” Jet Propulsion, Georgia Tech Digital
Repository, Paper # Gt-SSEC.C.3 #15, 2005, pp. 1–14, https://smartech
.gatech.edu/handle/1853/8031 [accessed 17 Nov. 2021].

[6] Rabideau, G., et al., “Mission Operations of Earth Observing-1 with
Onboard Autonomy,” 2nd IEEE International Conference on Space

Mission Challenges for Information Technology (SMC-IT’06), 2006,
pp. 7, 373.
https://doi.org/10.1109/SMC-IT.2006.48

[7] Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R.,
Davis, A., Mandl, D., Frye, S., Trout, B., and Shulman, S., “Using
AutonomyFlight Software to Improve Science Return on EarthObserv-
ing One,” Journal of Aerospace Computing, Information, and Commu-
nication, Vol. 2, No. 4, April 2005, pp. 196–216.
https://doi.org/10.2514/1.12923

[8] Chien, S.A., Tran,D., Rabideau, G., Schaffer, S. R.,Mandl, D., and Frye,
S., “Timeline-Based Space Operations Scheduling with External Con-
straints,”Proceedings of the 20th International Conference onAutomated
Planning and Scheduling (ICAPS), ICAPS, 2010, pp. 34–41.

[9] Eddy,D., andKochenderfer,M., “MarkovDecisionProcesses forMulti-
Objective Satellite Task Planning,” 2020 IEEE Aerospace Conference,
IEEE, New York, 2020, pp. 1–12.
https://doi.org/10.1109/AERO47225.2020.9172258

[10] Spangelo, S., Cutler, J., Gilson, K., and Cohn, A., “Optimization-Based
Scheduling for the Single-Satellite, Multi-Ground Station Communica-

tion Problem,” Computers and Operations Research, Vol. 57, May
2015, pp. 1–0.
https://doi.org/10.1016/j.cor.2014.11.004

[11] Foster, C., Hallam, H., and Mason, J., “Orbit Determination and Differ-
ential-Drag Control of Planet Labs Cubesat Constellations,” Advances
in the Astronautical Sciences, Vol. 156, 2016, pp. 645–657.

[12] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S.,
Yeo,M.,Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., Quan,
J., Gaffney, S., Petersen, S., Simonyan, K., Schaul, T., van Hasselt, H.,

Silver, D., Lillicrap, T., Calderone,K.,Keet, P., Brunasso,A., Lawrence,
D., Ekermo, A., Repp, J., and Tsing, R., “StarCraft II: A NewChallenge
for Reinforcement Learning,” Preprint, submitted 16Aug. 2017, https://
arxiv.org/abs/1708.04782.

[13] Vinyals, O., Babuschkin, I., Czarnecki,W.M.,Mathieu,M.,Dudzik,A.,
Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J.,
Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T.,

Agapiou, J. P., Jaderberg,M.,Vezhnevets, A. S., Leblond,R., Pohlen, T.,
Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D., Wünsch,
D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T., Kavukcuoglu,
K., Hassabis, D., Apps, C., and Silver, D., “Grandmaster Level in
StarCraft II Using Multi-Agent Reinforcement Learning,” Nature,

Vol. 575, No. 7782, 2019, pp. 350–354.
https://doi.org/10.1038/s41586-019-1724-z

[14] Berner, C., Brockman, G., Chan, B., Cheung,V., Debiak, P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray,
S., Olsson, C., Pachocki, J., Petrov, M., de Oliveira Pinto, H. P.,
Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutsk-
ever, I., Tang, J., Wolski, F., and Zhang, S., “Dota 2 with Large Scale
Deep Reinforcement Learning,” Preprint, submitted 13 Dec. 2019,
https://arxiv.org/abs/1912.06680.

[15] Nageshrao, S., Tseng, H. E., and Filev, D. P., “Autonomous Highway
Driving Using Deep Reinforcement Learning,” Preprint, submitted 29
March 2019, https://arxiv.org/abs/1904.00035.

[16] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A., Yoga-
mani, S., and Perez, P., “DeepReinforcement Learning for Autonomous

a) Stationkeep b) LEO attitude guidance

Fig. 16 Evaluated performance vs intrinsic dimension for PPO on LEO attitude guidance environment. Green dashed lines represent benchmark

performance, and yellow dashed lines represent 90% of benchmark performance.

HARRIS ETAL. 625

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3662&context=smallsat
https://www.darpa.mil/about-us/about-darpa
https://www.darpa.mil/about-us/about-darpa
https://www.darpa.mil/about-us/about-darpa
https://www.darpa.mil/about-us/about-darpa
https://doi.org/10.1117/12.498811
https://doi.org/10.1117/12.498811
https://doi.org/10.1117/12.498811
https://doi.org/10.1117/12.498811
https://smartech.gatech.edu/handle/1853/8031
https://smartech.gatech.edu/handle/1853/8031
https://smartech.gatech.edu/handle/1853/8031
https://doi.org/10.1109/SMC-IT.2006.48
https://doi.org/10.1109/SMC-IT.2006.48
https://doi.org/10.1109/SMC-IT.2006.48
https://doi.org/10.1109/SMC-IT.2006.48
https://doi.org/10.1109/SMC-IT.2006.48
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.12923
https://doi.org/10.1109/AERO47225.2020.9172258
https://doi.org/10.1109/AERO47225.2020.9172258
https://doi.org/10.1109/AERO47225.2020.9172258
https://doi.org/10.1109/AERO47225.2020.9172258
https://doi.org/10.1109/AERO47225.2020.9172258
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1904.00035
https://arxiv.org/abs/1904.00035
https://arxiv.org/abs/1904.00035
https://arc.aiaa.org/action/showLinks?crossref=10.1117%2F12.498811&citationId=p_4
https://arc.aiaa.org/action/showLinks?crossref=10.1038%2Fs41586-019-1724-z&citationId=p_13
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FSMC.2019.8914621&citationId=p_15
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.12923&citationId=p_7
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.cor.2014.11.004&citationId=p_10
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FAERO47225.2020.9172258&citationId=p_9


Driving: A Survey,” IEEE Transactions on Intelligent Transportation

Systems, advance online publication, 9 Feb. 2021.
https://doi.org/10.1109/TITS.2021.3054625

[17] Evans, R. D., and Gao, J. D., “DeepMind AI Reduces Google Data
Centre Cooling Bill by 40%,” DeepMind Blog (online database), 20
July 2016, https://deepmind.com/blog/article/deepmind-ai-reduces-
google-data-centre-cooling-bill-40.

[18] Dulac-Arnold, G., Mankowitz, D. J., and Hester, T., “Challenges of
Real-World Reinforcement Learning,” Preprint, submitted 29
April 2019, https://arxiv.org/abs/1904.12901.

[19] Harris, A., Teil, T., and Schaub, H., “Spacecraft Decision-Making
Autonomy Using Deep Reinforcement Learning,” 29th AAS/AIAA Space

Flight Mechanics Meeting, AAS Paper 19-447, HI, 2019, pp. 1–19.
[20] Harris, A., and Schaub, H., “Towards Reinforcement Learning Tech-

niques for Spacecraft Autonomy,” AAS Guidance, Navigation and

Control Meeting, Vol. 164, Univelt Publishers, San Diego, CA, 2018,
pp. 467–476.

[21] Cianciolo,A.D.,Maddock,R.W., Prince, J.L., Bowes,A., Powell,R.W.,
White, J. P., Tolson, R., Shaughnessy, O., and Carrelli, D., “Autonomous
AerobrakingDevelopment Software: Phase 2 Summary,”AASPaper 13-
736, 2013, pp. 1–0.

[22] Gaudet, B., and Furfaro, R., “Robust Spacecraft Hovering Near Small
Bodies in Environments with Unknown Dynamics Using Reinforce-
ment Learning,” AIAA/AAS Astrodynamics Specialist Conference,
AIAA Paper 2012-5072, 2012.
https://doi.org/10.2514/6.2012-5072

[23] Furfaro, R., Bloise, I., Orlandelli, M., Di Lizia, P., Topputo, F., and
Linares, R., “DeepLearning forAutonomousLunar Landing,”Proceed-
ings of the 2018 AAS/AIAA Astrodynamics Specialist Conference,
Vol. 167, Univelt., Snowbird, UT, 2018, pp. 3285–3306.

[24] Hovell, K., and Ulrich, S., “Deep Reinforcement Learning for Space-
craft Proximity Operations Guidance,” Journal of Spacecraft and Rock-
ets, Vol. 58, No. 2, 2021, pp. 254–264.
https://doi.org/10.2514/1.A34838

[25] Uhlig, T., Sellmaier, F., and Schmidhuber, M., Spacecraft Operations,
Springer, New York, 2015, pp. 167–211.
https://doi.org/10.1007/978-3-7091-1803-0

[26] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.,
“Proximal Policy Optimization Algorithms,” Preprint, submitted 20
July 2017,
https://arxiv.org/abs/1707.06347.

[27] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P.,
“High-Dimensional Continuous Control Using Generalized
Advantage Estimation,” 4th International Conference on Learning

Representations, ICLR 2016—Conference Track Proceedings,
2016, pp. 1–14, https://arxiv.org/abs/1506.02438 [accessed 17
Nov. 2021].

[28] Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., and
Topcu, U., “Safe Reinforcement Learning via Shielding,” Preprint,
submitted 29 Aug. 2017, https://arxiv.org/abs/1708.08611.

[29] Li, X., Warier, R. R., Sanyal, A. K., and Qiao, D., “Trajectory Tracking
Near Small Bodies Using Only Attitude Control,” Journal of Guidance,
Control, and Dynamics, Vol. 42, No. 1, 2018, pp. 109–122.
https://doi.org/10.2514/1.G003653

[30] Labonde, C. J., Flynn, S., Muszynski, M., Ryan, S., McCabe, D., and
Pilinski, E., “Ground Autonomy for an Aging Spacecraft,” 15th

International Conference on Space Operations, AIAA Paper 2018-
2619, June 2018, pp. 1–10.
https://doi.org/10.2514/6.2018-2619

[31] Julian, K. D., and Kochenderfer, M. J., “Autonomous DistributedWild-
fire Surveillance Using Deep Reinforcement Learning,” 2018 AIAA

Guidance, Navigation, and Control Conference, AIAA Paper 2018-
1589, 2018.
https://doi.org/10.2514/6.2018-1589

[32] Sample, E., Ahmed, N., and Campbell, M., “An Experimental Evalu-
ation ofBayesianSoftHumanSensor Fusion inRobotic Systems,”AIAA
Guidance, Navigation, and Control Conference, AIAA Paper 2012-
4542, Aug. 2012.
https://doi.org/10.2514/6.2012-4542

[33] Branicky, M. S., “Multiple Lyapunov Functions and Other Analysis
Tools for Switched and Hybrid Systems,” IEEE Transactions on Auto-

matic Control, Vol. 43, No. 4, 1998, pp. 475–482.
https://doi.org/10.1109/9.664150

[34] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., and Simaitis, A.,
“PRISM-Games: A Model Checker for Stochastic Multi-Player
Games,” Vol. 7795, Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Springer, New York, 2013, pp. 185–191.
https://doi.org/10.1007/978-3-642-36742-7_13

[35] Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems,
3rd ed., AIAA, Reston, VA, 2014, pp. 778–782.
https://doi.org/10.2514/4.102400

[36] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and
Meger, D., “Deep Reinforcement Learning that Matters,” Preprint,
submitted 19 Sept. 2017, https://arxiv.org/abs/1709.06560.

O. Abdelkhalik
Associate Editor

626 HARRIS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 3
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
16

9 

https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/1904.12901
https://doi.org/10.2514/6.2012-5072
https://doi.org/10.2514/6.2012-5072
https://doi.org/10.2514/6.2012-5072
https://doi.org/10.2514/6.2012-5072
https://doi.org/10.2514/1.A34838
https://doi.org/10.2514/1.A34838
https://doi.org/10.2514/1.A34838
https://doi.org/10.2514/1.A34838
https://doi.org/10.1007/978-3-7091-1803-0
https://doi.org/10.1007/978-3-7091-1803-0
https://doi.org/10.1007/978-3-7091-1803-0
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1708.08611
https://arxiv.org/abs/1708.08611
https://arxiv.org/abs/1708.08611
https://doi.org/10.2514/1.G003653
https://doi.org/10.2514/1.G003653
https://doi.org/10.2514/1.G003653
https://doi.org/10.2514/1.G003653
https://doi.org/10.2514/6.2018-2619
https://doi.org/10.2514/6.2018-2619
https://doi.org/10.2514/6.2018-2619
https://doi.org/10.2514/6.2018-2619
https://doi.org/10.2514/6.2018-1589
https://doi.org/10.2514/6.2018-1589
https://doi.org/10.2514/6.2018-1589
https://doi.org/10.2514/6.2018-1589
https://doi.org/10.2514/6.2012-4542
https://doi.org/10.2514/6.2012-4542
https://doi.org/10.2514/6.2012-4542
https://doi.org/10.2514/6.2012-4542
https://doi.org/10.1109/9.664150
https://doi.org/10.1109/9.664150
https://doi.org/10.1109/9.664150
https://doi.org/10.1109/9.664150
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.2514/4.102400
https://doi.org/10.2514/4.102400
https://doi.org/10.2514/4.102400
https://doi.org/10.2514/4.102400
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.G003653&citationId=p_29
https://arc.aiaa.org/action/showLinks?system=10.2514%2F6.2018-2619&citationId=p_30
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.A34838&citationId=p_24
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2F9.664150&citationId=p_33
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-7091-1803-0&citationId=p_25

