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An impulsive feedback control is developed to establish specific relative orbits for spacecraft
formation flying. The relative orbit tracking errors are expressed in terms of mean orbit elements.
The feedback control, based on Gauss’ variational equations of motion, allows specific orbit elements
or orbit element sets to be controlled with minimal impact on the remaining osculating orbit elements.
This is advantageous when J2 invariant orbits are to be controlled, where only the argument of
perigee and mean anomaly will drift apart at equal and opposite rates. The advantage of this
impulsive feedback control, compared to optimal control solutions, is that it can operate with little
computational effort and in a near-optimal manner, while commanding only a marginal penalty
in fuel cost. While applied to the spacecraft formation flying problem, this control could also be
used to perform general orbit corrections. Formulas are developed providing accurate estimates of
the sensitivities of the mean semi-major axis and mean eccentricity with respect to the osculating
inclination angle. With these sensitivities, the tracking error in semi-major axis, eccentricity and
inclination angle can be cancelled within one orbit.

Introduction

Spacecraft formation flying is an interesting and challeng-
ing topic as is seen in references 1–7. In a gravity dominated
environment, where control is a relatively small perturba-
tion on the overall motion, it is important to seek relative
motions which are natural to the prevailing dynamics and
require little control effort to maintain. If all spacecraft
involved are of equal type and build (i.e. have the same
ballistic coefficient), then the differential J2 perturbation is
the dominant perturbative effect experienced by the various
spacecraft. For this case the differential drag effect is negli-
gible on the relative motion over the time period of several
orbits. The Earth oblateness perturbation causes secular
drifts in the ascending node Ω, the argument of perigee ω
and the mean anomaly M , along with short and long period
oscillations in all six orbit elements. As shown in reference 5,
it is beneficial to describe the relative orbits of a spacecraft
formation in terms of mean orbit element differences, as
compared to using cartesian position and velocity vectors.
By using mean orbit elements, the long term behavior of the
spacecraft formation is immediately evident and short term
deviations are not considered. In trying to achieve bounded
relative motion, controlling the short term oscillation from
the desired relative trajectories would be an unnecessary
fuel fuel expense.

For general formation flying it is not possible to set up
the orbit element differences between two neighboring or-
bits such that the three relative secular mean orbit element
drifts are zero. However, it is possible to find two constraints
which enforce equal ascending node and mean latitude an-
gle rates,5 where the mean latitude angle is defined as the
sum of the argument of perigee and the mean anomaly.
With these constraints it is possible to establish specific
orbit element differences which render the resulting rela-
tive spacecraft orbit J2 invariant. Any control maintaining
these types of orbits will naturally go to zero as the desired
relative orbit is asymptotically approached.

One drawback to the above orbit design methodology is
that while it does achieve equal nodal and mean latitude
drift rates between various spacecraft, it is still possible for
the individual argument of perigees and mean anomalies to
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drift apart. Two neighboring orbits will not drift apart in
the classical sense, but as the lines of perigee drift apart from
their initial values, the relative orbit will either expand or
contract. To counter this effect, it will be necessary to pe-
riodically compensate for both the argument of perigee and
mean anomaly drift. The following impulsive control strat-
egy was born out of the quest to find a method to correct the
argument of perigee and mean anomaly while minimally im-
pacting the remaining orbit elements. While the presented
method is attractive to compensate specific sets orbit ele-
ments, it is also possible to use this method to correct for
arbitrary relative orbit errors in a near-optimal manner.

To maintain desired orbit element differences, a multi-
tude of control strategies may be employed. This paper
studies a sequential impulsive algorithm which depends on
mean orbit element errors to establish a specific relative or-
bit. Using Gauss’ variational equations of motion, a firing
sequence is established which allows only certain orbit el-
ement errors to be corrected during an orbit with little or
no effect on the remaining orbit element differences. How-
ever, Gauss’ variational equations of motion are derived for
osculating orbit elements. Since specific mean orbit ele-
ment differences are desired, modifications are introduced
to account for the small differences between mean and os-
culating elements. In particular, first order relationships
between osculating orbit inclination changes and the thus
induced changes in mean semi-major axis and eccentricity
are introduced. These relationships allow for a more ef-
ficient impulsive thrusting scheme to establish the desired
mean orbit element differences faster. While this impulsive
feedback control is demonstrated and applied to the space-
craft formation flying problem, it can also be applied to the
general orbit correction problem.

Problem Formulation

Gauss’ variational equations are convenient to determine
the effect of a control vector u = (ur, uθ , uh)T on the os-
culating orbit elements, where the ur vector component is
the thrust along the orbit radial direction, uh is in the or-
bit normal thrust and the thrust uθ is perpendicular to the
previous two directions. Let a be the semi-major axis, e be
the eccentricity and i be the orbit inclination angle, then
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Gauss’ variational equations of motion are given by8

da

dt
=

2a2

h

“

e sin fur +
p

r
uθ

”

(1a)

de

dt
=

1

h
[p sin fur + ((p + r) cos f + re)uθ ] (1b)

di

dt
=

r cos θ

h
uh (1c)

dΩ

dt
=

r sin θ

h sin i
uh (1d)

dω

dt
=

1

he
[−p cos fur + (p + r) sin fuθ]

−
r sin θ cos i

h sin i
uh

(1e)

dM

dt
= n +

η

he
[(p cos f − 2re)ur − (p + r) sin fuθ ] (1f)

where p is the semi-latus rectum, h is the orbit angular
momentum, r is the scalar orbit radius and θ is the true
latitude angle defined as θ = ω + f . The parameter η =√

1 − e2 is another convenient eccentricity measure. These
equations are written in matrix form as

ėosc = [B(eosc)]u (2)

where eosc is the osculating orbit element vector. Note that
Eqs. (1a)-(1f) do not necessarily show what influence the
control vector will have on the mean orbit elements. Let
the mean orbit element vector e′′ be written as a function
of eosc as

e
′′ = f (eosc) (3)

where the function f () could be formed from Brouwer’s an-
alytical artificial satellite theory.9 Using the chain rule of
differentiation, the mean orbit element rate equation is writ-
ten as

ė
′′ =

»

∂e′′

∂eosc

–T
deosc

dt
(4)

However, using a first order truncation of Brouwer’s trans-
formation between osculating and mean orbit elements, it is
evident that the sensitivity matrix [∂e′′/∂eosc] is essentially
the identity matrix with the off diagonal terms being of or-
der J2 or smaller.6 Therefore, a reasonable first cut control
strategy is to approximate Eq. (4) as

ė
′′ ≈ ėosc ≈ [B(e)]u (5)

To refine this control approach, solving for the Jacobian
matrix of the mean orbit elements would be very valuable.
Since Brouwer’s analytical transformation between osculat-
ing and mean orbit elements is very complex, solving for the
complete 6 × 6 sensitivity matrix is a challenging task. For
the presented impulsive control strategy, two important par-
tial derivatives are the sensitivities of the mean semi-major
axis and the mean eccentricity with respect to the osculating
orbit inclination angle. Appropriate analytical expressions
are derived for these partial derivatives and incorporated
into the control scheme to yield an improved convergence
rate to the desired mean orbit elements.

Control Strategy
Studying the dΩ/dt and di/dt expressions in Eq. (1), it

is evident that the individual ascending node or inclination
angles are adjusted best when the spacecraft passes through
either the polar or the equatorial regions respectively. How-
ever, if both an inclination angle and nodal correction are to
be performed, it is more fuel efficient to perform both cor-
rections with one impulse only. Both elements are adjusted
with an orbit normal impulsive ∆vh as shown in Eq. (1).

The corresponding inclination angle and ascending node cor-
rections are given by

∆i =
r cos θ

h
∆vh (6)

∆Ω =
r sin θ

h sin i
∆vh (7)

Dividing Eq. (7) by (6), the critical true latitude angle θc at
which to perform this orbit normal thrusting maneuver is

θc = arctan
∆Ω sin i

∆i
(8)

Squaring and summing Eqs. (6) and (7), the required ∆vh to
perform the desired inclination correction ∆i and ascending
node correction ∆Ω is

∆vh =
h

r

p

∆i2 + ∆Ω2 sin i2 (9)

Note that applying this ∆vh only affects the orbit elements
i, Ω and ω. This cross-coupling between the (i, Ω) correction
and ω is the only coupling between osculating orbit element
set corrections in this firing scheme. Note that while there
always exists two possible critical true latitude angles θc

from Eq. (8), only the solution corresponding to a positive
∆vh is used in this control method. Thus (i, Ω) are only
corrected at one point in the orbit.

Substituting the ∆vh in Eq. (7) into Eq. (1e), the ∆Ω
correction results in the following ∆ω change:

∆ω(∆vh) = − cos i∆Ω (10)

This secondary effect will be taken into account when spec-
ifying the impulse required to correct the argument of
perigee.

The argument of perigee and the mean anomaly are also
corrected together together as an orbit element pair, but
with two impulsive maneuvers over one orbit. Each impul-
sive thrust is in the orbit radial direction only and is applied
at both the orbit perigee and apogee. Let ∆vrp

be the ra-
dial impulse applied at perigee and ∆vra

be the impulse at
apogee. Computed over one orbit, and taking into account
that an ascending node correction ∆Ω could be occurring
(which causes an additional change in ω), the ∆vrp

and
∆vra

impulses cause the following osculating orbit element
changes.

∆ω =
1

he
(−p(∆vrp

− ∆vra
) − ∆Ω cos i) (11)

∆M =
η

he

`

(p − 2rpe)∆vrp
− (p + 2rae)∆vra

´

(12)

To solve these two equations for the radial ∆v’s, the follow-
ing identities are useful

p − 2rpe = p
1 − e

1 + e
(13a)

p − 2rae = p
1 + e

1 − e
(13b)

along with h/p = na/η. Substituting these expressions into
Eqs. (11) and (12) we find

∆vrp
− ∆vra

= −(∆ω + ∆Ωcos i)
nae

η
(14)

(1 − e)2∆vrp
− (1 + e)2∆vra

= nae∆M (15)

Solving these two equations for the required radial impulses
to achieve a desired ∆ω and ∆M we find

∆vrp
= −

na

4

„

(1 + e)2

η
(∆ω + ∆Ωcos i)+∆M

«

(16)

∆vra
=

na

4

„

(1 − e)2

η
(∆ω + ∆Ωcos i) + ∆M

«

(17)
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Note that if a ∆Ω correction is performed during this orbit,
then its effect is immediately taken into account in the above
two equations.

The argument of perigee and mean anomaly corrections,
provided by Eqs. (16) and (17), are convenient to compen-
sate for the natural secular drift in these orbit elements that
will occur with the J2 invariant orbit presented in refer-
ence 5. Only ω and M of the six orbit elements will not
have an equal relative drift rate, but rather their sum will.
This relative drift difference is not very large, but depend-
ing on the tolerances of the relative orbit it will have to
be compensated for periodically. Further, the smaller the
eccentricity of the orbit, the less effect the relative drift
of ω and M will have on the orbit geometry. However,
Eqs. (16) and (17) provide an impulsive control method
which is able to directly readjust the argument of perigee
and mean anomaly while minimally affecting the other os-
culating orbit elements.

The remaining two orbit elements to be corrected are the
semi-major axis a and the eccentricity e. As is the case
with the argument of perigee and mean anomaly corrections,
the semi-major axis and eccentricity are adjusted together
through two impulsive maneuvers over one orbit. However,
these impulsive thrusts are fired in the tangential uθ direc-
tion. One impulsive correction ∆vθp

is fired at perigee and
the other impulse ∆vθa

is fired at apogee. With this firing
sequence a and e are adjusted efficiently and without dis-
turbing the other osculating orbit elements. From Eq. (1),
the a and e corrections over one orbit are

∆a =
2a2

h

„

p

rp

∆vθp
+

p

ra

∆vθa

«

(18)

∆e =
1

h

“

(p + rp + rpe)∆vθp

+ (−p − ra + rae)∆vθa

”
(19)

Note that in deriving Eqs. (18) and (19) it is assumed that
the orbit corrections ∆a and ∆e are relatively small. Oth-
erwise a and e could not be held constant during the two
maneuvers. To solve these two equations for the tangential
∆v’s, the following identities are used.

p + rp + rpe = 2p (20)

−p − ra + rae = −2p (21)

Eqs. (18) and (19) are now rewritten as

(1 + e)∆vθp
+ (1 − e)∆vθa

=
h2

2a2
∆a (22)

∆vθp
− ∆vθa

=
h

2p
∆e (23)

Using h/a = naη, with η =
√

1 − e2, the required tangential
impulses are found to be

∆vθp
=

naη

4

„

∆a

a
+

∆e

1 + e

«

(24)

∆vθa
=

naη

4

„

∆a

a
−

∆e

1 − e

«

(25)

Note that in both the (ω, M) and (a, e) corrections, the
sequence of impulsive maneuvers over an orbit is irrelevant.
The first maneuver may occur at either perigee or apogee.

To implement these impulsive ∆v’s, the mean orbit ele-
ment errors are established at some arbitrary point in the
orbit, and are then held constant during the orbit while
appropriate ∆v’s are applied as discussed earlier. This
impulsive firing scheme assumes that all the mean orbit
element errors will remain constant over an orbit. If the
a, e and i elements do not satisfy the J2 invariant condi-
tions setup in Reference,5 then Ω, ω and M will experience

some J2 induced secular relative drift. However, this drift
is relatively small over an orbit and can be ignored. The
impulsive feedback control will correct, or at least substan-
tionally reduce, any remaining mean orbit element errors
during the following orbit. The exception is if the deputy
semi-major axis is substantionally different from that of the
chief. In this case the different orbit periods will cause the
mean anomaly to exhibit substantial relative drift over one
orbit. In this case it cannot be assumed that ∆M is con-
stant over an orbit. Thus, the (ω, M) corrections do not
begin until the second orbit. Doing this allows the a, e and
i variables to be corrected during the first obit, which will
set the orbit periods equal between deputy and chief satel-
lite. During further orbits, any remaining relative mean
anomaly errors will remain constant over an orbit. If the
(ω,M) corrections are applied during the first orbit with
a large semi-major axis error present, then the impulsive
feedback control law still corrects the relative orbit. How-
ever, the fuel cost typically increases since incorrect (ω, M)
corrections are performed during the first orbit.

Since it is advantageous to describe the relative orbit in
terms of orbit element differences of the deputy satellite rel-
ative to the chief satellite, this impulsive firing sequence is a
convenient method to correct orbit errors from the desired
orbit element differences. If only one or two elements are
to be adjusted, then this control solution is essentially op-
timal. If several orbit elements are to be corrected, then
preliminary studies have shown this method to still yield
a near-optimal solution with a fuel cost increase of only a
few percent over the multi-impulse optimal solution. The
advantage of this method is that through its simplicity and
low computational overhead, it lends itself well to be imple-
mented in an autonomous manner. Little ground support
would be required for a cluster of spacecraft to maintain
their formation as long as they are able to sense their iner-
tial orbits themselves. This could be achieved through GPS
measurements or direct line of sight measurements between
the various satellites. Feeding back mean orbit element er-
rors has the benefit that any short period oscillations are
ignored.

Further, it is convenient to be able to adjust only certain
orbit elements, leaving the remaining elements virtually un-
touched. For relative orbits designed using the approach
outlined in reference 5, the resulting relative orbit will be
J2 invariant in an angular sense. This means that the neigh-
boring orbits will have equal nodal and mean latitude drift
rates. However, the argument of perigee and mean anomaly
will still drift apart at equal and opposite rates. The conse-
quence of this drift is that the relative orbit will go through
cycles of symmetrically growing and shrinking as the chief
satellite completes one orbit. This effect is more notice-
able for satellite clusters with larger eccentricities. For a
cluster with nominally zero eccentricity, having the argu-
ment of perigee and mean anomaly grow apart at equal and
opposite rates has no affect on the overall relative orbit ge-
ometry. Further, this impulsive firing scheme could also be
used as the initial conditions for an optimizer solving for
the true minimum fuel orbit correction. Often indirect op-
timizing methods are sensitive to initial conditions, and the
presented impulsive feedback law could provide reasonable
initial guess as to the structure of the optimal control solu-
tion.

Selected Mean Orbit Element Sensitivities
An important issue not considered so far is that mean

orbit elements are to be controlled with the spacecraft for-
mation flying, not osculating orbit elements. As a first
approximation, it is feasible to assume that the ∂e/∂eosc

matrix, given in Eq. (4), is a 6×6 identity matrix. However,
for the tight tolerances required with formation flying, the
effects of ∂e/∂eosc must also be considered. For example,
whereas the inclination angle and ascending node correction
should not affect any other osculating elements, besides the
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argument of perigee, it does affect particular mean orbit
elements.

Performing a numerical study, it is evident that adjusting
the osculating orbit inclination correction does have a no-
ticeable effect on the mean semi-major axis and eccentricity.
However, adjusting the osculating semi-major axis and ec-
centricity, as shown in Eqs. (24) and (25), has a negligible
effect on the remaining mean elements.

This section develops algebraic formulas for the sensitiv-
ities of the mean semi-major axis and the eccentricity with
respect to the osculating inclination angle. With these for-
mulae, it is possible to predict the effect that the inclination
angle correction will have on these selected mean orbit el-
ements, and incorporate this information when computing
the required a and e corrections. During the first orbit, these
formulas will result in near-perfect cancellations of tracking
errors in a, e and i.

Using a first order truncation of the Brouwer artificial
satellite theory,9 the mean semi-major axis a′′ is given by

a′′ = a − a
J2

2

r2
e

a2

h

(3 cos i2 − 1)

„

“ a

r′

”3

−
1

η3

«

+ 3(1− cos2 i)
“ a

r′

”3

cos(2ω′+ 2f ′)
i

(26)

where re is the Earth radius, f is the true anomaly and
r is the current orbit radius. Using Brouwer’s notation,
double primed variables are the mean orbit elements, single-
primed variables have the long-period terms removed and
un-primed variables are the osculating parameters. Note
that Eq. (26) involves both un-primed and single-primed
variables. This makes the precise development of ∂a′′/∂i
very challenging. Thus it is assumed that the difference
between using un-primed and primed ω and f is minimal.
The mean semi-major axis is now expressed as

a′′ = a − a
J2

2

r2
e

a2

h

(3 cos i2 − 1)

„

“a

r

”3

−
1

η3

«

+ 3(1− cos2 i)
“a

r

”3

cos(2ω+ 2f)
i

(27)

Taking the partial derivative of Eq. (27) we find

∂a′′

∂i
= −

3

2
J2 sin(2i)

r2
e

a

„

1

η3
+

“a

r

”3

(cos(2ω + 2f) − 1)

«

(28)

Thus, for a given orbit inclination angle correction ∆i, the
corresponding change in mean semi-major axis ∆a′′ is given
by

∆a′′ =
∂a′′

∂i
∆i (29)

If only an inclination correction is performed, then the
impulse is applied at either θ = ω + f = 0 or 180 degrees.
Eq. (29) is then reduced to the simpler form:

∆a′′ = −J2
3

2

r2
e

a

sin(2i)

η3
∆i (30)

From Brouwer’s artificial satellite theory, a first order
approximation of the mapping between the mean and os-
culating eccentricity is given by

e′′ = e − δ1e −
J2

4

η2

e

r2
e

a2

h

(3 cos2 i − 1)

„

“ a

r′

”3

−
1

η3

«

+ 3(1 − cos2 i)

„

“ a

r′

”3

−
1

η4

«

−
e

η4
(1 − cos2 i)

`

3 cos(2ω′ + f ′)

+ cos(2ω′ + 3f ′)
´

i

(31)

with the variable δ1e given by

δ1e =
J2

16

r2
e

a2

e

η2

`

1 − 11 cos2 i

−40 cos4 i(1 − 5 cos2)−1
´

cos(2ω) (32)

Making the same assumptions as were done when developing
the partial derivative of a′′, the partial derivative of e′′ with
respect to the osculating inclination angle i is:

∂e′′

∂i
= −

J2

4

r2
e

a2

sin(2i)

η2

h e

4

“

11 +
80 cos2 i

1 − 5 cos2 i

+
200 cos4 i

(1 − 5 cos2 i)2

”

cos(2ω)

+
3

eη4

„„

“a

r

”3

−
1

η3

«

+

„

“a

r

”3

−
1

η4

«

cos(2ω + 2f)

«

− 3 cos(2ω + f) − cos(2ω + 3f)
i

(33)

The change in mean eccentricity ∆e′′ due to a correction in
osculating inclination ∆i is then given by

∆e′′ =
∂e′′

∂i
∆i (34)

Again, if only inclination angle corrections are performed
individually (i.e. θ = 0 or 180 degrees), Eq. (34) reduces to

∆e′′ = −
J2

16

r2
e

a2

sin(2i)

η2

h

`

11 + 80 cos2 i(1 − 5 cos2 i)−1

+200 cos4 i(1 − 5 cos2 i)−2
´

e cos(2ω)

− 12
1 − η

e
∓ 16 cos ω

i

∆i (35)

where the minus sign is used if θ = 0 degrees and the plus
sign is used if θ = 180 degrees.

When initializing the mean orbit element tracking errors
which are to be corrected during the following orbit, the
∆a′′ and ∆e′′ are now added to the actual mean orbit ele-
ment tracking errors to account for the effect of correcting
the inclination angle. With this adjustment, numerical sim-
ulations illustrate that the mean a, e and i errors can be
canceled within one orbit. The remaining mean orbit ele-
ment sensitivities are to be derived in future work. For the
given control problem, obtaining the a′′ and e′′ sensitivities
with respect to i was required to improve the convergence
rate.

Numerical Simulations
The following numerical simulation establishes a de-

sired J2 invariant orbit by employing the impulsive control
scheme presented in this paper. The chief mean orbit ele-
ments and the desired deputy mean orbit element differences
are shown in Tables 1 and 2. The relative orbit has a pre-
scribed inclination angle difference of 0.006 degrees, while
the semi-major axis and eccentricity are adjusted to com-
pensate for this. The initial mean orbit element errors of the
deputy satellite are δa′′ = −100 meters, δi′′ = 0.05 degrees
and δΩ′′ = -0.01 degrees.

Figure 1 illustrates two test runs. The nonlinear equations
of motion

r̈ + µr = f (r, J2, J3, J4, J5) (36)

are integrated for each spacecraft including the gravitational
zonal harmonics up to fifth order. This allows for a numer-
ical verification that the predictions based on Gauss’ and
Brouwer’s theories are valid. In Case 1 (shown as a dashed
line) the impulsive control scheme is employed without mak-
ing use of the partial derivatives of a′′ and e′′ with respect to
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c) Inclination Angle Error δi (deg)
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f) Mean Anomaly Error δM (deg)

Fig. 1 Mean Orbit Element Tracking Errors (Dashed Line is Case 1, Solid Line is Case 2)

Table 1 Chief Mean Orbit Elements of Chief

Mean Chief
Orbit Elements Value Units

a 7555 km
e 0.05
i 48 deg
Ω 20.0 deg
ω 10.0 deg
M 120.0 deg

the inclination angle. In Case 2, the same control scheme is
used with the addition that if inclination angle corrections
are performed, than their effect on a′′ and e′′ are included.
During the first orbit run, the semi-major axis, eccentricity,
inclination angle and ascending node are attempted to be
corrected. Again, the reason being to first match the or-
bit periods and then attempt to correct the mean anomaly
errors.

Case 1 is able to reduce the initial tracking errors in
(a, e, i) substantially during the first orbit. However, it is
clear that when the the osculating inclination angle is cor-
rected, the mean semi-major axis and eccentricity are also

Table 2 Desired Relative Orbit Element Differences

Desired Mean
Deputy Orbit

Element Differences Value Units
∆a -0.00192995 km
∆e 0.000576727
∆i 0.006 deg
∆Ω 0.0 deg
∆ω 0.0 deg
∆M 0.0 deg

affected. Studying the osculating orbit elements during the
first orbit, no change in the later three orbit elements was
observed as i is corrected, as is predicted according to Gauss’
variation equations. For the given orbit elements, the effect
of changing the inclination by -0.05 degrees is roughly 7.315
meters. In case 2 the sensitivities of the mean a and e with
respect to the osculating i are utilized. The result is that
after the first orbit the mean elements (a, e, i, Ω) are at the
desired values. This verifies that the simplifications per-
formed in deriving the two mean element sensitivities still
resulted in a good prediction of these partial derivatives.

From the second orbit run on all six orbit elements are
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corrected per orbit. After the second orbit, the orbit element
tracking errors for case 2 are essentially zero. Case 1 requires
an extra orbit iteration to cancel out the remaining small
tracking errors.
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Fig. 2 Relative Orbit Tracking Errors in Cartesian Co-
ordinates

Figure 2(a) shows the scalar, radial tracking error of the
relative orbit for both case 1 and 2, with case 1 being again
the dashed line. Both cases converge to the same level of
tracking accuracy of about 1 meter. This is the same level
of accuracy as was achieved with the feedback control laws
in reference 6. The reason these control laws don’t reduce
the tracking error to zero is due to using a first order trunca-
tion of Brouwer’s artificial satellite theory when translating
between osculating and mean orbit elements. Figure 2(b)
shows the difference in tracking errors between case 1 and
2. Note that the difference during the second orbit is too
small to be seen in Figure 2(a). Note that the tracking error
of case 2 has reached its lower limit before the end of the
second orbit. The tracking error of case 1 only reaches its
lower limit only before the third orbit is completed.
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Fig. 3 Relative Orbit as seen in Rotating LVLH Refer-
ence Frame (km)

The relative orbit trajectory, as seen in the rotating LVLH
frame, is shown for either case as a red line in Figure 3. The
differences in the trajectories of either case 1 or 2 are too
small to be visible at the scale shown. The reference relative

orbit is shown as the black curve, with the location of the
chief satellite shown as a blue point. The point where the
first inclination angle and ascending node correction occurs
is plainly visible here as a an abrupt change in the relative
orbit plane. After three orbits, the actual relative orbit does
approach the desired trajectory. Note that the impulsive
feedback control law does a very good job in converging to
the desired relative orbit. Even within one orbit period the
actual relative orbit is very close to the desired relative orbit

The total ∆v consumed with case 1 is 6.4550 m/s. The
∆v for case 2 is reduced slightly to 6.4550 m/s. Even
though typically case 2 provided a better fuel economy than
case 1, it was possible to setup the initial orbit element
tracking errors such that case 1 had a slightly lower fuel
consumption. As a comparison, either case has a lower fuel
consumption than what was found for the feedback laws
in reference 6. There the mean element feedback control
law required 7.584 m/s for the same initial errors, while the
cartesian coordinate feedback law required 7.428 m/s. The
∆v for a two-impulse optimal orbit correction required 6.24
m/s. This means that the impulsive feedback control law
commanded only a 3 percent ∆v penalty compared to the
fuel optimal solution.

The presented impulsive control law is not necessarily in-
tended to replace precomputed, fuel-optimized maneuvers.
If the time and computational effort is available, fuel optimal
maneuvers should be employed. What the impulsive feed-
back control does provide is a simple logic with which to do
orbit corrections. Since these corrections are near optimal,
it is feasible that a spacecraft would be able to perform rel-
ative motion station keeping without the extensive ground
support required for doing optimal trajectories.

Conclusion
An impulsive feedback control strategy in terms of mean

orbit element differences is presented to maintain a clus-
ter of formation flying spacecraft. The control compares
the orbit element differences to predefined values and ad-
justs various orbit elements at particular regions of the
orbit. The elements (a, e) and (ω,M) and (i, Ω) are ad-
justed as pairs. The orbit element corrections are designed
such that they only marginally influence the remaining os-
culating orbit elements. Since mean orbit elements are to
be tracked, the sensitivities of the mean semi-major axis
and eccentricity with respect to the osculating inclination
angle are presented. With these formulae, it is possible
to essentially cancel all mean (a, e, i, Ω) errors within the
first orbit, while the (ω,M) are corrected during the sec-
ond orbit. The impulsive feedback control law requires little
computational effort compared to fuel-optimal solutions, yet
achieves the orbit correction in a near fuel-optimal manner.
Due to its simplicity, this control technique lends itself for
autonomous relative orbit station keeping without extensive
ground support, as long as the individual satellites are able
to determine their orbits themselves.
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