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I. Introduction

ATMOSPHERIC forces on spacecraft have long been recognized

as an avenue for coupling between attitude and orbital dynamics
[1].Owing to its dependence on atmospheric density, these forces and

torques are small relative to gravity and are typically considered as
perturbations in the context of orbitalmotion. However, at low-Earth-

orbit (LEO) altitudes, forces from atmospheric interactions can have

substantial impacts on spacecraft orbits [2]. For spacecraft that lack
the volume ormass tomount thrusters (such as CubeSats) or those for

which the thrusters are disabled but maintain attitude control through
other means, the coupling between the attitude and orbital motion

through drag presents one method of recovering mission utility.
Additionally, there is rising interest in large LEO constellations for

telecommunication and Earth imaging. In this context, drag-enabled
attitude–orbit coupling could provide a propellant-free method for

formation constitution and maintenance, thereby extending mission

lifetimes and reducing constellation costs. This work aims to extend
attitude-driven formation flight techniques to convex spacecraft

geometries in a linear sense by exploiting attitude–orbit coupling
under atmospheric drag.
In concept, thework presented here is similar to an existing body of

literature that focuses on ballistic-coefficient controlled differential-
drag formation flight. These techniques focus on the control of

one or more spacecraft’s ballistic coefficients by means of actuated
flaps [3] or panels, and they treat either the ballistic coefficient or the

spacecraft flow-wise projected area as the primary control input [4].
This class of differential-drag-based control was flown by the

AeroCube-4 technology demonstration mission [5]. The addition of

actuated flaps and panels, although attractive for control purposes,

unfortunately adds additional costs and system complexity that are
undesirable for mission managers. Many spacecraft, including
CubeSats, have nonuniform geometries for which the projected
areas vary with attitude, as demonstrated in Fig. 1; by adjusting the
spacecraft’s orientation with respect to the flow, accelerations from
drag can be modulated, and therefore potentially used for control.
Horsley et al. [6] presented one method for incorporating the

limitations of purely geometric-driven differential-drag control as
part of a two-step nonlinear planning and control routine. Discrete-
attitude configurations are selected to produce positive, negative, and
zero relative accelerations, effectively using the spacecraft attitude to
provide “bang–bang” orbit control. A similar approach based on
discrete high- and low-drag attitude modes is used operationally by
Planet Labs for constellation constitution and maintenance on their
large-scale Earth-imaging CubeSat constellation [7]. This approach
does not require complex, online modeling of spacecraft geometries
and provides the maximum possible differential drag for a pair
of spacecraft. However, the bang–bang approach used by many
discrete-attitude-mode controllers incurs substantial mission costs,
due to both the time needed to conduct amaneuver and the potentially
large-attitude maneuvers needed to modulate the spacecraft attitude
between configurations.
For CubeSats (such as Planet Lab’s Dove spacecraft, shown in

Fig. 1), maneuvering between a minimum-drag and maximum-drag
configuration requires a 90 deg slew. As such, spacecraft are not
capable of conducting mission operations during orbit maintenance
periods. Dell’Elce and Kerschen [8] presented a method of single-
axis attitude-driven orbit control for the QB50 constellation using an
online optimizer and compensator. The computational intensiveness
of this technique requires the use of approximations for online
application but, nevertheless, provides credibility to the concept of
continuous differential-drag control using small-attitude motions.
Prior work [9] focused on the linearized dynamics of single-facet
spacecraft; this work aims to extend this methodology to general
spacecraft that can be modeled as collections of facets, allowing for
the incorporation of higher-fidelity geometric models.
This work aims to improve upon computationally expensive

optimization-based approaches by demonstrating a linear control
approach for attitude-driven differential-drag formation flight. To do
so, the coupling between spacecraft geometries and experienced drag
through attitudemust be explored directly. The influence of geometry
and surface material properties on spacecraft drag is a subject of
intense research due to its importance in both space object tracking
and aeronomy studies. For analytic insight, facet-based models such
as those explored by Sutton [10] provide reasonable accuracy and
insight into the dynamics of the “true” system. An alternative
approach is the use of multiparticle Monte Carlo (MC) or other MC-
based methods to develop lookup tables or fitted analytical functions
to approximate the real drag behavior of a given spacecraft. Although
potentially more accurate in the presence of concave geometries [11],
simple convex geometries (such as those of CubeSats) are reasonably
well modeled by analytical expressions. In contrast to previous work,
this Note explicitly considers models of multifaceted spacecraft and
examines the effect of additional substantial perturbation dynamics
on the control’s performance.
Coupling between translational and rotational motions has been

treated extensively in the context of robotics, providing a beneficial
framework for analyzing problems in astrodynamics. Filipe and
Tsiotras [12] developed a methodology for conducing coupled
rotational–translational control for spacecraft rendezvous using a
dual-quaternion representation of the attitude and orbit. Solar or
electric sails, which also experience considerable attitude–orbit
coupling, have served as the objects of study for coupled attitude–
orbit control [13,14]. A common issue with these approaches is the
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lack of additional intuition gained through the use of compact
translation–rotation representations such as dual quaternions. For
these reasons, a straightforward linear model of the underling relative
dynamics is sought.
The work is organized as follows. First, a nonlinear model of

coupled attitude–orbit motion is presented in Sec. II.B. Next, this
model is linearized about a selected reference orbit experiencing drag
forces in Sec. II.D. Section II.E describes the novel linearization of the
system’s geometric attitude dependence about a selected reference
attitude. The linear controllability of this system is established in
Sec. III.A, which additionally describes necessary conditions for
controllability. Finally, Sec. III.B.1 demonstrates the implementation
and performance of a linear-quadratic regulator based on the linearized
system on both the linearized and nonlinear dynamics under realistic
variations from the assumed linear system.

II. Problem Statement

A. Frame Definitions

Before addressing the system model, it is important to define the
reference frames that define the problem. The first is the planet-
centered inertial frame N, which is taken as the global origin of the
system:

N � f0; n̂1; n̂2; n̂3g (1)

The next one is the Hill frame H, which is centered on the
spacecraft at a given position rH∕N in orbit and consists of the
following unit vectors:

H �
n
rH∕N; ĥr; ĥθ; ĥh

o
(2)

where rH∕N is the position vector of the spacecraft with respect to the
center of the N frame, and the unit vectors are defined as follows:

ĥr �
rH∕N

krH∕Nk
(3)

ĥh � rH∕N × ṙH∕N

krH∕N × ṙH∕Nk
(4)

ĥθ � ĥh × ĥr (5)

The direction cosines matrix that maps vectors from H to N,
denoted as [HN], is expressed by

�HN� �

2
64 ĥ

T
r

ĥT
θ

ĥT
h

3
75 (6)

The angular velocity of H with respect to N is given by the
spacecraft’s mean motion n, which forms the angular velocity vector
NωH∕N � ˙fĥh, where ˙f is the orbit true anomaly rate. For circular

orbits, the true anomaly rate is equal to the mean anomaly rate n.

Finally, the spacecraft body frame B is defined, which is aligned
with the spacecraft’s principal inertia frame and written as the
following:

B �
n
rH∕N; b̂1; b̂2; b̂3

o
(7)

The angular velocity vector between the body and inertial frames is
given generally as

BωB∕N � �ω1 ω2 ω3 �T (8)

B. Nonlinear Dynamics

With the system reference frames established, the dynamics that
underlie this work are next defined. A spacecraft experiencing
spherical two-body gravity and other perturbation accelerations
obeys the following equations of motion [15]:

�r � −
μ

r3
r� ap (9)

where r is the inertial spacecraft position vector, μ is the planet’s
gravitational parameter, and ap is the inertial perturbing acceleration
vector. It is assumed that drag is the sole perturbation force and
follows a quadratic model [15]:

ap � aD � −
1

2
βP�vTv�v̂ (10)

in which β represents the spacecraft ballistic coefficient, P is used to
represent the local atmospheric density, v is the flow-relative velocity
of the spacecraft, and v̂ is the unit direction of the flow-relative
velocity.
Attitude dependence enters into the system primarily through the

ballistic coefficient βd, which depends on the spacecraft’s flow-wise
projected area Ai. Considering a spacecraft consisting of several flat
faceted panels with individual areas Ai, individual drag coefficients
CD;i, and individual orientations in the body frame n̂i, the spacecraft
ballistic coefficient due to a collection of n flow-exposed panels is
written using amodified formof the expressions derived bySutton [10]:

β �
P

n
i�1 CD;iAi�Bn̂i ⋅ �BN�N v̂�

m
(11)

The term Ai�Bn̂i ⋅ �BN�N v̂� will be referred to as the projected area
Ap. The drag coefficient CD;i is a complex variable arising from
interactions between rarefied atmosphere and a facet’s material
properties. Some analytical models of gas–surface interactions do
include attitude dependence, such as those described by Bird [16] and
used in a space context by Sutton [10]. Calculating the impacts of these
effects requires detailed knowledge of both the spacecraft’s material
properties, which vary on orbit due to spaceweathering effects, and the
specific temperature and composition of the local atmosphere. These
parameters are difficult to determine in practice. For the purposes of this
analysis, it is assumed that surface drag coefficients remain constant
over the analysis time period.

C. Nonlinear Relative Dynamics

For spacecraft in LEO, drag forces alone can be used to achieve
limited translational controllability. In general, they can only be used
to reach orbits with equal inclinations (as drag acts primarily in the
orbit plane) and lower energies. Instead of considering the case of
general LEO orbital transfer, this Note’s scope is restricted to
consider only the relative motion between spacecraft experiencing
atmospheric drag forces.
Classic relative motion equations describe the motion of a

“deputy” spacecraft as seen by a “chief” spacecraft. The positions of
these two spacecraft are related by the following expression:

rd � rc � ρ (12)

Fig. 1 A Planet Labs Dove spacecraft demonstrating nonuniform
geometry.
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in which ρ is introduced to represent the relative position between the
chief and deputy. Taking two inertial derivatives results in the
following relationship between the accelerations:

�rd � �rc � �ρ (13)

From this, the relative acceleration vector is solved for in terms of
the chief and deputy accelerations given by Eq. (9):

�ρ � �rd − �rc (14)

�ρ � −
μ

r3d
rd � aD;d �

μ

r3c
rc − aD;c (15)

in which aD;c and aD;d are used to represent the drag accelerations of
the chief and deputy, respectively. Substituting in Eq. (12) results in

�ρ � −
μ

�rc � ρ�3 �rc � ρ� � μ

r3c
rc � aD;d − aD;c (16)

D. Linear Relative Dynamics with Drag

The nonlinear dynamics expressed in Eq. (16) provide little a priori
analytical insight into the behavior of relative spacecraft motion under

drag. To this end, Silva [17] provided one set of analytical expressions

for relative motion under the assumption of atmospheric drag, small
relative positions and velocities, and circular chief orbits, effectively

constituting a “Hill–Clohessy–Wiltshire plus drag” formulation for
differential-drag motion. Rotated into the aforementioned Hill frame

and taking ρ � � x y z �T , these equations are

�x � 2ẏn� 3n2x −
1

2
βdPdnrcẋ (17a)

�y � −2ẋn − n2r2c
1

2
�βcPc − βdPd� − βdPdnrcẏ (17b)

�z � −zn2 −
1

2
�βdPdrcn�ż (17c)

Thismodel neglects the linearized effect of relative altitudevariation on

the atmospheric density. For an exponential atmosphere, the linearized
deputy density would be

Pd � Pce
−x∕H ≈ Pc�1 − x∕H� (18)

which is accurate within one atmospheric scale height of the chief’s
position, or approximately 8 km in LEO. However, introducing this

linearization to Eqs. (17a–17c) creates a dependence on the
atmospheric scale height, whichmay be only coarsely known. Instead,

the variable Pd will be retained.
For static relative equilibria to exist, both the first- and second-

order derivatives must be zero. Setting the second-order derivatives

equal to zero yields the following expressions:

1
2
βdPdrcẋ � 2ẏ� 3nx (19a)

n2r2c
1
2
�βcPc − βdPd� � βdPdnrcẏ � −2ẋn (19b)

1
2
�βdPdrcn�ż � −zn2 (19c)

A secular drift term exists in the y direction due to the differential-
drag force acting between the deputy and chief, without a dependence

on the relative state components. At the same time, we see that
conditions exist that permit stable modes in the x and y velocities for
nonzero values of x. Additionally, zeroing the first-order derivatives
yields

0 � 3nx (20a)

0 � n2r2c
1
2
�βcPc − βdPd� (20b)

0 � −zn2 (20c)

which suggests that the system origin is a static equilibriumwhen the

differential-drag term n2r2c�1∕2��βcPc − βdPd� is zeroed.
As such, in addition to the classic Hill–Clohessy–Wiltshire (HCW)

conditions for static equilibria, it is necessary to ensure that the deputy

and chief values of the ballistic coefficient and local neutral density

match. This condition could be achieved by either using spacecraft

with identical geometries and masses (i.e., formation constitution/

maintenance) or by selecting different reference attitudes inwhich both

spacecraft display identical ballistic coefficients. For the purposes of

this work, the former assumption will be made for the remainder of the

presented analysis.

E. Attitude Sensitivity

The linear approximations for both formation dynamics under

drag and the effect of attitude on drag forces lend themselves to the

application of linear controllability tools. To use these tools, it is

necessary to restate the systemdynamics in a linear form such that the

system behavior is described by

ẋ � �A�x� �B�u (21)

where �A� represents the linearized state dynamics, and �B� represents
the linearized control effects matrix.
The second-order relative equations of motion given in Eqs. (17a–

17c) contain secular drift terms proportional to the deputy–chief

differential drag �βcPc − βdPD�. Under the assumption of similar

deputy and chief geometries, this term goes to zero because βc � βd
for identical reference geometries and attitudes and PD � Pc as ρ
goes to 0. This assumption is reasonable for station keeping within a

formation of identical spacecraft, forwhich local variations in density

are likely small and spacecraft are likely to have similar geometries.

Applying this assumption yields the following state dynamicsmatrix:

�A� �

2
66666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 − 1
2
βdPdnrc 2n 0

0 0 0 −2n −βdPdnrc 0

0 0 −n2 0 0 − 1
2
�βdPdrcn�

3
77777775
;

x�
"
ρ

ρ̇

#
(22)

Denoting the sensitivity of the deputy ballistic coefficient on

attitude as �∂βd∕∂σp�, where σp is an arbitrary attitude variation, the

sensitivities of the system dynamics to variation in attitude are

described by

∂ �x
∂σp

� − 1
2
Pdnrcẋ0

∂βd
∂σp (23a)

∂ �y
∂σp

�
�
1

2
n2r2cPd − Pdnrcẏ0

�
∂βd
∂σp

(23b)

∂�z
∂σp

� −
1

2
�Pdrcn�ż0

∂βd
∂σp

(23c)

A consequence of this linearization is that the relative acceleration

partials are dependent upon the selection of initial or selected

reference relative velocities. For the purposes of this work, �B�will be
evaluated at the desired equilibrium state where ρ � 0 and ρ̇ � 0.
By taking the variation from reference attitude σp as the control input
to the system, the B matrix is stated as
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�B� �

2
664

03×3
01×3

1
2
n2r2cPd

∂βd
∂σp

01×3

3
775; u �

2
4 σp;1
σp;2
σp;3

3
5 (24)

For demonstrative purposes, the specific case of attitude-
independent drag coefficients is considered. Attitude-independent
drag coefficientmodels are commonly used throughout the formation
flight literature. Under this assumption, all variation in the ballistic
coefficient is due to attitude effects on the spacecraft’s projected area.
To examine these effects, an additional “target” frame T is defined
with a corresponding attitude matrix �TB�, allowing the expression of
the projected attitude as

Ap � Ai�n̂T �TB�σp���BN�σr��N v̂� (25)

Modified Rodriguez parameters (MRPs) are selected as the
attitude parametrization for this linearization to improve the domain
of linearity [1]. Without loss of generality, the inertial velocity
direction is also rotated into the chief Hill reference frame. Under the
assumption of circular orbits, the inertial direction of the velocity
vector in the chief reference frame is simply the ĥθ unit vector. The
per-facet projected area is therefore

Ap � Ai�n̂T
i �TB�σp���BH�σr��Hv̂� (26)

if that σp is small such that second-order terms can be neglected
[Eq. (29)]:

Ap � Ai�n̂T
i �BN�σr��v̂ − 4n̂T

i �σp×��BN�σr��v̂� (27)

This expression contains two primary components: a constant term
driven by the selected reference MRP, and a linearized rotational
component based on the perturbing MRP. Treating this perturbing
MRP as the control input to the system, it is apparent that the partials
of the ballistic coefficient are dependent only on this small-angle
rotational component:

∂βd
∂σp

� 1

mi

Xn
i�1

−4CD;iAin̂
T
i

∂
∂σp

��σp×��BN�σr��v̂� (28)

Here, the properties of the cross product matrix are exploited to
simplify the linearization. For arbitrary vectors a and b and for an
arbitrary matrix �Z�, the following properties hold:

�a×�b � −�b×�a (29)

∂
∂x

�Z�x � �Z� (30)

To simplify the notation, the intermediate vector q̂ � �BN�σr��v̂ is
introduced. Applying these properties to the derivatives in Eq. (32)
yields

∂βd
∂σp

� 1

m

Xn
i�1

4CD;iAin̂
T
i �q̂×� (31)

which is entirely defined by the spacecraft mass, geometry, and
reference attitude.

III. Controllability Analysis and Controller
Implementation

A. Controllability Analysis

Equations (17a–17c) and (23a–23c) define a linear set of equations
of motion for a deputy–chief pair with the deputy attitude as an input.
Although these equations of motion are general with regard to the
deputy and chief geometry, a restricted case dealing with identical
deputy–chief geometries is used to demonstrate the controllability
properties of this system. This can be considered to representmultiple

use cases. One example is maneuvering to a predefined reference

orbit and attitude during formation constitution (i.e., matching

position and velocity with a fictitious chief). For rendezvous with a
fictitious chief, it is desirable for the fictional chief orbit to have

identical drag parameters to the real deputy. In any of these cases, the

system aim is to drive both the relative position and relative velocity
states to zero.
The linearized equations derived in Sec. II.E enable the use of

straightforward linear analysis tools to demonstrate controllability.

A classic approach to controllability for linear systems uses the
controllability matrix �O�, which is formed as [18]

�O� � � �B� �A��B� �A�2�B� : : : �A�n−1�B� � (32)

where n is the dimension of the state space. The column and null
spaces of �O� form bases for the controllable and uncontrollable

subspaces for the system, respectively. Examining Eqs. (17a–17c)

shows that in-plane dynamics are coupled, but the out-of-plane
z dynamics are independent. This suggests that the control effects

matrix defined by Eq. (24) will allow for the control of both the x and
y states and their derivatives.
Due to the symbolic complexity of these expressions, several

numerical examples are provided to demonstrate the controllability

properties of the linearized system.A reference system consisting of a

single flat platewith the dimensions, drag coefficient, andmass based

upon those of a 3U CubeSat with a 3 by 3 m drag sail were used to
numerically evaluate �A� and �B� for the purposes of forming �O�. The
specific values used for these properties are listed in Table 1. Orbital

elements for both the chief and deputy are given in Table 2. The
matrix rank and QR factorization were computed using the NumPy

linalg library [19].
Three cases are examined: one inwhich the reference attitude is zero,

representing a facet face on into the flow; one in which the reference
attitude is 90 deg, representing a facet edge on into the flow; and one in

which the reference attitude is equivalent to a 45 deg rotation about the

HCW ĥh axis, representing an intermediate drag configuration. These
configurations are visualized in Fig. 2. The rank of �O� for each

configuration, along with the controllable eigenvectors, are listed in

Table 3.
This analysis reveals multiple phenomena relating to the system’s

controllability. First, the selected reference attitude can restore or

prevent controllability. This is sensible when considering the nature

of the small-attitude assumption as it relates to the area projection

term. This dependence is more explicit when considering the area
projection in terms of a single principle attitude angle θ; in which

case, the projection can be rewritten as

n̂T v̂ � cos�θ� (33)

Table 1 Spacecraft geometric
parameters used for numerical

controllability analysis

Parameter Chief value

Pi 2.7346 × 10−14 kg∕m3

Ai 9 m2

mi 6 kg
n̂i � 0 1 0 �T
Cd;i 2.2

a) Face-on case b) Banked case c) Edge-on case
Fig. 2 Visualization of face-on, intermediate, and edge-on attitude
configurations for a single facet.
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Evaluating the cosine term about a reference angle θr and

considering a small perturbation angle θp yields

n̂T v̂ � cos�θr � θp� (34)

If θr � 0, corresponding to the face-on case, the effect of the

perturbation angle drops out, explaining the loss of linear controllability.

However, the edge-on case also presents an issue. For a physical plate,

rotation in either direction represents an increase in the projected area. If

the chief is assumed to be uncooperative, this means that the effective

control input can never produce a negative acceleration and, as such, a

linear model cannot effectively approximate its behavior. It is only in the

banked case that control authority is provided about the described

equilibrium condition in which the deputy and chief ballistic coefficients

are equal. This is illustrated in Fig. 3,which demonstrates thevariation of

a single-plate deputy drag coefficient with attitude for reference attitude

configurations facing into the flow, banked into the flow, andedgeon into

the flow, respectively. From this figure, it is apparent that the con-

trollability of the system for θr � 90 deg is an artifact of the manner in
which the system is linearized, due to the discontinuity at the facet edge.
This analysis provides a framework to understand admissible

conditions andgeometries for differential-drag control inside andoutside

the linear regime. Differential-drag formation flight requires that the

deputy–chief pair be able to achieve both positive and negative relative

accelerations from drag. In the attitude-only noncooperative rendezvous

case considered here, this requires that the deputy geometry and attitude

allow it to both increase and decrease its drag profile relative to the chief.
Using the intermediate case angle as the reference angle, this

analysis reveals that the in-plane states and velocities are controllable

from attitude-driven drag alone. This is consistent with both the well-

known in-plane coupling expressed by the Hill–Clohessy–Wiltshire

equations for linear relativemotion and the planar nature of drag forces

on spacecraft.Additionally, these results agreewith results found in the

literature for this class of control [3]. In comparison to differential-drag

studies that use differential mean orbit elements (such as Ref. [20]) and

show that relative mean elements corresponding to components of in-

plane motion are uncontrollable, these results can be considered as

using short-period behavior (which is lost in the averaging analysis) to

gaincontrollability inplane at the expenseof requiring small separation

distances and maneuver time periods to remain in the linear regime.

B. Linear Control Performance

1. Single-Facet Control

Per the previous section, a subspace of the linearized system has
been demonstrated to be linearly controllable. To this end, a
straightforward linear control law based on linear quadratic regulator
(LQR) was developed and implemented for the sample linear system
based on Table 1. Results are provided for two selected control
objective weights: one that emphasized the fast-state performance
(“fast case”), and one that emphasized economical use of the control
input (the “economic case”). Both the state gains �Q� and the control
gains �R� are selected to be diagonal, with elements of the magnitude
stated in Table 4. The latter can be analogously considered as
minimizing the variance from the desired reference attitude. For
demonstration purposes, the control objective is to drive the deputy
spacecraft to the chief position and velocity.
With respect to the linearized system, both controls are found to be

stabilizing, resulting in the state trajectories found in Figs. 4 and 5. The
commanded attitude MRPs are displayed in Fig. 6. Notably, the
commanded attitudes in the fast-state case vary far outside the domain
inwhichMRP switchingwould typically be used (σ2 � 1), suggesting
that the system violates the small angle assumption critical to the
linearization. Additionally, it is noted that the fast-state case displays
substantial oscillation even after notionally reaching the reference
states, although it is apparent from Fig. 4a that its behavior is
convergent toward the origin. The Hill–Clohessy–Wiltshire dynamics
arewell known to exhibit oscillatorymodes in the formof a two-by-one
ellipse in the planar states; as a result of the small control authority
afforded by drag, it is difficult to completely eliminate this behavior.
To provide further validation of this approach, the linear con-

troller was implemented on a system following the full nonlinear
equations of motion found in Eq. (15) under the same initial
conditions and parameters used to generate the linearized system
(i.e., those found in Tables 1–4). The selected scenario represents a
slot-hopping maneuver, in which a spacecraft maneuvers to a
selected reference location and attitude ahead of its current position
on orbit. A small inclination difference is included to demonstrate
the control’s lack of influence on out-of-plane motion, as expected.
The results of these simulations under both control strategies can be
found in Figs. 7 and 8. Attitude trajectories for these cases are shown
in Fig. 9.
Notably, the LQR controller derived for the linear system provides

similar performance for the nonlinear system using the economic
case’s control gains. This both validates the linearizations used to
derive the LQR controller and demonstrates the applicability of the
linearized system to the “real” problem at hand. However, the results
of the fast case, which display state divergence from the reference,

Table 2 Orbital elements for both the deputy and
chief spacecraft

Orbital element Chief value Deputy value

a 230 km�req 230 km�req
i, deg 45 45.01
e 0 0
Ω, deg 20.0 20.0
ω, deg 30.0 30.0
M0, deg 20.0 19.99

a) Face-on case b) Banked case c) Edge-on case
Fig. 3 Deputy (blue) and chief (orange) ballistic coefficients using reference numbers from Table 1. Results shown for face-on, banked, and edge-on
reference attitudes.

Table 3 Controllability analysis results

Bank angle, deg Rank ��O�� Stabilizable state-space eigenvectors

0 0 ——

45 4 � x̂ ŷ ^̇x ^̇y �
90 4 � x̂ ŷ ^̇x ^̇y �
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demonstrate limitations of the linearization approach. In the fast case,

the relatively large elements of �B� cause the controller to request

large attitudes outside of the linear regime,which is a behavior shown

in the linear system through Fig. 6b.

These results demonstrate the need for large penalties for control

use in the linearized attitude-driven case. Nonlinearities present in the

assumed input (the spacecraft’s attitude) are the dominant drivers of

nonconvergence for the controlled system. These results were used as

guidelines for the development of additional simulations to address

other aspects of the system.

2. Multifaceted Performance

An expected benefit of this approach is the ability to add additional
facets to the dynamic model to further approximate the geometry of a
spacecraft. To demonstrate this advantage, the slot-hopping scenario
described in Table 2 was repeated with a cuboid spacecraft
representing a 3U CubeSat flying obliquely into the flow. The

resulting attitude and Hill-frame trajectory are shown in Fig. 10.

The more complex, three-dimensional geometry represented by the

collection of facets results in additional nonzero terms along the row

corresponding to ẏ in the control matrix �B�; as such, the controller

a) Economic case b) Fast case
Fig. 4 HCW x- and y-state evolutions under linear dynamics with LQR-derived controller.

a) Economic case b) Fast case
Fig. 5 Deputy relative position and velocity state trajectories in the chief Hill frame under attitude-driven control simulated on the linear system.

a) Economic case b) Fast case
Fig. 6 Flow-relative attitude MRP component generated by LQR-derived controller using linear dynamics under different control weights: perturbed
MRP value (green), and reference value (orange).
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makes additional use of the corresponding component of the attitude
MRP, resulting in a similar overall control magnitude but smaller
axiswise components to the single-panel case.

3. Ballistic-Coefficient Variation

Large differences in maximum and minimum ballistic coefficients
can produce large relative accelerations, and therefore provide better
relative motion control performance than small ones. To this end, the
relative controllability of the scenario presented in Sec. III.B.1 is
studied under varied plate areas (of which ballistic coefficients are a
linear function) with all other factors held constant.

Figure 11 shows the attitude and in-plane trajectories for the nominal-,

high-, and low-area cases (Table 5). These results show that control

convergence is maintained even with order-of-magnitude differences in

the ballistic coefficient. As expected, spacecraft with smaller facet areas

requiremore time to converge than spacecraftwith larger facets, reflecting

the impactof area on the ballistic coefficient. Notably, the control uses

larger deviations from the reference state for control when a larger

panel area is available; this is a result of the in-plane coupling

predicted by the linearized dynamics because larger y-direction
velocities would necessarily produce larger x-direction velocities, and

therefore deviations.

C. Performance Under Mismodeled Dynamics

1. Impact of Mismodeled Atmosphere

Even about the Earth, neutral atmospheric density is notoriously

difficult to predict. The structure of this approach to linear control

necessitates the prediction of atmospheric density to formulate the

a) Economic case b) Fast case
Fig. 7 HCW x- and y-state evolutions under the LQR-derived controller on the assumed nonlinear system.

a) Economic case b) Fast case
Fig. 8 Deputy relative position and velocity state trajectories in the chief Hill frame under attitude-driven control.

a) Economic case b) Fast case
Fig. 9 Flow-relative attitude MRP component generated by the LQR-derived controller. Requested MRPs are transformed to the unit set.

Table 4 Selected control gains for economic and fast cases

Control design variable Economic case values Fast case values

Q 0.1 1
R 1e7 1e4
dt 5s 5s
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linearized models that depend on estimates of a base atmospheric

density. To identify the effect of mismodeled atmospheric density on

the controller’s effectiveness, the same scenario used in Sec. III.Awas

run with the real density offset from the density used to construct the

controller by 40% (0.6ρ0 and 1.4ρ0, respectively).
Although the model dynamics are linearly dependent on the

exponentially varying atmosphere, a degree of robustness ismaintained

by the assumption that the relative spacecraft-reference dynamics

occur for nearby orbits (∼10 km). Under the assumed exponential

atmospheric model, this distance falls within one atmospheric scale

height of the reference orbit, which is beneath the point at which higher-

order terms in the series expansionof an exponential atmosphericmodel

become substantial. As shown in Fig. 12, variation in the atmospheric

density from the designvalue simply changes the rate of convergence of

the controller, resulting in under or overshoot.

2. Convergence with Unmodeled J2

The accelerations from J2 are, alongside atmospheric drag, the

dominant perturbations for spacecraft in LEO. Although J2 is not

included in the dynamical model used to construct the control

scheme, the presence of feedback control suggests that the system

may still be stable under the presence of unmodeled dynamics such

as J2. To address this concern, the scenario defined by Table 2 was

redone with an increased initial separation (∼10 km of along-track

separation) and the addition of unmodeled J2 accelerations using the
following inertial expression:

NaJ2 � −
3

2
J2

μ

r2
r2eq
r

0
B@
�
1–5

�
z
r
2
��

x
r�

1–5
�
z
r
2
��

y
r�

3–5
�
z
r
2
��

z
r

1
CA (35)

More important, the differential disturbance from J2 goes to zero

as the relative position goes to zero; as such, the inclusion of

disturbances from J2 will not affect the equilibria of the system.
The results of this analysis are shown in Fig. 13, which

demonstrates that the resulting controller behavior drives the

spacecraft into a neighborhood about the target position. Compared

to Fig. 7a, more periodic oscillations are seen. These oscillations

are consistent with the comparison of osculating vs mean con-

trollability described in Sec. III.A; the resulting oscillations are

partially the result of attempting to control short-period variations

caused by J2.
From the demonstrated scenario, the controller still converges to a

stable position near the designated position in the controlled axes in a

time comparable to the unperturbed case; however, oscillations that

are periodic with the orbit period resulting from J2 are clearly present
early in the trajectory. Regardless, this suggests that the described

attitude-only approach has merit for the control of realistically sized

spacecraft in LEO.

Table 5 Low, nominal, andhighplate
areas used to test the performance impact

of ballistic coefficients

Case Area, m2

Low area 0.09
Nominal area 0.9
Large area 9

a) Commanded MRP trajectories

b) In-plane trajectories in the hill frame
Fig. 10 Control performance for aCubeSat represented by three facets.

a) Commanded MRP trajectories

b) In-plane trajectories in the hill frame
Fig. 11 Control performance for various areas and resulting β values.
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IV. Conclusions

A novel framework for the consideration of differential-drag

formation flight as a linear formation control problem has been pre-

sented and derived. For spacecraft pairs with intermediate drag

geometry-attitude configurations, linear controllability is possible

from small-attitudemotion alone,without the assumption of additional

drag surfaces. These results provide an alternative perspective on the

controllability and stability of formation flight under the consideration

of atmospheric drag. In the described linearization; simulations show

that the attitude linearization is a primary constraint for the design of

controllers. Despite this, controllers based on this formulation of the

differential-drag formation flight problem show convergence in the

presence of unmodeled variations in atmosphere and J2 accelerations
while providing physical insight into the problem structure.
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